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Abstract

This paper presents an initial study that is intended to explore the development
of a scalable fully-implicit stabilized unstructured finite element (FE) capability
for low-Mach-number resistive MHD. The discussion considers the development
of the stabilized FE formulation and the underlying fully-coupled preconditioned
Newton-Krylov nonlinear iterative solver. To enable robust, scalable and efficient
solution of the large-scale sparse linear systems generated by the Newton lineariza-
tion, fully-coupled algebraic multilevel preconditioners are employed. Verification
results demonstrate the expected order-of-acuracy for the stabilized FE discretiza-
tion of a 2D vector potential form for the steady and transient solution of the
resistive MHD system. In addition, this study puts forth a set of challenging pro-
totype problems that include the solution of an MHD Faraday conduction pump, a
hydromagnetic Rayleigh-Bernard linear stability calculation, and a magnetic island
coalescence problem. Initial results that explore the scaling of the solution methods
are presented on up to 4096 processors for problems with up to 64M unknowns on a
CrayXT3/4. Additionally, a large-scale proof-of-capability calculation for 1 billion
unknowns for the MHD Faraday pump problem on 24,000 cores is presented.

1 Introduction

The magnetohydrodynamics (MHD) model describes the dynamics of charged fluids in the presence
of electromagnetic fields. MHD models are used to describe important phenomena in the natural world
(e.g., solar flares, astrophysical magnetic field generation, Earth’s magnetosphere interaction with the
solar wind) and in technological applications (e.g., spacecraft propulsion, magnetically confined plasma
for fusion energy devices such as tokamak reactors and plasma dynamics in pulsed reactors such as Z-
pinch devices) [1]. The mathematical basis for the continuum modeling of these systems is the solution
of the governing partial differential equations (PDEs) describing conservation of mass, momentum,
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charge, and thermal energy augmented by Maxwell’s equations for the electric and magnetic field. This
system of PDEs is non-self adjoint, strongly coupled, highly nonlinear and characterized by multiple
physical phenomena that span a very large range of length- and time-scales. These interacting, nonlinear
multiple time-scale physical mechanisms can balance to produce steady-state behavior, nearly balance
to evolve a solution on a dynamical time scale that is long relative to the component time-scales, or
can be dominated by just a few fast modes. These characteristics make the scalable, robust, accurate,
and efficient computational solution of these systems over relevant dynamical time scales of interest (or
to steady-state solutions) extremely challenging.

For multiple-time-scale systems, fully-implicit methods can be an attractive choice that can often
provide unconditionally-stable time integration techniques [2,3]. The stability of these methods, how-
ever, comes at a very significant price, as these techniques generate large and highly nonlinear sparse
systems of equations that must be solved at each time step. For this reason, the dominant computa-
tional solution strategy has been the use of explicit [4–9] and partially implicit methods that include
implicit-explicit [10–14], semi-implicit [15–19], and operator-splitting [20,21] time integration methods.
With the exception of fully-explicit strategies that are limited by stability restrictions to follow the
fastest component time scale, these temporal integration methods all include some implicit aspects of
time integration to allow more efficient solution of multiple-time-scale MHD systems. The implicit-
ness of these algorithms is intended to remove a source of numerical stiffness in the problem, either
parabolic diffusion stability constraints or fast hyperbolic wave phenomena such as those introduced
by Hall physics [22,23]. While these types of techniques currently form the basis for most production
level resistive MHD simulation tools (see e.g. [19,13]) there are a number of outstanding numerical
and computational issues. These include conditional stability limits, operator-splitting-type errors, and
limited temporal order of accuracy [17,18].

Recently progress has been made in developing fully-implicit formulations that attempt to robustly
and accurately integrate these systems and follow the dynamical time-scales of interest [24,25,11,10,26,27,22,23,28,29].
In Ref. [24], a nonlinear implicit MHD solver is proposed based on a implicit-operator-split (IOS) ap-
proach. The IOS algorithm employs Krylov solvers for required inversions in each split step, and is
iterated upon in a Gauss-Seidel manner to achieve some degree of nonlinear consistency. However,
for large implicit time steps, large numerical errors are reported possible in transient calculations
with this algorithm unless enough nonlinear iterations are taken [24]. In Refs. [11,10], incomplete-LU-
preconditioned Krylov methods are employed to invert the linearly implicit (and also implicit-explicit)
set of MHD equations in the context of the Versatile Advection Code. CPU speedups vs. explicit of ∼ 40
are reported [10]. An unpreconditioned Newton-Krylov solver for 3D compressible MHD is explored in
Ref. [26], which also reports order-of-magnitude speedups vs. explicit approaches for fine enough grids.
More recently, the same researchers have developed an “operator-based” parallel preconditioner for 3D
MHD, based on directional splitting of the implicit operator and followed by a characteristic decompo-
sition of the resulting directional PDE operators [30]. Reference [27] explores a Newton-Krylov-Schwarz
parallel approach for the reduced Hall MHD model, where gains of an order of magnitude with respect
to explicit approaches and good parallel scalability are reported. Finally, Refs. [22,23,28,29] develop
optimal “physics-based” preconditioning strategies for a fully implicit Newton-Krylov treatment of 2D
and 3D extended MHD, and report excellent parallel scalability and algorithmic speedups ranging from
one to two orders of magnitude.

The study presented in this paper is intended to complement the work above by considering the
development of methods that are capable of enabling robust and efficient direct-to-steady-state and
fully-implicit fully-coupled solution methods for resistive MHD based on a stabilized FE formulation.
This formulation relies on an inexact Newton-Krylov solution method [31,32] to solve the large-scale
nonlinear algebraic systems. The preconditioning methods are based on a variable-overlap additive one-
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level Schwarz preconditioner [33,34] and a relatively new algebraic multilevel technique that employs
a graph-based aggressive-coarsening aggregation method applied to the nonzero block structure of the
Jacobian matrix [35,36]. The algebraic multilevel method effectively uses corrections that are computed
by a sequence of coarse operators to accelerate the convergence of the iterative Krylov method on the
fine mesh.

In the context of stabilized finite element methods, Salah et. al. [37] developed a formulation for
the constant resistivity magnetic induction equation with a given velocity field. They use a Lagrange
multiplier to enforce the solenoidal constraint on the magnetic field, B and thus develop a system
with four unknowns, the three components of B and the Lagrange multiplier, r. This system requires
compatible spaces for B and r that respect the Ladyzhenskaya-Babuska-Brezzi (LLB) condition, that
is analogous to the velocity and pressure spaces (v, p) in the Stokes flow system (see e.g. [38,39]). An
inconsistent stabilized formulation [40] following Brezzi and Pitkaranta [41] is used to allow equal order
interpolation for B and r. These methods were subsequently extended to an incompressible, constant
resistivity MHD system with both a Lagrange multiplier formulation for B as described above, and a
vector potential formulation [42]. The solution of the resistive MHD system uses an outer decoupled
nonlinear solution strategy. This decoupled strategy solves the flow and magnetics system separately
in each sub-step and couples the system by the outer iteration that can sub-cycle the component
solves. An ILU preconditioned Newton-Krylov type solver is used for the flow equations and a direct
sparse solver is used for the linear magnetics equation. Codina and Silva [43] developed a stabilized FE
formulation for resistive MHD, in the curl form of the equations with constant properties, and develop
stability parameters that handle the velocity-pressure coupling, the solenoidal constraint by a Lagrange
multiplier method, and streamline upwind Petrov-Galerkin (SUPG) like terms that control oscillation
due to convection effects. A fixed point nonlinear solution is employed to resolve the nonlinearities
and no mention is made of the component linear solver(s) that are used. These authors present a
coercivity result for the system that enables development of the stabilization parameters. Other studies
of stabilized FE methods applied to resistive MHD systems include Gerbeau [44] that considered the
coercivity of a stabilized FE formulation for steady state systems and employed a fixed-point (Picard)
type nonlinear solution strategy, Lankalapalli et. al. [45] developed a vorticity-streamfunction vector
potential formulation that uses a SUPG FE discretization and a fixed-point nonlinear solver with a
GMRES iterative method.

Our discretization of the governing resistive MHD equations employs stabilized finite element (FE)
methods based on the general developments of Hughes et. al.(see e.g. [46–52]). The stabilized formula-
tion circumvents the LBB condition for compatible discretization for mixed finite element formulations
of the saddle point problem arising from discretization of the incompressible MHD equations. The stabi-
lized FE formulation allows for equal order interpolation of the incompressible MHD equations without
spurious pressure modes and reduces oscillations in the Galerkin FE formulation for highly-convected
flows. In addition, to enforce the divergence-free condition of the magnetic field, a vector-potential
formulation of the resistive MHD system is used. This formulation implements a simplified form of
a consistently stabilized FE method [40]. In the current context of low Mach number resistive MHD
systems, the benefit in addition to solvability of the system, is that the use of equal order interpolation
simplifies the data structures of a parallel unstructured FE code and the linear algebra interface for
the iterative solution methods that are employed, as described below.

