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ABSTRACT

UCRL-18899

The thesis is concerned with the relation between

a microscopic approach and a macroscopic approach to the

study of the nuclear binding energy as a function of neutron

number, proton number and nuclear deformations.

First of all we give a general discussion of the

potential energy of a system which can be divided into

a bulk region and a thin skin layer. We find that this

energy can be written down in the usual liquid drop tYlle of

expression, i.e., in terms of the volume, the surface area

and other macroscopic properties of the system. The discus-

sion is illustrated by a study of noninteracting particles

in an orthorhombic potential well with zero potential inside

and infinite potential outside. The total energy is calcul-

ated both exactly (a microscopic approach) and also from a
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liquid drop type of expression (a macroscopic approach).

It turns out that the latter approach reproduces the

smooth average of the exact results very well.

We next make a digression to study the saddle

point shapes of, a charged conducting drop on'a pure liquid

drop model. We compare the properties of a conducting

drop with those of a drop whose charges are distributed

uniformly throughout its volume. The latter is the usual

model employed in the study of nuclear fission. We also

determined some of the more important symmetric saddle

point shapes.

In the last part of the thesis we generalize a

method due to Strutinski to synthesize a microscopic

approach (the Nilsson model) and a macroscopic approach

(the liquid drop model). The results are applied to

realistic nuclei. The possible occurrence of shape isomers

comes as a natural consequence of the present calculation.

Their trends as a function of neutron and proton members

are discussed and the results are tabulated. We also work

out the stabilities of the predicted superheavy nuclei. with

proton number around 114 and neutron number around 184 and

196. Some of these nuclei appear to have extremely long

life times. The possible experimental production of these

superheavy nuclei are also discussed.

t,
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1. General Introduction

Of central importance in the physics of the nucleus is a study

of the nuclear binding energy as a function of its deformation and mass

number A. Such a study is not only relevant for the ground state

masses and deformations, but is also essential in the theory of alpha

decay, beta decay as well as the spontaneous fission of the nucleus.

It also provides a possible explanation for the so-called shape or

fission isomers which have recently induced extensive experimental

. efforts.

For the last thirty-five years both a microscopic and a macro-

scopic approach for the calculation of the nuclear binding energy have

been developed in parallel. By the macroscopic approach we are thinking

of an approach in which one expresses the binding energy as a function

of macroscopic properties such as the volume, surface area, and the

integrated curvature over the surface of the nucleus. The approach is

usually associated with the liquid drop model1 ) of a nucleus, although

in some aspects it is considerably more general than the representation

of a nucleus as a fluid droplet. We shall discuss this in detail in

the next part of the thesis. By the microscopic approach we are

referring to an independent particle model, where one considers the

nucleons to move around in an average nuclear field. Residual inter-

actions such as pairing effects can be included. This model is commonly

applied with great success to correlate nuclear spectroscopic data and

to explain the occurrence of magic numbers. Its successful application

to a quantitative description2,3) of nuclear masses and deformabilities

is a d~velopment of the last few years.



-2-

The microscopic approach is more fundamental than the macro-

scopic approach in the sense that all results of the latter should be

derivable in principle as some sort of an average of the results of the

former. However in its present state, it turns out that the independent

particle model does not give correctly the absolute values of the experi

mental binding energies2,3), though it is very successful in reproducing

the relative values for neighbouring nuclei. On the other hand the

macroscopic approach looks at the nucleus as a whole and considers the

binding energy as a sum of the volume, surface, curvature as well as

coulomb energy terms. The coefficients in these terms are fitted to

experimental values and the approach is able to reproduce the absolute

values of the binding energy correctly.

It is important to study the relation between the two approaches

and to try to synthesize them in some way so that we may have the useful

results of both in a unified approach. The basic idea advocated by

MYers and SWiatecki
4) and Strutinski5) among others is that one should

replace the smooth average trends of the results of the independent

particle model, which do not reproduce experimental trends adequately

by those from the liquid drop model. The resulting unified model will

then represent the real nucleus more closely than is possible with

either the microscopic or the macroscopic model.

