A Hybrid Monte Carlo-Deterministic Method for Global Binary Stochastic Medium Transport Problems

PDF Version Also Available for Download.

Description

Global deep-penetration transport problems are difficult to solve using traditional Monte Carlo techniques. In these problems, the scalar flux distribution is desired at all points in the spatial domain (global nature), and the scalar flux typically drops by several orders of magnitude across the problem (deep-penetration nature). As a result, few particle histories may reach certain regions of the domain, producing a relatively large variance in tallies in those regions. Implicit capture (also known as survival biasing or absorption suppression) can be used to increase the efficiency of the Monte Carlo transport algorithm to some degree. A hybrid Monte Carlo-deterministic ... continued below

Physical Description

PDF-file: 6 pages; size: 0.1 Mbytes

Creation Information

Keady, K P & Brantley, P March 4, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times , with 6 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Global deep-penetration transport problems are difficult to solve using traditional Monte Carlo techniques. In these problems, the scalar flux distribution is desired at all points in the spatial domain (global nature), and the scalar flux typically drops by several orders of magnitude across the problem (deep-penetration nature). As a result, few particle histories may reach certain regions of the domain, producing a relatively large variance in tallies in those regions. Implicit capture (also known as survival biasing or absorption suppression) can be used to increase the efficiency of the Monte Carlo transport algorithm to some degree. A hybrid Monte Carlo-deterministic technique has previously been developed by Cooper and Larsen to reduce variance in global problems by distributing particles more evenly throughout the spatial domain. This hybrid method uses an approximate deterministic estimate of the forward scalar flux distribution to automatically generate weight windows for the Monte Carlo transport simulation, avoiding the necessity for the code user to specify the weight window parameters. In a binary stochastic medium, the material properties at a given spatial location are known only statistically. The most common approach to solving particle transport problems involving binary stochastic media is to use the atomic mix (AM) approximation in which the transport problem is solved using ensemble-averaged material properties. The most ubiquitous deterministic model developed specifically for solving binary stochastic media transport problems is the Levermore-Pomraning (L-P) model. Zimmerman and Adams proposed a Monte Carlo algorithm (Algorithm A) that solves the Levermore-Pomraning equations and another Monte Carlo algorithm (Algorithm B) that is more accurate as a result of improved local material realization modeling. Recent benchmark studies have shown that Algorithm B is often significantly more accurate than Algorithm A (and therefore the L-P model) for deep penetration problems such as examined in this paper. In this research, we investigate the application of a variant of the hybrid Monte Carlo-deterministic method proposed by Cooper and Larsen to global deep penetration problems involving binary stochastic media. To our knowledge, hybrid Monte Carlo-deterministic methods have not previously been applied to problems involving a stochastic medium. We investigate two approaches for computing the approximate deterministic estimate of the forward scalar flux distribution used to automatically generate the weight windows. The first approach uses the atomic mix approximation to the binary stochastic medium transport problem and a low-order discrete ordinates angular approximation. The second approach uses the Levermore-Pomraning model for the binary stochastic medium transport problem and a low-order discrete ordinates angular approximation. In both cases, we use Monte Carlo Algorithm B with weight windows automatically generated from the approximate forward scalar flux distribution to obtain the solution of the transport problem.

Physical Description

PDF-file: 6 pages; size: 0.1 Mbytes

Source

  • Presented at: 2010 ANS Annual Meeting, San Diego, CA, United States, Jun 13 - Jun 17, 2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LLNL-CONF-425249
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 992298
  • Archival Resource Key: ark:/67531/metadc1013598

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 4, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 27, 2017, 5:35 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 6
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Keady, K P & Brantley, P. A Hybrid Monte Carlo-Deterministic Method for Global Binary Stochastic Medium Transport Problems, article, March 4, 2010; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc1013598/: accessed December 11, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.