The remainder of this paper is organized as follows. Section 2 presents a brief summary of the resistive
MHD equations and a vector potential form for magnetics effects. The stabilized FE formulation of the
governing 2D vector potential form of the resistive MHD equations is presented in Section 3. In Section 4
a brief overview of the fully-implicit Newton-Krylov solution method is presented with a discussion
of the domain decomposition and multilevel preconditioners. In Section 5 we present representative
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verification, order-of-accuracy results and representative performance, scaling and simulation results of
these solution methods for some illustrative resistive MHD problems. Finally in Section 6 we close with
a few conclusions.

2 MHD Equations and the Simplified 2D Vector Potential Form

A base model for MHD that includes transport effects is the one-fluid visco-resistive MHD system
[53,1]. From a continuum perspective, this system of governing equations includes the Navier-Stokes
equations augmented by the Lorentz force term in the momentum equation and a Joule heating term
included in an internal energy equation as in (1) – (3).

∂(ρv)

∂t
+∇ · [ρv ⊗ v −T]− J×B = 0 (1)

∂ρ

∂t
+∇ · [ρv] = 0 (2)

∂(ρe)

∂t
+∇ · [ρve+ q]−T : ∇v − η‖J‖2 +Q = 0. (3)

In this base model the fluid system equations are closed with the assumed form of the constitutive
equations for the Newtonian fluid stress tensor, T, and the Fourier heat flux vector, q,

T = −P I + Π = −
(
P +

2

3
µ(∇ · v)

)
I + µ[∇v +∇vT ], (4)

q = −λ∇T, (5)

and the assumption of a thermodynamically simple material equation of state:

P = P̂ (e, ρ)

T = T̂ (e, ρ).

In the case of resistive MHD, a simplified form of Maxwell’s equations that includes Faraday’s law,
Ampere’s law neglecting the displacement current, and a simple resistive Ohm’s law for the electric
field [1],

∂B

∂t
−∇× E = 0

J− 1
µ0
∇×B = 0

E + v ×B− ηJ = 0

is used to obtain the magnetic field evolution equation of the form:

∂B

∂t
−∇× (v ×B) +∇× (

η

µ0

∇×B) = 0. (6)

In the next subsections, the system (1) - (6) is specialized to a formulation that allows a low-order
FE interpolation of the velocity field v, the pressure P , the temperature, T , and the magnetic flux, B,
derived from a magnetic vector potential, A.
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2.1 A Vector Potential Formulation

In this section an alternate formulation based on the classical scalar and vector potential formulation
[54] is introduced that simplifies the form of the resulting evolution equations to an unsteady convection-
diffusion-reaction type equation. Further, this form in 2D permits the (Bx, By) components in the plane
of the magnetic flux to be computed with one component of the vector potential Az. In the continuum,
Maxwell’s equations enforce the involution ∇ ·B = 0, and thus a vector potential, A, exists such that
B = ∇×A. The electric field can be defined in terms of the vector potential and a scalar potential, φ
[54]:

E = −∇φ− ∂A

∂t
. (7)

Using Ohm’s law for the electric field and assuming a Coulomb-type gauge [54] defined by

φ+
η

µ0

∇ ·A = 0, (8)

the vector potential evolution equation can be shown to reduce to:

∂A

∂t
− v × (∇×A)− η

µ0

∇2A− 1

µ0

[∇η] (∇ ·A) + E0 = 0, (9)

where an externally applied electric field, E0, has been included. This equation defines the vector
potential, A, and therefore the magnetic flux, B, up to the arbitrary scalar potential φ that can be
recovered if desired from Eqn (8). In two dimensions the vector potential reduces to A = (0, 0, Az) and
evolution equation (9) becomes

∂Az
∂t

+ v · ∇Az −
η

µ0

∇2Az + E0
z = 0 (10)

for a single scalar field Az. This equation exhibits a standard convection diffusion form that is conve-
nient for developing stabilized FE formulations. Additionally, this formulation includes all the physical
mechanisms and therefore all the representative time-scales of the complete resistive MHD system. As
such, the use of the 2D vector potential form of the equations provides a very convenient and efficient
initial formulation for studying the development of scalable fully-implicit fully-coupled stabilized FE
formulations for resistive MHD.

It should be noted that development of Eqn. (10) required ∇ ·B = ∇ · ∇ ×A = 0 that is satisfied
identically by the continuum solution of Maxwell’s equations. This condition is not necessarily satisfied
in all discrete approximations. In the case of linear nodal elements in 2D, this property can be shown
to hold on element interiors. However the non-continuity of the normal derivatives at element edges in
a C0 FE approximation allows violation of this condition on the skeleton of the FE mesh, which is a set
of measure zero. This implies that the divergence condition holds point-wise on element interiors and
in an L2 sense over any finite sub-region of the domain. In addition it can be shown that at element
edges B · n̂ is continuous, a condition that is also required on any surface in the continuous problem.
In 3D, linear nodal elements do not satisfy the divergence free condition on element interiors and the
benefit of this approach is therefore not as clear. The necessity of satisfying the solenoidal involution,
to machine precision, for various regimes of MHD modeling is a topic of considerable current interest in
both structured and unstructured mesh finite volume and unstructured finite element contexts [9,55,56]
.

Finally, the desire to use low order FE basis functions for the vector potential necessitates the
consideration of the representation of the Lorentz force term in the momentum equation and the Joule
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Momentum Rm = ρ
∂v
∂t

+ ρ(v · ∇v) +∇ ·
(
− 1
µ0

B⊗B−Π + (P +
1

2µ0
‖B‖2)I

)

Total Mass RP =
∂ρ

∂t
+∇ · (ρv)

Thermal En-
ergy

RT = ρĈp
∂T

∂t
+ ρĈp (v · ∇T ) +∇ · q− η‖J‖2

2D Vector
Potential Eq.

RAz =
∂Az
∂t

+ v · ∇Az −
η

µ0
∇2Az + E0

z

B = ∇×A; A = (0, 0, Az)

Table 1
Residual form of governing low Mach number resistive MHD equations with the 2D form of the vector po-
tential evolution equation in advection-diffusion form. The primitive variables are the velocity vector u, the
hydrodynamic pressure P , the temperature T , and the Az component of the vector potential in 2D.

heating term in the energy equation. In the context of the momentum equation, the straightforward
use of the vector potential term yields a second order operator J×B = ( 1

µ0
∇×∇×A)× (∇×A) that

is difficult to integrate by parts to sufficiently reduce the order of the weak form operator. To avoid
this difficulty, an alternate divergence form, assuming ∇ ·B = 0, is used to compute the Lorentz force
as

J×B = ∇ ·
[

1

µ0

B⊗B− 1

2µ0

‖B‖2I

]
. (11)

In regards to the computation of the Joule heating source term in the energy Equation (3), a reformu-
lation of this term appears not to be possible to avoid the requirement to compute a second derivative
approximation for the current. Presently, this term is approximated by computing the curl of a field,
B̂ that is obtained from an L2 projection of the piecewise discontinuous approximation obtained from
B = ∇×A.

3 A Stabilized Finite Element Formulation for 2D Resistive MHD

3.1 Brief Overview of Stabilized Equations

Table 1 presents the governing balance equations for momentum, total mass, thermal energy and
the vector potential in residual form. These equations are currently solved in convected form and have
been reduced to a low Mach number approximation form [57,58] with an energy equation that is solved
in terms of temperature. The low Mach number equations are closed by an equation of state of the
form P0 = P̃ (T, ρ) that allows variation of density with temperature, T , and a global thermodynamic
system pressure, P0. The physical and transport properties are assumed to be functions of the local
temperature, T , and density, ρ. This approach is similar to the formulation we have used in the context
of modeling transport / reaction systems that are mixtures of ideal reacting gases in low speed chemical
reactors [59–62]. In the illustrative numerical examples considered in this study, the density variation
is modeled as incompressible and Boussinesq type fluids. However, the formulation as presented would
be applicable to the more general low Mach number formulation.

The continuous PDE problem, defined by the low Mach number resistive MHD equations in Table 1,
is approximated by a stabilized FE formulation. This formulation allows for stable equal-order velocity-
pressure interpolation and provides for convection stabilization as described below. In the case of a

6



mixed Galerkin FE formulation of the momentum-continuity equations of the Navier-Stokes part of
the MHD system, there is a stability requirement that the discrete spaces satisfy the Ladyzhenskaya-
Babuska-Brezzi (LBB) condition; see e.g. [38] or [39]. This condition prevents the use of equal order
finite element spaces, defined with respect to the same partition of the computational domain in finite
elements. Linearization of the mixed nonlinear equations also leads to indefinite linear systems that
are more difficult to solve by iterative methods. An additional difficulty is that the mixed Galerkin
formulation is prone to instabilities for highly convected flows, even if the LBB condition is satisfied
by the finite element spaces.

