Economic Assessment of a Conceptual Biomass to Liquids Bio-Syntrolysis Plant

PDF Version Also Available for Download.

Description

A series of assessments evaluated the economic efficiency of integrating a nuclear electric power plant with a biomass to SynFuel plant under three market scenarios. Results strongly suggest that a nuclear assisted-BioSyntrolysis Process would be as cost competitive as other carbon feedstock to liquid fuels concepts while having significant advantages regarding CO2 greenhouse gas production. This concept may also be competitive for those energy markets where energy dense, fossil fuels are scarce while wind, hydroelectric, or other renewable energy sources can be produced at a relatively low cost. At this time, a realistic vision of this technology’s deployment of a ... continued below

Creation Information

Plum, M. M. & Hawkes, G. L. June 1, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A series of assessments evaluated the economic efficiency of integrating a nuclear electric power plant with a biomass to SynFuel plant under three market scenarios. Results strongly suggest that a nuclear assisted-BioSyntrolysis Process would be as cost competitive as other carbon feedstock to liquid fuels concepts while having significant advantages regarding CO2 greenhouse gas production. This concept may also be competitive for those energy markets where energy dense, fossil fuels are scarce while wind, hydroelectric, or other renewable energy sources can be produced at a relatively low cost. At this time, a realistic vision of this technology’s deployment of a biomass to synfuel plants powered by a nuclear 1100 MWe reactor. Accompanying an area of 25 miles by 25 miles, this integrated Enterprise could produce 24,000 BBLs of SynFuel daily; or 0.2% of the U.S.’s imported oil.

Source

  • Clean Technology Conference & Expo 2010,Anaheim, CA,06/21/2010,06/25/2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-10-18464
  • Grant Number: DE-AC07-05ID14517
  • Office of Scientific & Technical Information Report Number: 983347
  • Archival Resource Key: ark:/67531/metadc1013441

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 3, 2017, 4:33 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Plum, M. M. & Hawkes, G. L. Economic Assessment of a Conceptual Biomass to Liquids Bio-Syntrolysis Plant, article, June 1, 2010; Idaho. (digital.library.unt.edu/ark:/67531/metadc1013441/: accessed January 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.