Calix[4]arene Based Single-Molecule Magnets

PDF Version Also Available for Download.

Description

Single-molecule magnets (SMMs) have been the subject of much interest in recent years because their molecular nature and inherent physical properties allow the crossover between classical and quantum physics to be observed. The macroscopic observation of quantum phenomena - tunneling between different spin states, quantum interference between tunnel paths - not only allows scientists to study quantum mechanical laws in great detail, but also provides model systems with which to investigate the possible implementation of spin-based solid state qubits and molecular spintronics. The isolation of small, simple SMMs is therefore an exciting prospect. To date almost all SMMs have been ... continued below

Physical Description

8435

Creation Information

Karotsis, Georgios; Teat, Simon J.; Wernsdorfer, Wolfgang; Piligkos, Stergios; Dalgarno, Scott J. & Brechin, Euan K. June 4, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 18 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Single-molecule magnets (SMMs) have been the subject of much interest in recent years because their molecular nature and inherent physical properties allow the crossover between classical and quantum physics to be observed. The macroscopic observation of quantum phenomena - tunneling between different spin states, quantum interference between tunnel paths - not only allows scientists to study quantum mechanical laws in great detail, but also provides model systems with which to investigate the possible implementation of spin-based solid state qubits and molecular spintronics. The isolation of small, simple SMMs is therefore an exciting prospect. To date almost all SMMs have been made via the self-assembly of 3d metal ions in the presence of bridging/chelating organic ligands. However, very recently an exciting new class of SMMs, based on 3d metal clusters (or single lanthanide ions) housed within polyoxometalates, has appeared. These types of molecule, in which the SMM is completely encapsulated within (or shrouded by) a 'protective' organic or inorganic sheath have much potential for design and manipulation: for example, for the removal of unwanted dipolar interactions, the introduction of redox activity, or to simply aid functionalization for surface grafting. Calix[4]arenes are cyclic (typically bowl-shaped) polyphenols that have been used extensively in the formation of versatile self-assembled supramolecular structures. Although many have been reported, p-{sup t}But-calix[4]arene and calix[4]arene (TBC4 and C4 respectively, Figure 1A) are frequently encountered due to (a) synthetic accessibility, and (b) vast potential for alteration at either the upper or lower rim of the macrocyclic framework. Within the field of supramolecular chemistry, TBC4 is well known for interesting polymorphic behavior and phase transformations within anti-parallel bi-layer arrays, while C4 often forms self-included trimers. The polyphenolic nature of calix[n]arenes (where n = 4-8) also suggests they should be excellent candidates as ligands for the isolation of molecular magnets, but to date their use in the isolation of paramagnetic cluster compounds is rather limited. Herein we present the first Mn cluster and the first SMM to be isolated using any methylene bridged calix[n]arene - a ferromagnetically coupled mixed-valence [Mn{sub 2}{sup III}Mn{sub 2}{sup II}] complex housed between either two TBC4s or two C4s.

Physical Description

8435

Source

  • Journal Name: Angewandte Chemie; Journal Volume: 121; Journal Issue: 44; Related Information: Journal Publication Date: 2009

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-3608E
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.1002/ange.200904094 | External Link
  • Office of Scientific & Technical Information Report Number: 984962
  • Archival Resource Key: ark:/67531/metadc1013514

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 4, 2009

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 17, 2017, 6:03 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 18

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Karotsis, Georgios; Teat, Simon J.; Wernsdorfer, Wolfgang; Piligkos, Stergios; Dalgarno, Scott J. & Brechin, Euan K. Calix[4]arene Based Single-Molecule Magnets, article, June 4, 2009; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1013514/: accessed August 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.