Consistently stabilized 4 finite element methods for Navier-Stokes address these issues by using a
combination of properly weighted residuals of the governing balance equations to simultaneously relax
the incompressibility constraint and add streamline-diffusion, and sometimes nonlinear-discontinuity-
capturing type operators, to the weak equations to limit oscillations in highly convected flows [46–50].
A significant added advantage of stabilization is that the linearized problems are real positive definite
and therefore performance of iterative solvers can be improved [40].

The specific stabilized FE formulations employed in this study are shown in Table 2. The stabilization
parameters (the τ ’s) are based on the formulations of Hughes and Mallet [63], Shakib [52], Hughes [64],
and Tezduyar [65] for Navier-Stokes with an adaptation of the stabilized formulation of Codina and
Hernandez-Silva [43] for a resistive MHD system. The definition of the stabilization parameters are
provided in Table 3 for momentum, thermal energy, and the vector potential. The multidimensional
effect of convection is incorporated into the stability parameters by the use of the contravariant metric
tensor, Gc (Eqn (12)), of the transformation from local element coordinates {ζα} to physical coordinates
{xi}. Shakib [52] considers the one dimensional limiting case of this multidimensional definition for the
advection-diffusion equation and presents a comparison with the original SUPG technique,

[Gc]
ij =

∂ζα
∂xi

∂ζα
∂xj

. (12)

Finally, it should be noted that this formulation, as presented, has some limitations. First this formu-
lation is a simplification of proposed formulations for multiple advection-diffusion type equations that
also couple the various equations in the definition of the least squares operators [63]. In addition there
is no stabilization contribution for strong source terms and there is no nonlinear discontinuity capturing
term present (see e.g.[63,66–68]). While we have experimented with these terms, they are not used in
the results presented in this study.

3.2 Brief Overview of Discrete Systems of Equations

To give context to the discussion of solution methods and linear algebra, a brief discussion of the
structure of the equations that result from the FE discretization of the weak form of the resistive
MHD equations is presented. In this discussion, the Newtonian stress tensor is expanded to include the
hydrodynamic pressure, P , and the viscous stress tensor term, Π . The resulting stabilized from of the
total mass residual equation in expanded form is given by

FP =
∫

Ω
Φ

[
∂ρ

∂t
+∇ · (ρv)

]
dΩ+

∑
e

∫
Ωe

ρτ̂m∇Φ ·
[
ρ
∂v

∂t
+ ρ(v · ∇v) +∇ ·

(
− 1

µ0

B⊗B−Π + (P +
1

2µ0

‖B‖2)I

)]
dΩ.

(13)

4 Consistent in the sense that the exact solution to the PDE equation satisfies the weak form residual equations
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Momentum Fm,i =
∫

Ω
ΦRm,idΩ +

∑
e

∫
Ωe

ρτ̂m(v · ∇Φ)Rm,idΩ

Total Mass FP =
∫

Ω
ΦRPdΩ +

∑
e

∫
Ωe

ρτ̂m∇Φ ·RmdΩ

Thermal
Energy

FT =
∫

Ω
ΦRTdΩ +

∑
e

∫
Ωe

ρĈpτ̂T (v · ∇Φ)RTdΩ

Z-
component
Vector
Potential

FAz =
∫

Ω
ΦRAzdΩ +

∑
e

∫
Ωe

τ̂Az(v · ∇Φ)RAzdΩ

Table 2
Stabilized finite element formulation of transport/reaction PDEs, where the residual equations Ri are presented
in Table 1 and the stabilization parameters τ̂i are defined in Table 3.

Momentum τ̂m =

[(
2ρ
∆t

)2

+ ρ2vGcv + C2
1µ

2‖Gc‖+ C2
2‖B‖

√
‖Gc‖

]− 1
2

Thermal
Energy

τ̂T =

[(
2ρCp
∆t

)2

+ (ρCp)2vGcv + C2
1λ

2‖Gc‖

]− 1
2

Z-
component
Vector
Potential

τAz =

[(
2

∆t

)2

+ vGcv + C2
1η

2‖Gc‖

]− 1
2

Table 3
Definition of stabilization parameters used in stabilized equations, which use the contravarient metric tensor
Gc (Eqn (12)) to define an element-level streamwise length scale.

This expansion includes the weak form of a Laplacian operator acting on pressure,

L =
∑
e

∫
Ωe

ρτ̂m∇Φ · ∇PdΩ, (14)

which is produced by the stabilized formulation of the total mass conservation equation.
Finite element (FE) discretization of the stabilized equations gives rise to a system of coupled,

nonlinear, non-symmetric algebraic equations, the numerical solution of which can be very challenging.
These equations are linearized using an inexact form of Newton’s method as described in Section 4.2.
A formal block matrix representation of these discrete linearized equations is given by K G

DΓ L


 v′

P′

 = −

 Fv

FP

 . (15)

where the block diagonal contribution of the stabilization procedure has been highlighted by a specific
ordering. In this representation, the vector, v′, contains the Newton updates to the nodal solution
variables, (v,T,Az), with the exception of the nodal pressures, P′. The block matrix, K, corresponds
to the combined discrete transient, convection, diffusion and stress terms acting on the unknowns
v′; the matrix, G, corresponds to the discrete gradient operator; D, the divergence operator; the
diagonal matrix, Γ, results from the group FE expansion of the density and velocity; and the matrix,
L, corresponds to the discrete “pressure Laplacian” operator discussed above. The vectors Fv and
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FP contain the right hand side residuals for Newton’s method. Our current linear algebra solution
procedure uses a specific ordering of the unknowns locally at each FE node with each degree of freedom
ordered consecutively. A single coupled matrix problem, Js = −F, is solved at each Newton step
with sophisticated algebraic domain decomposition and multilevel preconditioned Krylov methods as
described in Section 4.3.

The existence of the well conditioned nonzero matrix, L, in the stabilized FE discretization of the
equations allows the solution of the linear systems with a number of algebraic and domain decomposition
type preconditioners [69,70]. This is in contrast to other formulations, such as Galerkin methods using
mixed interpolation, that produce a zero block on the total mass continuity diagonal. The difficulty of
producing robust and efficient preconditioners for the Galerkin formulation has motivated the use of
many different types of solution methods. A number of these use two-level iteration schemes, penalty
methods, pseudo-compressibility techniques or decoupled/segregated solvers (e.g. [71,72,?]). A detailed
presentation of the characteristics of current solution methods is far beyond the scope of this brief
overview. However, the intent of our method of fully-coupling the transport PDEs in the nonlinear
solver is to preserve the inherently strong coupling of the physics with the goal to produce a more
robust solution methodology. Preservation of this strong coupling, however, places a significant burden
on the linear solution procedure to solve the fully coupled algebraic systems.

4 Fully-implicit Fully-coupled Solution by Parallel Newton-Krylov Methods

4.1 Fully-implicit Time Integration and Direct to Steady-state Solutions

As described above, the resistive MHD systems can exhibit a very large range of interacting times
scales induced by the multi-physics character of these equations. For multiple-time-scale systems, fully-
implicit methods can be an attractive choice that can often provide unconditionally-stable time integra-
tion techniques. These methods can be designed with various stability properties (e.g. A-, L-stability)
that allow robust integration of multiple timescale systems without the requirement to resolve the stiff
modes of the system that are not of interest and do not control the accuracy of time integration[2,3].
The stability of these methods, however, comes at a price, as these techniques generate very large,
coupled and highly nonlinear sparse systems of equations that must be solved at each time step.

The time integration methods used in this initial study of fully-implicit methods for resistive MHD
include the first-order A & L-stable backward Euler Method and the second-order A-stable implicit
midpoint rule [2,3]. For notational purposes the time dependence of the governing equations and the
dependence on the physical parameters of the system are made explicit as follows. Formally we represent
this time dependent nonlinear system of coupled equations in Table 2 as

F(U̇,U,p) = 0, (16)

where F, is the vector of residuals for the stabilized FE equations, U, is the vector of unknowns, and
the list of parameters on which the system depends is denoted by p.

The first-order backward Euler method (BE) solves the system:

F(U̇n+1,Un+1,p) = 0, (17)

with

U̇n+1 ≡ Un+1 −Un

∆t
(18)
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The second-order Mid-point rule (Mid Point) implicit integrator solves the system:

F(U̇n+
1
2 ,Un+

1
2 ,p) = 0, (19)

with

U̇n+
1
2 ≡ Un+1 −Un

∆t
; Un+

1
2 =

1

2
(Un+1 + Un) (20)

In the case of a direct-to-steady-state solution process to find a solution, Ū, of Eqn (16) for the
parameter values, p̄, the nonlinear systems of equations becomes:

F(0, Ū, p̄) = 0. (21)

The result of a direct-to-steady-state and fully-impliciit solution technique is the development of
very large-scale, coupled highly nonlinear system(s) that must be solved. Therefore, these techniques
place a heavy burden on the nonlinear and linear solvers and require robust, scalable and efficient
nonlinear solution methods such as the preconditioned Newton-Krylov methods discussed in Section
4.2 and 4.3.