In the next part of the thesis we will discuss the justification

of a macroscopic approach. We are going to look specifically at a

z



system with a thin skin (of constant thickness), which we will call a

leptodermous t system. A liquid drop is a special example of such a

system. By considering just the geometry of this system we can write

down its energy as a sum of a volume term, a surface term, and an

integrated curvature term.

The third part is a study of the energy of non interacting

nucleons in an orthorhombic potential well with infinite potential walls,

which will be referred to as a Hill-Wheeler box6). The total energy as

a function of the relative lengths of the sides can be calculated

exactly as well as from a macroscopic point of view. A comparison shows

that the macroscopic approach does indeed give very closely the smooth

trends of the energy calculated exactly.

The fourth part is a study of a pure collective phenomenon. It

is a digression from our main theme of studying the relation between the

microscopic and macroscopic approaches, to which we shall return in

the fifth and last part. It deals with the theory of fission of a

charged drop which is electrically conducting so that the charges reside

on the surface of the drop. The usual liquid drop model of nuclear

fission assumes a charged nonconducting drop with a uniform distribution

of charges. However there are sufficient similarities and rather inter-

esting differences to make a study of a charged conducting drop profit,

able. This is coupled with the great advantage that a macroscopic

t The word "leptos" in Greek means "thin" and the word "derma" means

"skin". A leptodermous system is then a system having a thin skin.



charged conducting liquid drop can actually be investigated experi-

mentally. We have looked at the statics of the fission of such a drop

and have been able to determine some of the more important equilibrium

shapes of the drop.

The fifth partt of the thesis tries to combine the microscopic

and macroscopic approaches. Specifically we study the synthesis of the

Nilsson mode12 ) and the liquid drop modell ). Such a unified model is

then applied to realistic nuclei from the rare earth elements up to the

yet unknown superheavy elements. Besides accounting for many known

nuclear properties, we have been able to predict the stabilities of

superheavy nuclei and to discuss features in our results which we

believe to be associated with the shape or fission isomers. A

t This part of the thesis was done with the guidance and collaboration

of Professor S. G. Nilsson of Lund Institute of Technology, Lund,

Sweden. The Nilsson Model calculations)) were developed by C.

Gustafson, I. L. Lamm, B. Nilsson, and S. G. Nilsson of Lund Institute

of Technology, Sweden. The initial version of the computer problem

employing the Strutinski prescription5) was written by J. R. Nix of

Los Alamos Scientific Laboratory, University of California.

A. Sobiczewski, Z. Szymanski, and S. Wycech of the Institute of

Nuclear Research, Warsaw, Poland, performed the microscopic calcula

tion of the inertial parameter associated with spontaneous fission7)

that is used in the present work.



discussion is also given on the prospect of the experimental production

of superheavy elements as well as on the possibility that they might

occur in nature.

The various parts of the thesis are presented schematically in

Table 1.
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2. A Discussion of Leptodermous (Thin-skinned) Systems

2.A. Leptodermous Systems and the Liquid Drop Model

In this part of the thesis we shall discuss the nature of the

potential energy expression for a class of physical systems that may be

considered as consisting of a bulk region and a thin surface region.

(We shall refer to such systems as leptodermous.) In some cases~ when

the bulk region is uniform, the potential energy expression reduces to

that usually associated with the Liquid Drop Model of a nucleus. The

principal energy terms are then a volume energy a.nd a surface energy.

For historical reasons, however, the Liquid Drop Model of the

nucleus is often understood to imply more than just the presence of a

bulk region and a surface region. Thus it is often taken to imply the

existence of strong correlations between the particles constituting the

system, and, in dynamical problems, it is frequently taken to be synon

ymous with the assumption of an irrotational flow of fluid. When

understood in this sense the Liquid Drop Model is an extremely poor

representation of the nucleus. This seems to have led to an unjustified

skepticism as regards the relevance of the Liquid Drop Model for the

description of even the purely static aspects of the nuclear binding

energies and deformabilities.

To clarify this confusion we would like to stress two points.