4.2 Inexact Newton Methods

As described above, the stabilized FE formulation of the governing transient and steady-state resis-
tive MHD equations form a strongly coupled nonlinear system of equations (Eqn (16) and Eqn (21)). To
provide robust and efficient solution of these challenging systems, fully-coupled Newton-based iterative
nonlinear solvers [73] are employed. These solvers can exhibit quadratic convergence rates indepen-
dently of the problem size for sufficiently robust linear solvers. A Newton-Krylov method [74,31] is an
implementation of Newton’s method in which a Krylov iterative solution technique is used to approx-
imately solve the linear systems that are generated at each step of Newton’s method. Specifically, to
solve the nonlinear system F(U) = 0, we seek a zero of F : RN → RN where U ∈ RN is a current
approximate solution. The Krylov iterative solver is applied to determine an approximate solution of
the Newton equation

Jksk+1 = −Fk, (22)

where Jk is the Jacobian matrix, and Fk is the nonlinear residual evaluated at the previous Newton step
solution Uk. The solution for the Newton direction vector, sk+1, is used to update the previous solution
in the sequence as Uk+1 = Uk + θsk+1, where θ is a step length reduction or backtracking parameter.
Back-tracking algorithms are techniques for improving the robustness of the nonlinear solver, and work
by scaling the Newton correction vector by a parameter, θ, as needed to ensure that the nonlinear
residual has been reduced adequately before the step is accepted [73,75].

For efficiency, an inexact Newton method [76–78] is usually employed, whereby one approximately
solves Eqn (22) by choosing a forcing term ηk+1 and stopping the Krylov iteration when the inexact
Newton condition is satisfied, namely:

‖Fk + Jksk+1‖ ≤ ηk+1‖Fk‖. (23)

In this context an inexact Newton method uses nonlinear residual information to determine the
accuracy ηk+1, to which the sequence of linear subproblems are solved. Specific choices for ηk+1, in the
inexact Newton scheme and a more thorough numerical evaluation of these methods can be found in
[77,79,80]. In the implementation of Newton’s method presented in this study we use a constant value
of the ηk+1 parameter to focus on the performance of the preconditioners. In addition, the Jacobian
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matrix, J that is used for the Jacobian vector products in the Krylov solvers, and as the basis for
computing the preconditioners described in Section 4.3, is developed from automatic differentiation
(AD) techniques. These methods are applied to the programmed functions representing the weak form
residuals outlined in Table 2 by employing the SACADO package from the Trilinos framework [81].

Finally by developing a direct-to-steady-state solution capability based on Newton-Krylov type
techniques, additional advanced solution methods such as parameter continuation, bifurcation tracking
and linear stability analysis algorihtms, can be effectively developed to analyze complex nonlinear
solution spaces of interest in the design and operation of physical systems of scientific and technological
interest (e.g. [82–86]).

4.3 Schwarz Domain Decomposition and Multilevel Preconditioners

For the considered class of problems, convergence is not achieved without preconditioning due to
ill-conditioning in the underlying matrix equations [87]. This paper considers one-level Schwarz precon-
ditioners where the basic idea is to decompose the computational domain Ω into overlapping subdomains
Ωi and then assign each subdomain to a different processor [33,34]. One application consists of solving
on subdomains and then combining these local solutions to construct a global approximation through-
out Ω. The ith subdomain problem is usually defined by enforcing homogeneous Dirichlet boundary
conditions on the subdomain boundary, ∂Ωi. In the minimal overlap case, the algebraic Schwarz method
corresponds to block Jacobi where each block contains all degrees of freedom (DOFs) residing within
a given subdomain. Convergence is typically improved by introducing overlap which can be done re-
cursively. Specifically, the jth block within a (k+1)-overlap version contains DOFs corresponding to
nonzero columns within the matrix rows used to define the jth block in a k-overlap version. Solutions
in overlap regions are usually combined by either averaging or simply taking the solution from only
one subdomain within different overlap subregions, i.e. ignoring solutions from all but one subdomain
within a subregion.

Zoltan is used to automatically partition the computational domain over processors which implicitly
defines the subdomains [88]. Incomplete factorization, ILU(k), is employed to approximate the solution
of the local Dirichlet problems and avoid the large cost of direct factorization [87,89]. Typically, k is
chosen so that the incomplete factorization requires a bit more than twice as much storage as the
original matrix. Ifpack performs these incomplete factorizations [90] and Aztec [91] implements the
Krylov methods, e.g. GMRES. We note that the one-level preconditioner is black-box in that the
overlapping subdomain matrices are constructed completely algebraically.

A possible drawback of one-level Schwarz is its locality. One application mixes information between
neighboring sub-domains. This implies that many repeated applications are required to combine infor-
mation across the entire domain. Thus, as the number of subdomains increases, the convergence rate
deteriorates for standard elliptic problems due to this lack of global coupling [33]. The convergence rate
also deteriorates as the number of unknowns per subdomain increases when ILU(k) is used for a sub-
domain solver. To remedy this, coarse levels can be introduced to approximate global coupling [92,70].
The use of a coarse mesh to accelerate the convergence of a one-level Schwarz preconditioner is similar
to multigrid methods that use a sequence of coarser meshes [93,94]. Typically, more than two levels are
employed in a multigrid approach.

In this paper, only algebraically generated coarse levels are considered. These are significantly easier
to implement and integrate with a complicated unstructured simulation as opposed to geometric coarse
grids [92,70,84]. In particular, there is no need to represent complex geometric features on all levels,
e.g. faces, edges, and corners to define the domain boundary. There is also no requirement to interact
with the simulation’s geometric data structures. Most algebraic multigrid methods (AMG) associate a
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graph with the matrix system being solved. Graph vertices correspond to matrix rows for scalar PDEs
while for PDE systems it is natural to associated one vertex with each nodal block of unknowns, e.g.
velocities and pressures at a particular grid point. A graph edge exists between vertex i and j if there
is a nonzero in the block matrix which couples i’s rows with j’s columns or j’s rows with i’s columns.
In some situations it may be advantageous to omit edges if all entries within the coupling block are
small [95]. Once defined, the graph can be coarsened followed by the construction of grid transfer
operators to move solutions between coarse and fine representations. The fine grid discretization can
now be projected to coarser levels in a Galerkin or Petrov-Galerkin fashion using a triple matrix product.
The AMG method is fully specified when the smoothers or approximate solvers on each level are fixed.

Perhaps the most well-known AMG technique is the classical approach of Ruge-Stüben [96,95] where
a subset of fine mesh vertices are used to define the next coarser mesh. In this paper, an alternative
based on smoothed aggregation is employed [97,98]. Fine mesh vertices are grouped into aggregates
so that each aggregate effectively represents a coarse mesh vertex. Standard smoothed aggregation
typically utilizes aggregates with about 30 nodes each for three dimensional isotropic problems. In this
study, METIS and ParMETIS [99] define our aggregates. These packages subdivide the matrix graph
so that each partition has no more nodes than a user supplied parameter and that each partition is
somewhat spherically shaped. We orient METIS and ParMETIS so that they generate somewhat larger
aggregates than those typically used in standard smoothed aggregation. This aggressive coarsening
significantly reduces the number of unknowns between consecutive levels.This generally limits the total
number of levels (≤ 5) which we find better suited for parallel computations [35,100]. Addtionally, larger
aggregates are consistent with using Schwarz/ILU(k) which in the multigrid context corresponds to a
somewhat heavyweight smoother (compared to Gauss-Seidel often used in standard multigrid). That
is, one can coarsen more aggressively when a more substantial smoother is employed. The same ILU(k)
algorithm is used as a smoother on each level and on the coarsest level the KLU [101,102] sparse direct
solver is employed.

Once the coarse mesh is determined, an initial grid transfer is constructed corresponding to piece-
wise constant interpolation. 5 The grid transfer matrix, P , contains only zeros and ones. In the scalar
PDE case, Pij equals one only if the ith fine grid point has been assigned to the jth aggregate. Within
a PDE system, the grid transfer is a block system with an identity matrix for the (i, j)th block if
the ith fine grid point has been assigned to the jth aggregate. This initial grid transfer can then be
improved by smoothing the corresponding basis functions. In the symmetric elliptic case, this is well
understood and essentially corresponds to damped Jacobi, e.g. p̂j = (I −ωD−1A)pj where pj is the jth

basis function in the intial grid transfer, p̂j is the new basis function, ω is a damping parameter, A is
the discretization matrix, and D is the diagonal of A. The situation is less clear in the nonsymmetric
case. A Petrov-Galerkin smoothed aggregation algorithm is given in [103] which smooths separately the
restriction and prolongation operators and also replaces the single damping parameter with a diagonal
damping matrix. The convergence rate of standard smoothed aggregation AMG does not deteriorate
as the mesh is refined for symmetric elliptic problems. This has been shown both theoretically and
computationally [97,98]. The Petrov-Galerkin version has a much weaker theoretical base though com-
putationally it generally converges better than the standard method on highly convective problems and
also exhibits scalable convergence rates (no deterioration with refinement) on a large number of highly
convective problems [103]. In this study, we consider both the Petrov-Galerkin scheme as well as the
simplier scheme based on the initial grid transfer corresponding to piecewise-constants [35,104].

Multilevel implementation is provided by ML [92,105]. ML has been employed successfully in a num-

5 In more general settings the initial transfer might exactly interpolate more complex functions such as rigid
body modes with piecewise versions of these functions.
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ber of applications that include stabilized FE discretizations of Navier-Stokes and transport-reaction
type systems [106,84,107], as well as drift-diffusion systems for semi-conductor modeling [108]. Aztec,
Ifpack, KLU, ML, KLU, and Zoltan are available through the Trilinos framework [81].

5 Results and Discussion

5.1 Representative Verification and Order of Accuracy Results

In this section detailed numerical order-of-accuracy results are presented for a set of 2D resistive
MHD problems that admit analytic solutions that can be used for verification.

5.1.1 Flux Expulsion Problem
This problem has an analytical solution that is used as a verification problem in the evaluation of

numerical methods for resistive MHD [109,42]. It consists of solving for the vector potential solution with
a prescribed discontinuous velocity field. The problem consists of a rotating infinitely long cylindrical
conductor immersed in a conducting fluid with the solid body rotational velocity field v = (−ω0y, ω0x, 0)
in the cylinder and v = 0 outside the cylinder. The dependent variable is A = (0, 0, Az). The geometry
is taken as a cylinder of radius, R0 within a computational domain Ω = [−2, 2]× [−1, 1] with a linear
varying potential field Az = B0 y that produces a uniform magnetic flux B = (B0, 0, 0). The analytic
solution is given by

Az = Im[B0 f(r) eiθ],

where

f(r) = r +
C

r
, r > r0

f(r) = DJ1(pr), r ≤ r0

with

p =
(1− i)k0√

2
, k0 =

√
Rem
r0

C =
r0[2J1(pr0)− pr0J0(pr0)]

pJ0(pr0)
, D =

2

pJ0(pr0)

Fig. 1. Flux Expulsion verification problem. The top left figure shows a coarse computational unstructured
mesh Ω = [−1, 1] × [−1

2 ,
1
2 ] . The remaining figures show contour plots of numerical solution of Az for

Rem = 6, 12, 24, 48, 12288 from the top center image to the lower right image.
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Fig. 2. Flux Expulsion verification problem. Figures show profiles of analytic solution of Az(y, 0) (left)
and Az(x, 0) (right) along with numerically computed solutions from the vector potential solution in
Ω = [−2, 2] × [−1, 1] with 20K unstructured quad elements. The red squares are for Rem = 6 and the
green triangles are for the more highly convected case of Rem = 96, the black line is the analytic solution due
to Moffat [109].

Fig. 3. Flux Expulsion verification problem. Figures show profiles of analytic solution of Bx(0, y) and By(0, y)
(left) along with Jz(0, y) (right) along with numerically computed solutions from the vector potential solution
in Ω = [−2, 2] × [−1, 1] with 20K unstructured quad elements. The black line is the analytic solution due to
Moffat [109].

The computational solution is produced on an unstructured mesh, a coarse example of which is
presented in Figure 1. As the rotational rate is increase in the conductor, the linear Az (uniform Bx)
field is distorted. At high rotation rates the field is expelled from the cylinder and the effects of diffusion
modify the flux field in the region about the rotating conductor. Figure 1 shows iso-lines of Az as a
function of the magnetic Reynolds number, Rem = UR0/η. A comparison of the analytical solution
with the numerical solution is provided in Figure 2 where Az(x, 0) and Az(0, y) are shown in a region
about the conductor. Figure 3 presents the results for the post-processed variables Bx(0, y), By(0, y) and
Jz(0, y) computed on the 20K element unstructured mesh. There has been no significant optimization of
the mesh to resolve the highly localized induced magnetic field and plasma current internal layers near
the rotating inner cylinder. The computed values show very good agreement with the analytic results
of Moffat [109]. These comparisons indicate a very good agreement between the computed solutions
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and the exact analytical solution on a reasonably coarse unstructured mesh.

5.1.2 A Modified Hartmann Flow Vector Potential Problem
This problem has an analytical solution [110] that is often used as a verification problem in the

evaluation of numerical methods for resistive MHD [37,111]. In the classical form, this is a 1D solution
and the dependent variables are (v, P,B). The geometry is taken as a square box with (x, y) ∈ [−L,L]×
[−L,L] with an assumed pressure gradient that drives the flow of ∂P

∂x
= −G0. The analytic asymptotic

solution is of the form B = (Bx, B0, 0) and v = (vx, 0, 0), where By = B0 is an applied external magnetic
field that retards the flow with the tension in the magnetic field lines. The solution is given by

vx = −ρG0Ha

µ0B2
0

[
cosh(Ha)− cosh(y Ha/L)

sinh(Ha)

]

Bx = −B0Rem
Ha

[
sinh(y Ha/L)− (y/L) sinh(Ha)

cosh(Ha)− 1

]

In the context of a vector potential formulation it can be shown that an analogous modified Hartmann
problem can be defined that has ∇×A = (Bx, B0, 0) with A = (0, 0, Az). The solution vector has the
form, (v, P, Az) and the solution for the vector potential is

Az = −B0x−
G0y

2

2B0

+
G0

B0

[Ha cosh(y Ha) csch(Ha)]

and must be sustained by an external electric field with

E0
z =

G0

B0

[Ha coth(Ha)− 1].

In Figure 5, contour plots of the numerical solution for vx and Az are presented along with the
post-processed quantity Bx. The 1D nature of vx and Bx are evident along with the 2D variation of
the vector potential Az. In Figure 5 profiles from the computed numerical solution are compared with
the analytic solution for vx and Bx at x = 0 for various values of Re = U(2L)/ν = Rem = U(2L)/η
and Hartmann number, Ha = B0(2L)/

√
µ0ρµη. This figure shows qualitatively excellent agreement to

the analytical solution. Figure 6 shows a detailed spatial convergence study for a mesh with spacing
∆x = ∆y. The expected order of convergence for linear nodal elements in the dependent variables
vx and Az is exhibited with super-convergence of the quantity Bx computed by a lumped mass L2

projection.

Fig. 4. Modified Hartmann flow verification problem, Re = Rem = 2Vx. Figures show contour plots of numerical
solution of vx (left), Az (center), and Bx (right).
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Fig. 5. Modified Hartmann flow verification problem, Re = Rem. Figures show profiles of analytic solution of
vx (left) and B0Bx (right) along with numerically computed solutions at x = 0.0 from the vector potential
solution.

Fig. 6. Modified Hartmann flow verification problem, Re = Rem. Figure shows convergence of the computed
numerical solution for vx, Az and the derived quantity Bx from the vector potential solution.

As a final illustration with this type of MHD duct flow problem, a simple study of the effect of the
convection stabilization by the SUPG-type terms for a strongly convected flow is presented. This simple
prototype geometry is a rectangular channel with (x, y) ∈ [0, 5]× [−1, 1] and a very coarse mesh with
size 10× 20 is employed. The inlet has velocity vx(0, y) = V0 with V0 = 100, 200, 400 with appropriate
outlet Neumann conditions. An external perpendicular magnetic field is imposed by a linear ramp in Az
with Az(0, y) = −5 and Az(5, y) = 5. For high flow velocities the strongly enforced Dirichlet condition
at x = 5 produces a very sharp boundary layer. For cell based Re = Rem > 1 the Galerkin discretization
can become unstable and produce oscillations. As expected the SUPG stabilization helps to control and
localize these oscillations. Clearly from Figure 7 the nonphysical behavior of the Galerkin discretization
is apparent. The stabilized method clearly helps to control the large-scale oscillations found in the
Galerkin discretization. While there still appears to be some slight outflow effects seen in the velocity
profile for the stabilized case, this most likely is due to the use of an inaccurate lumped mass projection
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to recover the B field. This technique has problems at boundaries and therefore produces a less accurate
computation of the PDE residual and the J × B Lorentz force term. A consistent mass projection is
being explored.

Fig. 7. Test of the SUPG-type stabilization of convective effects. Figures show profiles of Az (left) and vx (right).
The Hartmann number for this case is 4. Note that in the left figure the SUPG results are indistinguishable
for all Rem.