First, the validity of the Liauid Drop type of expressions for the

description of static properties has of course nothing to do with

further possible assumptions concerning dynamics, such as the assumption
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of irrotational flow. Secondly, as we hope to demonstrate, it has also

nothing to do with the assumption of strong correlations between the

particles constituting the system. In fact the basic condition for the

validity of a Liquid Drop type of expression for the potential energy is

the possibility of dividing the system into a bulk region and a thin

surface region. We have thought it worthwhile to introduce a name ~

leptodermous - to describe systems satisfying this specific assumption

regarding their constitution, in order to avoid confusion with the less

well defined phrase "Liquid Drop Model " .

Examples of leptodermous systems are

1) A drop of water (made up of strongly interacting molecules).

2) A classical gas of noninteracting point particles in a

container.

3) A degenerate gas of noninteracting fermions in an external

potential well.

4) A system of particles interacting by short-ranged saturating

for~es treated in the statistical Thomas-Fermi approximationS).

5) Same as (4), but with nonsaturating electrostatic forces

also presentS).

6) Amorphous solids.

7) Nuclei.

In example 1, the constituent particles interact strongly and

are highly correlated. Example 2 is a trivial special case of

noninteracting particles where the skin thickness is zero. Example 3,

which is the subject of Part 3 of this thesis, is a case of noninteracting
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particles treated quantum mechanically and is a prototype of a nuclear

shell model. The skin thickness turns out to be of the order of the

wavelength of the fastest particle present. In example 4 there are

(saturating) forces between the particles but no correlations and the "

quantum nature of individual particles is disregarded. The skin

thickness turns out to be of the order of the range of the forces

between the particles. In example 5 the presence of electrostatic

forces results in a nonuniform bulk density but the thickness of the

surface region remains as in 4. In the case of an amorphous solid

(example 6) the potential energy would, we presume, also be a sum of a

volume and a surface term provided any deformations of the system were

sufficiently slow so that internal stresses would be relievedby plastic

flow. Example 7, a nucleus, is known from electron scattering experi

ments9) to satisfy moderately well the condition of being thin-skinned.

The nuclear potential energy also appears to be well represented by a

bulk term and a surface term.

Examples of nonleptodermous systems are atoms and stars, for

which it is not possible to make a distinction between a bulk region

and a thin surface region.

2.B, The Potential Energy of a Leptodermous System

/-

falls toThe density pp •c

Let us write down the potential energy of a leptodermous system

with a uniform bulk particle densityt

t The more general case where the bulk density is smoothly varying

(Example 5 above) can be treated as a straightforward generalisation8)

of the present calculation.
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zero in a thin surface layer. The total number of particles is given

by

N fP d't"

The total energy is

E (1 )

where e is the energy per particle at every point. In general e

is a functional of the density distribution p. It is the purpose of

the present section to write down the potential energy E as a sum of

terms proportional to the volume, surface area, and integrated curvature

of the system.

Let us assume that in the bulk region every point is just like

any other point in the sense that a constant value e c
can be written

for the energy per particle in the bulk. Then Eg. (1) may be written

Let'us define an "equivalent system" as one with the same bulk density

but having a sharp surface; the original leptodermous system

results when the sharp surface i 9 diffused into a skin layer of constant

v

thickness. Thus the volume of the equivalent system is

Jp d't"

Pc

Hence Ive may write



-10-

The integrand in the second term is nonzero only in the thin skin layer

because p tends to zero outside the skin and e - e c
inside. Now we

define a normal n to any point in the surface with n c= 0 at the sharp

surface of the equivalent system. Then the integrand as a function of

n is zero for large positive or negative values of n. We may denote

this integrand by

r.i

F(n, K) p(e - e )c

where vre have indicated that the integrand is also a function of the

curvature K at the point on the surface t . Let us write down an

t In general one would think that F is a function ofl/Rl

where Rl are the principal radii of curvature in two per-

pendicular planes through the point. If one makes an expansion about

a plane, for which l/Rl c= 0 c= 1/R
2

, then

F G/ ~) = F(O, 0) + ~1~ "[Do + ~20 dF )

~2 0

+ 0 ••

Since all directions in a plane are equivalent, the two derivatives

with respect toof F l/Rl and 1/R2 are equal.

,'(0, 0) + 0
1

+ ~2)(d dF;L )
II.l 0

+ .•.