5.1.3 MHD Rayleigh Flow and Alfven Wave Propagation Problem
This problem has an analytical solution [110] that can used as a verification problem in the evaluation

of numerical methods for transient resistive MHD [37]. In the classical form, this is a 1D transient
problem that has an infinite plate bounding a conducting fluid in a semi-infinite domain. There is an
externally applied magnetic field in the y-direction with magnitude B0. The plate is initially at rest
and then is suddenly set in motion with a velocity U . A viscous boundary layer flow is developed where
the velocity profile is modified from the classical Rayleigh flow profile [112] by the existence of the
magnetic field. As the velocity profile is developed, a self-induced magnetic field in the x-direction Bx

is developed as an Alfven wave with velocity A0 = B0/
√
µ0ρ propagates into the fluid. In the numerical

solution the infinite half-space is approximated as a square box with (x, y) ∈ [0, 5] × [0, 5]. For the
case where the magnetic Prandtl number Prm = 1 the analytic asymptotic solution is of the form
B = (Bx, B0, 0) and v = (vx, 0, 0). The solution is given by

vx =
1

4
U

[
e−

A0y

d

(
1− erf

(
y − A0t

2
√
dt

))
− erf

(
y − A0t

2
√
dt

)]

+
1

4
U

[
e

A0y

d

(
1− erf

(
A0t+ y

2
√
dt

))
− erf

(
A0t+ y

2
√
dt

)
+ 2

]

Bx = −1

4
e−

A0y

d

(
−1 + e

A0y

d

)
U
√
µρ

(
erfc

(
y − A0t

2
√
dt

)
+ e

A0y

d erfc

(
A0t+ y

2
√
dt

))

In the context of a vector potential formulation it can be shown that an analogous modified problem
can be defined that has ∇ × A = (Bx, B0, 0) with A = (0, 0, Az). The solution vector has the form,
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(v, P, Az) and the 2D solution for the vector potential is

Az = −B0 x+
U
√
dt
√
µρ

2
√
π

(
e−

(y−A0t)2

4dt − e−
(y+A0t)2

4dt

)

+
U

4

√
µρ

A0

(
d+ A0

2 t
)(

erf

(
A0t− y
2
√
dt

)
− erf

(
A0t+ y

2
√
dt

))

−U
4

√
µρ

A0

e
−A0y

d

(
d+ A0e

A0y

d y
)

erfc

(
y − A0t

2
√
dt

)

−U
4

√
µρ

A0

(
de

A0y

d − A0y
)

erfc

(
A0t+ y

2
√
dt

)

and must be sustained by an external electric field with E0
z = B0 U

2
.

The parameters in this problem are taken as in [37] to be U = 1.0, B0 = 1.4494e−4, ρ = 0.4e−4,
µ0 = 1.256636e−6, η = 1.256636e−6, and µ = 0.4e−4 with d = η/µ0 = µ/ρ = 1. Dimensionless
parameters values should be shown here. The initial conditions and boundary conditions are
defined by the analytical solution above. In Figures 8 and 9, line plots of the analytic and numerical
solution for vx, the post-processed quantity Bx, and Az are presented at various discrete times. In this
plot the Hartmann layer in vx near the plate surface at y = 0, and the plateau region influenced by
the magnetic field is evident. These figures show qualitatively excellent agreement to the analytical
solution. Figure 10 shows a detailed spatial and temporal order-of-accuracy study. The expected order
of spatial order-of-accuracy for linear nodal elements in the dependent variables vx and Az is exhibited
with super-convergence of the quantity Bx computed by a lumped mass L2 projection. This figure
exhibits the expected order-of-accuracy for the first and second order temporal integration as well.

Fig. 8. Modified Rayleigh flow and Alfven wave verification problem. Figures show plots of x-velocity (left)
and x-magnetic field (right). The mesh has 50× 250 elements and the time step is 5× 10−4 time units.

5.2 Prototype Resistive MHD Problems and Linear Solver Performance

This section briefly describes three prototype resistive MHD problems that represent a more chal-
lenging test of the stabilized FE 2D vector potential formulation and the fully-implicit, fully-coupled
solution methods presented in this paper. The first problem is a steady-state MHD duct flow type prob-
lem that represents an idealized Faraday conduction pump. The MHD pump induces flow by the action
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Fig. 9. Modified Rayleigh flow and Alfven wave verification problem. Figure shows plots of z-vector potential.
The mesh has 50× 250 elements and the time step is 5× 10−4 time units.

Fig. 10. Order of accuracy study for modified Rayleigh flow and Alfven wave verification problem. A spatial
convergence study for Az, vx, Bx, is shown on the left with a comparison to second order reference lines for
∆t = 1.0×10−4. The expected order-of-accuracy is obtained followed by a region where the temporal integration
error begins to dominate. Figure on the right shows convergence of the computed numerical solution for the
Backward Euler (BE) and midpoint rule (Mid Point) time integrator for ∆x = 5.0 × 10−3. In the Mid Point
rule results, the error in the spatial discretization begins to dominate at small time step sizes.

of an applied magnetic and electric field. The second is a coupled thermal-convection buoyancy-induced
flow that is modulated by an externally applied magnetic field and produces internally generated fields.
The corresponding linear stability problem is the classical hyrdromagnetic Rayleigh-Bernard problem.
The final example is a driven magnetic reconnection problem where a Fadeev magnetic field equilibrium
[113], which features islands embedded in a Harris current sheet, that undergoes a transient reconfigu-
ration of the magnetic field. The computational timing results presented in this section were obtained
on the Red Storm Cray XT3/4 computer at Sandia National Laboratories.

5.2.1 An Idealized MHD Faraday Pump
As an illustration of the parallel performance of the one-level additive Schwarz domain decomposition

and multilevel preconditioners, a weak scalability study is presented for a 2D idealized Faraday MHD
conduction pump. This example problem models an MHD pump that induces flow in a conducting fluid
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by applying an external magnetic field in the y-direction and an electric field in the z-direction. The
domain is Ω = [0, 10] × [−1, 1]. There are no-slip fluid velocity conditions applied on the upper and
lower surfaces with natural boundary conditions for the system applied at both the inlet and outlet
of the domain. On the lower and upper surfaces a constant external magnetic field B = (0, B0, 0) is
applied by application of a linear variation in Az in the x-direction in the range of x ∈ [2.5, 7.5] while
outside of this range the magnetic field is zero. A constant electric field, E0

z is applied in the z-direction.
The interaction of these fields produces a Lorentz force that pulls fluid in from the x = 0 boundary
with a parabolic profile, contorts the velocity field into a common “M” profile for these types of flows
[114–116], and then the flow exits with a parabolic profile (see Figure 11 and 12). The simple geometry
of this problem facilitates scalability studies as different mesh sizes can be easily generated.

Additive Schwarz domain decomposition (DD) methods [117,118,33] partition the original domain
into subdomains and approximately solve the discrete problems corresponding to the individual subdo-
mains in parallel. Among Schwarz schemes, there are a number of choices which can greatly affect the
overall solution time and robustness. These choices include the subdomain size, the amount of overlap
between subdomains, and the partitioning metric which can alter the shape and aspect ratio of subdo-
mains (see e.g.[119,33,120,121,70]). The choices also include the selection of subdomain solver such as
an incomplete LU factorization (ILU) (with further options for dropping nonzeros in the factorizations
and ordering equations within a subdomain [122]), and the introduction of a coarse grid solve [123,124].
In our numerical study, we briefly consider the effect of ILU fill-in for the one-level preconditioner and
the benefit of employing multilevel methods with coarse operator solves as described above.

As an initial illustration of parallel efficiency we consider the weak scaling of the one-level DD ILU
preconditioner as presented in Table 4. In this study the 16 processor case solves the problem on a 64×64
mesh. The weak scaling study keeps the work per processor fixed as the problem size is increased. This
study is for a low Re = Rem = 0.7 flow with Ha = 1. The Krylov method is a non-restarted GMRES
technique to allow only the parallel scalability of the preconditioners to be addressed. For the one-level
DD preconditioner, an incomplete factorization ILU(k) sub-domain solver was used with k = 1, 3, 7.
For the 3-level preconditioner, the fine and medium meshes use an ILU(1) smoother and the coarsest
problem was solved by the KLU sparse direct solver.

Fig. 11. Contour plots of Az (upper left), velocity vector magnitude (lower left), Bx (upper right) and By
(lower right) for idealized Faraday conduction MHD pump.

Figure 13 graphically presents the parallel and algorithmic scaling of the one- and three-level precon-
ditioners for the MHD Faraday pump presented in Table 4. Figure 13 (left) summarizes the results for
the average iteration count per Newton step as a function of problem size. As the number of unknowns,
N (as well as the number of processors, P , in this scaled study), is increased, the number of iterations
to convergence for the one-level schemes increases significantly: roughly N1/2 in two dimensions. Note
that an optimal convergence property, that is an iteration count independent of problem size, is roughly
obtained for the 3-level preconditioner. On the coarsest level, a serial sparse matrix direct solver, KLU,
was used to factor the coarse matrix. Since the fine grid smoother is highly parallel and the fine grid
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Fig. 12. Vx velocity profiles for the developing fow in an idealized Faraday MHD pump. The locations of the
profiles are shown graphically in Fig. 11.

proc fine 1-level ILU(1) 1-level ILU(3) 1-level ILU(7) 3-level V(1,1)

unks avg its/ time avg its/ time avg its/ time avg its/ time

Newt (sec) Newt (sec) Newt (sec) Newt (sec)

step step step step

16 256K 136[9] 9.8 86[8] 8.6 62[9] 9.7 60[8] 7.5

64 1M 313[9] 22.8 198[9] 15.1 154[9] 14.8 106[9] 9.8

256 4M 714[11] 82.4 701.4[11] 44.9 392[8] 36.3 189[9] 15.6

1024 16M 1583[10] 318 1158[12] 191 888[10] 123 174[10] 16.6

4096 64M 2667[20] 750 1951[16] 488 1766[14] 429 178[13] 34.8
Table 4
Comparison of 1-level and 3-level scheme for MHD Faraday pump example problem. The 3-level method uses
an aggregation size of 80 and an ILU(1) smoother on the fine and medium meshes with the KLU direct solver
on the coarsest problem. The table entry above for 136[9] indicates the number of GMRES iterations followed
by the number of Newton steps in brackets.

work per processor is roughly constant, the cost of producing the coarse grid problem, and executing
the direct solve (KLU) on the increasingly larger coarse grid, causes an increase in the CPU time for
the larger problems. While this loss of CPU time scaling is non-optimal, it must be pointed out that the
3-level method is still significantly faster (a factor of about 10–20x) than the corresponding one-level
methods. To mitigate this growth of CPU time for the coarse grid solve either approximate coarse grid
methods can be used (e.g. [70]) or more levels could be employed.

As a proof-of-capability of the multilevel preconditioner, an initial demonstration of the solution of
a very large scale problem is presented that is solved on tens-of-thousands of processors. Specifically a
problem with 1+ billion unknowns for the MHD pump is solved on the Cray XT3/4 using 6,000 nodes
with 4 cores per node for a total of 24,000 cores. For this problem size the one-level method cannot be
applied. The details of this calculation are presented in Table 5. These results are very encouraging.
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Fig. 13. Weak scaling results for MHD Faraday pump problem. The scaling of the average number of iterations
per Newton step (left) and the average CPU time per Newton step (right).

They indicate convergence of the Newton iteration in O(10) iterations and of the linear solver in O(100),
values that are not too far from the more complete weak scaling study of Table 4 that employes three
levels and a larger aggregation size of 80. Finally the ability of the multilevel preconditioned Newton-
Krylov solver to scale to 1+ billion unknowns on 24,000 cores is an indication that the underlying
solution strategy is reasonably robust and scalable for this low Rem prototype problem.

cores Fine Mesh Intermed. Intermed. Coarse Newton Avg. No. Total

Level 0 Level 1 Level 2 Level 3 Its. Linear Its. / Time

Unkns. Unkns. Unkns. Unkns. Newton (min.)

24,000 1+Billion 23.3M .5M 11.2K 18 86 33
Table 5
Details of 1+ billion unknown MHD Faraday pump calculation. The simulation used a mesh of size 51, 200×
5, 120 with roughly 260M quad elements. The multilevel preconditioner used an aggregation size of 45 at each
level to produce the coarsened operators.

5.2.2 A Classical Hydromagnetic Rayleigh-Bernard Stability Computation
This challenging resistive MHD prototype problem consists of a buoyancy induced thermal con-

vection flow that is modulated by the existence of an externally applied magnetic field. It combines
the classical Rayleigh-Bernard buoyancy induced thermal convection flow problem with an externally
applied B field. The magnetic field induces Maxwell stresses that add additional stabilizing effects to
the traditional damping provided by the viscous forces. These coupled mechanisms are, for example,
critical components of large-scale geo-dynamo simulations that model the time dependent behavior of
the Earth’s magnetic field (e.g.[125,1]). This problem solves for the unknowns (v, P, T, Az) from the
system outlined in Table 1 where the density variation is modeled by a Boussinesq approximation [125].
The rectangular domain for this problem is Ω = [0, 10]×[0, 1]. There are no-slip fluid velocity conditions
applied on the upper and lower surfaces with natural boundary conditions for the system applied at
both the left and right boundary of the domain. A temperature difference is maintained in the vertical
direction by holding the lower surface to a high temperature TH and the upper surface at the lower tem-
perature TC that is separated by a distance d. This temperature difference (∆T = (TH−TC)) produces
an unstable density stratification that interacts with gravity in the negative y-direction. In the classical
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Rayleigh-Bernard problem, flow is induced when the non-dimensional Ra = ρ2Cp gβ∆Td3/(µλ) be-
comes sufficiently large to have buoyancy effects overwhelm the stabilizing viscous forces [125]. In the
case of the hydromagnetic Rayleigh-Bernard (HMRB) problem a stabilizing constant external magnetic
field B = (0, B0, 0) is applied on the lower and upper surfaces. For a thermal convecting flow at fixed
Rayleigh number, convective flow will be damped when the non-dimensional magnetic field strength is
increased beyond a critical Chandrasekhar number, Q = Ha2. Beyond this limit, the Maxwell stresses
existing in the curved magnetic field lines shut down the convective cellular flow. A typical stable
nonlinear solution where cellular flow and fields exist is presented in Figure 14.

As an example of the robustness and efficiency of the fully-coupled multi-level preconditioned NK
solution technology, we present the results in Figure 15 for convergence of the nonlinear Newton iter-
ation (left image) and the preconditioned Krylov linear solver (right image). The convergence of the
outer fully-coupled nonlinear Newton solver in Figure 15 (left) indicates that, as the Chandrasekhar
number increases, the nonlinearity of the problem increases and the convergence of the nonlinear it-
eration becomes more difficult. Without the use of backtracking techniques [75], convergence is not
obtained past Q = 4. Beyond Q = 11, a direct-to-steady-state solution was not obtained and the use
of continuation and/or transient solution methods would need to be considered. In the context of the
linear solver convergence, Figure 15 (right) indicates that the multilevel preconditioned Krylov method
converges substantially faster to the solution in the first two Newton steps. In addition, the ability of
the 3-level methods to provide a sufficient linear residual decrease in the sub-problems for Newton’s
method allows for a more robust iterative nonlinear solver. This is indicated in Table 6 for the hy-
dromagnetic Rayleigh-Bernard problem. Note that the 1 level DD preconditioner failed to solve this
problem in less than 40 Newton steps since the linear solver failed to reach the linear solver convergence
criteria of η = 10−3 in 2000 iterations, for 36 out of 40 Newton steps. We have seen many examples
for which a direct-to-steady-state nonlinear calculation will fail, for very ill-conditioned large linear
systems, because the iterative linear solver converges too slowly to be practical or does not converge
at all.

Fig. 14. Contour plots for the hydromagnetic Rayleigh-Bernard stability type calculation. The images show
the stable nonlinear flow and fields at Ra = 2500 and Q = 9 for temperature (upper left), Vy (center left), Vx
(lower left), and Jz with the magnetic field vectors (upper right), By (center right), and Bx (lower right).

As an additional verification of the accuracy of the resistive MHD formulation presented above, we
present a comparison of the computed critical Rayleigh number from simulation, and the theoretical
value in Chandrasekhar [125]. In this study a computational eigenvalue analysis of the linear stability
problem is computed as in [84] with the results summarized in Table 7, where the accuracy of the
formulation is clearly apparent. Finally, by employing the direct-to-steady-state solution capability
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based on Newton-Krylov type techniques as presented in this study, additional advanced solution
methods such as parameter continuation, bifurcation tracking and automated linear stability analysis
algorihtms can be effectively developed to analyze the complex nonlinear solution spaces for the HMRB
problem.

Fig. 15. Hydromagnetic Rayleigh-Bernard problem. A convergence plot of the nonlinear scaled norm in New-
ton’s method with the ML preconditioner (left) and the linear scaled norm in non-restarted GMRES for DD
and ML preconditioner (right).

proc fine grid fine grid 1-level ILU 3-level V(1,1) ILU-ILU-KLU

size unknowns avg its/ total medium coarse avg its/ total

Newt time unkns unkns Newt time

step (sec) size size step (sec)

2048 500× 5000 12.5M 1910[40] > 7200* 412450 13745 115[17] 226
Table 6
Comparison of convergence for the 1-level and 3-level preconditioner for Hydromagnetic Rayleigh-Bernard
problem. *The 1 level DD preconditioner failed to solve this problem in less than 40 Newton steps.

Q Ra∗ Racr [Chandrasekhar[125]] % error

0 1707.77 1707.8 0.002

101 1945.78 1945.9 0.006

102 3756.68 3757.4 0.02
Table 7
Comparison of the computed critical Rayleigh number, Ra∗, by a computational linear stability eigenvalue
analysis with theory, Racr , from Chandrasekhar [125]. The mesh is a rectangular 200× 2000 mesh.