Hence to the first order in the deviations from a. plane we have,

F(K) c= F(O) + K (9!)
OK 0

where F is then a. function

of K rather than of the separate components l/II.l and 1/R2 .
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expansion of F in K to the first order:

o

F(n, K) =: F(n, 0) + K F' (n, 0) ,

where the prime indicates differentiation with respect to K. We also

write the volume element dT in terms of the co-ordinate, n, and the

curvature, K, to the first order,

(1 + Kn) dn do ,

where dcr is the area element at the point on the equivalent sharp

surface. Hence we have

E ec Pc V + Jdcr Jdn (1 + Kn)[ F(n, 0) + K F I (n, 0) ]

ec Pc V + Id cr Jdn F (n , 0) + Jd cr K Jdn [nF (n, 0) + F' (n, 0) ]

Since F(n,O) and F'(n, 0) are evaluated for K =: 0, i.e., for a

plane surface, they are independent of the position on the surface and

the surface integrations in the second and third terms may be carried

out at once. If we define the surface area S and the integrated

curvature L of the equivalent sharp surface by

S Idcr

L f K dcr ,

we have the result

E aV + bS + cL + .•. (2)
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where

a

fdn F(n, 0)

Idn[F' (n, 0) + nF(n, 0) ]

Equation (2) shows how the energy of a leptodermous system may be

decomposed, under the stated assumptions, into volume, surface and

curvature terms. Equations (3) shows explicitly how the relevant

coefficients can be calculated from the properties of the system. The

coefficient a is the volume energy density. The coefficient b is

the surface tension coefficient which gives the difference per unit

area of a plane surface, between the energy of a number of particles

touching the surface and the energy of the same number of particles in

the bulk.

The coefficient c is the curvature coefficient which describes

the modification in the effective surface energy resulting from the

curvature of the surface. Note that both band c are integrals over

functions localized in the surface layer and may therefore be regarded

as intrinsic properties of the surface region. As discussed in Ref. 8

(pp. 69 and 126) the coefficient c consists of two parts. The first

part is associated with the modified conditions (i. e., increased

exposure or "fewer neighbours") for particles in a curved surface. The

modification is expressed in terms of F' describing the response of

the surface energy function F to a bending of the surface. The second
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part is associated with the purely geometrical fact that a given surface

layer contains fewer particles when (convexlY) curved than when flat.

(The two effects are usually of opposite sign and may even cancel

exactly. See Ref. 8)

It should be noted that the simple structure of Eq. (2) and the

above interpretation of the coefficients of Sand L is intimately

related to our definition of an equivalent sharp volume V (and the

associated area S and integrated curvature L) of the originally

diffused leptodermous system. The fact that for a system with a diffused

surface there appears at first sight to be a degree of arbitrariness in

the definition of its volume, surface area, and integrated curvature,

has led in the past to some confusion and even to serious misinterpreta

tions of the surface tension coefficient6).

We denote the remainder of this section to a discussion of these

problems. We shall give below a detailed demonstration of the sometimes

subtle effects involved, but we would like to state at the outset what

the root of the problem is: if the volume, surface area, etc. of the

diffuse system is defined in any other way than the above (i.e., by

means of the equivalent system with a sharp surface which contains the

total number of particles at the bulk density) then in general the

assodated volume energy differs from the true bulk energy by terms

which may have the appearance of surface and curvature terms (even

though their origin is in the bulk). The result is in fact a host of

spurious terms parading as contributions to the surface tension and

curvature correction coefficients and creating confusion in the

identification of correct values of these coefficients.
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To illustrate this let us consider what would happen to Eq. (2)

if instead of the equivalent sharp volume V (and its area and integrated

curvature) we choose to express the energy in terms of another volume

\I and its area L: and the integrated curvature A. The cases of most

relevance and which have caused confusion in the past are those in

which \lis related to V by a (small) normal shift of the surface by

an amount t, say, of the order of the diffuseness of the surface. The

relations between V, S, L and \I, L:, A are easily derived by

noting that the element of area on a normally displaced surface is

related to an element of area on the original surface by

Hence

dO'displaced (1 + K:t) dO'

§(1 + Kt) dO' s + tL

Also

v + L: dt f (1 + "t) do

Inverting these relations we may write

V

s L: - til. + ... (4)

L A + '"