5.2.3 A Transient Simulation of Driven Magnetic Reconnection: Island Coalescence
As an example of a current scientifically relevant, and computationally challenging simulation, the

numerical and computational performance of the implicit stabilized FE resistive MHD is applied to
an example of driven magnetic reconnection. Magnetic reconnection is a fundamental process whereby
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a sheared magnetic field topology is altered via some dissipation mechanism, resulting in a rapid
conversion of magnetic field energy into plasma energy and significant plasma transport. Magnetic re-
connection dominates the energetics and dynamics of many space and laboratory plasmas, and is at
the root of explosive phenomena such as solar flares, coronal mass ejections, plasmoid ejection from
the earth’s magnetotail, and major disruptions in magnetic fusion energy (MFE) experiments [126].
However, plasmas in all the above-mentioned cases are known to have negligible electrical resistivity.
This negligible resistivity cannot explain the reconnection timescales observed in nature, and this issue
has drawn significant attention over the last 50 years [126]. Furthermore, this small magnitude of resis-
tivity forces reconnection to occur in space in very thin current sheets and in rapid stability changing
events that are very difficult to resolve. Recently the development of an efficient implicit resistive MHD
capability in a mapped structured mesh finite volume context has led to new computational scientific
results that have elucidated the exisitence of an asymptotic low resistivity reconnection rate regime
that follows the theoretical Sweet-Parker [126,127] scaling. The key to the computational verification
of this regime is the ability to effectively time-integrate the multiple-time-scale resistive MHD system
[127].

As a final illustration of the accuracy and performance of the fully-implicit resistive MHD formulation
described above, a set of computations that were previously carried out with the fully-implicit mapped
FV capability in [127] are presented. The transient island coalescence problem consists of a perturbed
Harris sheet magnetic field configuration [126,127] that introduces two magnetic islands in the plasma
as initial conditions for the island coalescence problem. The structure of this perturbation can be seen
in the initial condition plot at time t = 0 of Figure 16 (upper left) with iso-lines of Az. The combined
magnetic field produced by the two magnetic islands produces Lorentz forces that pulls the islands
together, and at finite resistivity the islands coalesce (join) to form one island. Figure 16 shows three
iso-line plots of Az and filled color contours of the the plasma current Jz during the reconnection
event. Clearly evident is the formation of the x-point between the islands (see upper right image), the
development of a thin current sheet at that same x-point location, and the movement of the center of
the islands (o-points) towards the x-point [126,127]. The dynamics of island coalescence changes as a
function of resistivity. For larger resistivities the x- and o-points monotonically approach each other,
for low resistivities fluid-plasma pressure builds up as the islands approach and a sloshing or bouncing
of the o-point position is encountered that leads to lower reconnection rates (for more details on the
physics see e.g. [126,128]). Next a very brief description of the island coalescence problem is presented
with details provided in [127].

Fig. 16. Contour plots for the island coalescence driven magentic reconnection at times t = 0.0, 9.0, 10.0, 12.6
computed on the unstructured mesh above. The images show isolines of the magnetic potential Az and filled
contours of the current Jz.

The initial conditions for the island coalescence problem consists of zero fluid velocities (v0 = 0), and
a Fadeev magnetic equilibrium [113]. The description of this problem is in the context of the magnetic
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vector potential. The initial conditions, A0
z, and the resulting balancing plasma fluid pressure, P 0 are

given by

A0
z(x, y, 0) = δ ln

[
cosh

(
y

δ

)
+ ε cos

(
x

δ

)]
, (24)

P 0(x, y, 0) = P0 +
[1− ε2]

2
[
cosh

(
y
δ

)
+ ε cos

(
x
δ

)]2 , (25)

where δ = 1/(2π) and P0 = 1.0. To assure that the initial condition is a resistive equilibrium, an
external applied electric field, E0

z of the form

E0
z (x, y) =

η [1− ε2]

δ
[
cosh

(
y
δ

)
+ ε cos

(
x
δ

)]2 (26)

in the z-direction is included. The boundary conditions on velocity consist of zero normal velocities
on each surface and zero tangential stress. On the upper boundary, the vector potential Az is set by
Equation (24), and P0 = 1.

Our interest in this brief study is to compute the peak magnetic reconnection rate as a function
of the fluid resistivity as in [127] for a range of values that includes the fast and slow (Sweet-Parker)
reconnection regimes. The peak magnetic reconnection rate in this simulation is given by the maximum
value of the time derivative of the vector potential at the x-point, i.e. Ψt ≡ ∂Az/∂t for all time. Figure
17 (left) presents the result of a set of stabilized FE simulations to determine the reconnection rate at
the x-point for 3 different resistivity values that span the fast and slow reconnection regimes. Clearly
evident in this figure is the peak value for each time history and the oscillatory (or sloshing) behavior
of the reconnection rate for lower resistivities as in [127]. In Figure 17 (right) the scaling of the peak
magnetic reconnection rate as a function of the resistivity is presented. The magnetic Reynolds number
varies from 50 to 105. The FE results are seen to compare very well with the results of Knoll and Chacon
[127]. In this plot, results are presented for non-uniform structured meshes of size 130,000 FE nodes
with a distribution of 512 × 256 in (x, y). In this mesh the FE elements are clustered by the x-point
and geometrically increase in size away from this point, this roughly corresponds to the meshes used
in [127]. In addition, results for an unstructured mesh with 40,000 FE nodes, that highly resolves the
x-point region with a uniform mesh, and then transitions to a coarse unstructured mesh away for the
x-point are presented as well. A graphic of an unstructured mesh and the iso-lines of Az is presented
in Figure 18. The stabilized FE results are demonstrated to closely correspond to the mapped FV
results for both the structured and unstructured meshes. In addition, the existence of the theoretical
Sweet-Parker slow magnetic reconnection regime were Ψt ≈

√
η is also confirmed. A power law fit to

the FE results indicate a 0.48 power scaling over this interval.
A preliminary study of the scaling for the multilevel preconditioner for the transient solution of the

island coalescence problem at η = 10−3 is presented in Table 8. Here, factoring out the increase in non-
linear iterations per time step, the general block aggregation based algebraic multilevel preconditioner
appears to be reasonably effective at keeping the growth in iterations per time step under control as
the mesh size is increased. While the scaling of the multilevel preconditioned Newton-Krylov method
is not optimal with problem size, the increase in the number of linear iterations per Newton step is
gradual with the problem size, and represents a reasonable step towards a scalable algebraic multilevel
method.
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Fig. 17. Left: Time history of the reconnection rate at the x-point in the island coalescence problem for
various resistivities. Oscillations in the reconnection rate are evident for lower resistivities as a consequence of
the sloshing of magnetic islands. Right: Peak resistive magnetic reconnection rate for the island coalescence
problem. Graph includes data for stabilized FE formulation and a comparison to FV resistive MHD data from
Knoll and Chacon [127].

Fig. 18. Detail of unstructured mesh for island coalescence problem. This image also has iso-lines of Az
represented at time t = 9.0.

Procs Mesh Nunks Newton/ Gmres/ Time/ Gmres/ Time/

∆t Newton Newton ∆t ∆t

1 64× 64 16K 3.9 4.4 2.1 17.2 8.1

4 128× 128 64K 4.6 5.8 2.6 26.7 11.9

16 256× 256 0.25M 4.9 6.3 2.9 30.9 14.2

64 512× 512 1M 6.2 8.8 4.0 54.6 24.6
Table 8
Weak scaling of the block AMG preconditioned Newton-Krylov solver for the stabilized resistive MHD for-
mulation on the island coalescence problem. The time step is ∆t = 0.1 time units. The smoother in the
Petrov-Galerkin smoothed aggregation method is an ILU(1) and it is a V(1,1) cycle.

6 Conclusions

This paper has presented an initial study of an unstructured fully-implicit stabilized FE formula-
tion for low-Mach-number resistive MHD. This solution methods used in this formulation are based
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on a fully-coupled Newton-Krylov solver that employs algebraic multilevel prconditioners. This initial
study included verification and order-of-acuracy results that verified the expected convergence rates
for the 2D vector potential form of this system. As an illustration of the robustness, scalability and
efficiency of the solution techniques representative results were presented for a MHD duct flow, a
hydromagnetic Ralyeigh-Bernard linear stability calculation and a challenging magnetic island coales-
cence problem. The results demonstrated the robustness of the underlying fully-coupled Newton-Krylov
nonlinear solver on the steady-state MHD pump and the hydro-magnetic Rayleigh Bernard linear sta-
bility calculation as well as the fully-implicit solution of the island coalescence problem. The efficiency
and scalability results of this study were very encouraging and demonstrated the increased conver-
gence rate of the block aggressive coarsening, fully-coupled parallel multilevel preconditioner over more
standard parallel additive Schwarz domain decomposition methods. In future work, the fully-coupled
fully-implicit solution methods in this study will be developed and evaluated for a full 3D resistive
MHD solver.
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