(For our purposes, it suffices to write the three relations to

successively lower orders in t.) We may now insert the above relations

in Eq. (2), which may first be rewritten as

E e(p)N + b(p)S + c(p)L

We have displayed explicitly the dependence of the coefficients on the

bulk density p. (We have dropped the suffix c on p as well as e,

the bulk energy per particle. We have also written the leading term as

eN instead of aV.) Our objective is to write E as a function of

Q, ~, and A. The density p is given by N/v, which is related to

p =N/n through Eq. (4). Thus

p
N
V

If we insert his expression for p in the argument of e(p), say, and

make a Taylor expansion about the value e =e(p), we find

where

e(p)
~

e + e' ~ t + [ (e' +! e") (~)2 _l(t::. \ e I]n 2 n 2 n)

e"
-2 )d e
2
op ~

p
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Dealing similarly with b(p) and c(p) and using Eqs. (4), we find

where

E ,

b b + e' pt

~

- bt 1 e'
,...., 2

c == c - 2" pt

d b't (e'
1 e")

,...., 2
+ +- pt

2

Suppose now we assume the volume n to be proportional to Nand

independent of the shape of the system (i.e., we take p to be

constant).
,....,

The coefficients e, a, b', '"c, d are then constants and

Eq. (5) gives the total energy as a function of N (or n), ~, and

A, i.e., as a function of volume, area,. and integrated curvature of a

surface obtained from the standard equivalent sharp surface by a small

normal shift t.

To the relevant order this equation is equivalent to Eq. (2), but

note the following features. First, in addition to terms proportional

to N (or n), ~, and A, there is a new term proportional to ~2/Q.

Second, the values of the coefficients of ~ and A are different

from the previous values and if one were to identify b' with the surface

tension coefficient and
,....,
c with the curvature correction coefficient

one would deduce values quite different from those given by Eq. (2).

Thus the coefficient of ~ has an additional term e'pt which comes

from the bulk energy and the coefficient of A has two additional terms,
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-bt, which comes from the surface energy, and
1 ~ 2

-- e'p t which comes
2 '

from the bulk energy. In Eq. (5) there are altogether six spurious

terms e'ptz, -btA, 1 ~ 2 2/-2 e'pt A, b'tZ D,

Note that of these, the first, third, and fifth vanish if e' = °
(i.e., if (p 2Je/2Jp)p = 0). This means that for a system whose bulk

energy is stationary with respect to density deviations from p (i.e.,.

a saturating system) these terms do not appear. It has recently been

shown8) that for a saturating system the surface tension coefficient is

also stationary, i.e., b' = 0, and the fourth term would also be

absent for such a system. The second and sixth terms are, however,

present even for a saturating system. For a nonsaturating system (like

a Fermi gas or a nuclear individual particle model in an external

potential well) all six terms are present, and great care must be

e2cercised in interpreting the results of the energy calculations of such

systems, unless the proper choice of the equivalent sharp surface has

been made to begin with.
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3. On the Total Energy of Noninteracting

Particles in a Hill-Wheeler Box

3.A. Introduction

It is the purpose of this part of the thesis to demonstrate the

relation between a microscopic approach and a macr,Oscopic approach on

as simple a model as possible. One such model is furnished by non-

interacting spinless Fermi-Dirac particles in an orthorhombic box with

infinite repulsive potential outside and zero potential inside. Such

a box will be referred to as a Hill-Wheeler box. It was first intro

duced by Hill and Wheeler6) who applied it in an attempt to obtain the

coefficients of the nuclear surface and curvature energies. Due to a

misinterpretation of their equations they did not get the correct

results, which had been given by SwiateckilO ) in a semi-infinite model.

The correct interpretation for the surface energy was given by Knaak

et alll ). 'Hilf12) considered also the cases of cylindrical and

spherical boxes.

The Hill-Wheeler box is a particularly simple model because all

the wavefunctions in the box can be easily written down in terms of

trigonometric functions. The total energy as a function of the particle

number and the deformation of the box can be exactly written down. On

the other hand we can also take a macroscopic point of view and approxi-

mate the total energy by a function of macroscopic quantities such as

the volume and surface area of the Hill-Wheeler box. We shall demon-

strate that this macroscopic approach gives the smooth trends of the

exact results very well.
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3.B. The Microscopic Approach

The solution of the problem of noninteracting spinless Fermi-

Dirac particles in an orthorhombic infinite potential well is well-

known. It suffices that we indicate the main results below.

Let the three sides of the box be specified by

a Rexp [a cos (y _~n)]

b Rexp [a cos (y + ~n)]
'"

c R exp [a cos yJ

where a and yare two deformation parameters. We have chosen the

definition such that the volume of the box is equal to R3 independent

of a and y. When a = 0 and y = 0, the box is simple cubic. When

y o and a > 0, we have a b < c and the box is "prolate". When

y Tf/3 a:nd a > 0, we have a c > b and the box is "oblate".
" .

All the wave functions in the box have to go to zero at the

walls. This requires the single particle energy levels to be given by

E

where M is the mass of the particle. The quantum numbers n, m,

and £ are integers greater than or equal to one. The single particle

energies as a function of the deformation parameter a (with y = 0)

are shown in Fig. 1, which is essentially the familiar Nilsson diagram2 )



We have indicated in the figure the positions at a ~ 0,
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for the present case of spinless fermions in a Hill-Wheeler box. The

above calculation is in effect a prototype of the Nilsson model

calculations
2

).

where large gaps among the levels are found. These correspond to magic

numbers where special binding occurs. For a particular shape of the box,

a. given number of particles fills the energy levels up to a level whose

All levels belowenergy is referred to a.s the Fermi energy EF .

are filled and all levels above E
F

are empty.

We can associate each particle with a momentum vector k.
~l

E
F

such

that the particle's energy is given by

Let us look at the momentum space with the coordinate axes along the

three axes of the Hill-Wheeler box. Then an octant of a sphere is

drawn with its center at the origin and having positive values of k ,
x

k , and k
y z The radius of the octant k

F
is given by

A lattice is constructed in this space by choosing the units in k ,
x

ky ' and kz directions to be n/a, nib, and TIIC respectively. The

designation of the lattice points in (k , k , k) would be just thex y z

set of quantum numbers n, m, £ of the energy levels. In particular the

lattice point (1, 1, 1) corresponds to the lowest energy state with

n = 1, m = 1 and £ = 1. Since the particles fill the energy levels up
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to E
F

, all the lattice points in the momentum space within the octant

of radius k
F

are occupied by particles, and those without are not.

The number of lattice points inside the octant is equal to the number

of particles in the box. The energy of the system, E, is given by

E

i

112

2M
(6)

where the summation is carried over all the lattice points inside the

octant.

3.C. The Macroscopic Approach

By the macroscopic approach we hope to write down the total

energy of the particles in a Hill-Wheeler box in terms of some macro-

scopic quantities. One way to do this is to imagine each lattice point

in k space inside the octant of radius kF to be smeared out into an

orthorhombic box centered at the lattice point and with sides equal to

n/a, nib, and n/c. Such orthorhombic boxes build up into an octant

with slabs of thickness wI -- n/2a, w2 ;,; n/2b, and w
3

;,; n/2c cut

away from the planes k = 0, k 0, and k ° respectively.x y z

(See Fig. 2, which shows only the k k plane. ) Also on the curvedx y

surface of the octant, bumps and dips occur that correspond to parts of

the boxes sticking out and parts missing from the smooth curved surface.

We can adjust the position of this curved surface to an effective Fermi

radius q (see Fig. 2) such that the volumes of the bumps and dips

cancel. The volume F of the resulting "incomplete octant" with slabs
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cut away is then related to N, the number of particles in the Hill-

Wheeler box, by
f'

F
3·

-2l.- N
abc

k !

since the unit box around each lattice point has the volume

v

A straightforward calculation gives F as a function of q:

F l:n: 3 1 q3 tan
-1

w
l

w
2

3b q
3 2 2 2)-!-q(q - wl w2

C 2 1 3)(--1 w
-1 w3 )2 sin+ '2 q wl - b wl Sln 2 2) -!-

+ 2 I
(q - Wl (q - w

1
2 )"2....

1- -3 wl· w2w
3

+ Permutations with respect to w w w
l' 2' 3

(including the first term)

If we assume Wl ' w2' w
3

« q, which is the case corresponding to a

large number of particles, we can make an expansion in wl/q, w
2
/q,

and w
3

/ q .
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+ 2L(w 3 + w 3 + w 3) - w w w + .••
12 1 2 3 1 2 3

The first three terms are equivalent to the results obtained by Hill

and Wheeler6). The first term corresponds to the volume of the whole

octant in k space. The second term corresponds to the slabs that are

to be cut away from the octant at the k y 0, and k = 0z

planes. Where the slabs intersect we subtract too much by the columns

This is the origin of the third term;axes.k , k , and kx y z

The fourth and fifth terms represent even higher corrections to the

along the

geometry of the volume F of the incomplete octant. Given F, one can

calculate the particle number N. Conversely if we are given N, we

can find the effective Fermi momentum q.

We next proceed to calculate the energy in terms of macroscopic

quantities. The exact energy E calculated in the last section is

given by Eq. (6), which is a summation of the function elver

the lattice points. For the sake of clarity, we make two provisional

simplifications. First we assume each lattice point to be smeared out

into an orthorhombic box around this point with sides n/a, J(/b, and

n/c. Thus instead of k. 2 in the equation, we use an integral of k2
1

over the box. Second, near the Fermi surface we smooth out the bumps and

dips by means of a smooth curved surface of radius q as defined before.

In other words \~e replace the integration of k2 over a bump by that

over a dip of equal volume. We shall discuss the consequences of these
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two simplifications in the next section. What these simplifications

amount to is that one can now get an approximate energy E' by inte

grating 112k2/2M over the volume F

where

I
1
15

E'
2

1L. abc I
2M 3

J1

,

ww )-1 3 1 J1 Lf.
- tan 2 2 . 2 l - J:'6 q (w2 + w3)

q(q - w - W )2
3 1

r: -1
\in

w
2 . -1

2 2 l + Sln
(q - W

3
)2

w2 . -1
2 l + Sln

- w )?
1

(Equation continued on next page)
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(Equation continued)

+ (q2 _ w 2 _ W12)~ f.- l q2w w· + 3 w w 3 + 1 w 3w )
3 '( 120 3 1 20 3 1 40 3 1

(q
2 2 2)~ (3 2 lw 3w i10 W2w3

3
)+ - w w

3 .20 q W2w32 120 2 3

11 2 (-2 w 3 + w 3 + w 3) :rr (4 . 5 w 5 _ w 5) ~ w 3w w+ 24 q + 80 wl - -1 2 3 2 3 3 1 2 3

+ Permutations with respect to wl ' w2 ' w
3

If we again make an expansion in wl/q, w2/q, and w/q, we get

We can express the energy E' in terms of N by substituting for q.

Remembering that D = abc, we get after some algebra,

2 2 2 2 2

~(6:rr2)3 (*)3 N + ~(6:rr2)3 D~13 C*)3 N
3

"

,
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where t

12 abc

12, we find that the terms in

and Nl / 3 . We shall refer to

Nl / 3_term respectively.

2(ab + bc + ca)

A ~ 4(a + b + c)

If we assume that N is proportional to

the energy are proportional to N, N2/ 3,

these terms as the N-term, N2/ 3_term, and

(8)

To bring out the shape dependence, we may make a simple

rearrangement in the equation, giving

t It is found that A is just the integrated curvature of a Hill-

Wheeler box. The plane surfaces of the box have zero curvature. At

the edges of the box, we have an infinitely large curvature on an

infinitesimal surface area. The integrated curvature may be calcul-

ated by first rounding off the edge and then taking the appropriate

limit of the integrated curvature of this rounded edge. In general

at the edge formed by two plane surfaces at an angle CX, the integrated

curvature turns out to be just CX per unit length. For the Hill-

Wheeler box, the integrated curvature is thus n/2 per unit edge

length.
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.,
2M E'

112

This equation has the same form as Eq. (5) in Part II of this

thesis, where we discussed the potential energy of a leptodermous

system. The system of particles in a Hill-Wheeler box is in fact an

example of a leptodermous system. swiateckilO ) has shown that its

skin thickness is of the order of the wavelength of the fastest

particle in the box. More specifically, with reference to the volume

V, surface area S, and integrated curvature L of an "equivalent

system" (with zero skin thickness, containing the same total number of

particles at the bulk density), one may express the volume Q and

area r, of the Hill-Wheeler box to the first order as follows:

, Q V + ts +
(10)

s +

where t is the skin thickness (SwiateckilO ) used the symbol b) given

bylO)

t
3rr 1

8~

This is to be compared with a characteristic dimension of the box given

Thus the skin thickness is smaller by one order in

Hence particles in the Hill-Wheeler box form a leptodermous system.
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1et us write the energy Eq. (9) in terms of the V, S, and

1 of the equivalent system, which is the reference system we should

use, as explained in Part II. Then one has to write Eqs. (10) up to

the curvature term (see Eq. (4)). Here a difficulty appears, associated

with the singular nature of the boundaries of a Hill-Wheeler box (the

occurrence of infinite curvatures over infinitesimal areas of the

boundary). For a smooth leptodermous system the additional terms can

be found by expanding about a plane surface (see p. 14). The result is

two extra terms: ~ t 2A in the expression for V and -tA in the

expression for S. (see Eg. 4) These terms are thus both determined

once t is known. It turns out that for a Hill-Wheeler box the

additional terms are still proportional to A but the constants of

proportionality are not, in general, ~ t
2

and t. They are unknown

coefficients which could only be determined from a closer study of the

properties of a Fermi gas in the neighbourhood of a right-angled edge

in a potential well. In considering the relations between n, I:, A

and V, S, 1 we are thus force to write

n V + ts + g1 + ••.

6 S + h1 + ..•

A 1 + .•. ,

instead of Eq. (4). Using these relations, one finds
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2 d. 2 ~.

2M E' d.(6rr2 )3 (~)3 V 1 3 (6/)3 (~)3 8+-ib rr
112 5 5 1

8
2

N
- [~ +

2 2 2 1]3 2 3 (~)3 g _ ~ (6rr2)3(~)3 h ~ L+ O· -- -( 6rr )V V 5

+ ... (11 )

As expected the term proportional to 82/V drops out, demonstrating the

discussion in Part II CEq. (5)) that such a term is spurious, and arises

from an inappropriate choice of a reference system. The surface tension

coefficient is given by the coefficient of 8 and this confirms the

value obtained by 8wiatecki by a different methodlO ). If we had taken

the coefficient of ~ in Eq. (9) to be the surface tension coefficient

we would have obtained a value which is five times too large. Thus

four-fifth of this term is spurious, coming from the bulk term

proportional to D. These conclusions are independent of the values of

g and h and do not require their knowledge. However, in order to

deduce the true curvature correction coefficient for a Hill-Wheeler

box (Le., the co'efficient of L in Ea. (11) rather than the, coefficient

of A in Eq. (9)) a knowledge of g and h would be required. These

numbers, characteristic of the properties of fermions in the neighbour-

hood of a right-angled edge, are unknown at the present time.

J.D. The Meaning of the Approximate Energy Expression

The approximate energy expression E' in terms of macroscopic

quantities has been obtained by making use of two simplifications in

our calculation of I (p. 23)' We have studied the corrections that
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should be applied to account for these simplifications. It will be

shown below that both these corrections enter the energy Eq. (9)

through the and higher order terms, and these two corrections

miraculously turn out to cancel each other to this order. Thus it will

turn out that E' is correct up to and including the term.

The first simplification was made when we smeared each lattice

point into an orthorhombic box. Thus instead of taking the energy as

proportional to k 2
i

at the lattice point, we integrated k2 over

the box (kix ± wI' kiy ± w2, kiz ± w
3

). This overestimates the true

energy. The energy we calculated is

1'12
1

2M v ~ (~i + ~)2 d
3

r

box

I 3Ed r = O.

of the box

where r is measured from the center of the box so that

(The term ~~. rd3r vanishes by symmetry.) The volume

is v = n3/abc. The first term gives the correct energy.

correction to our calculated value is

Thus the

(12)

Let us define a function w(r) such that the portion of the box that

is in the shell between rand r + dr is given by w(r) dr. Then the

correction may be written as

{}2 1 ], 00 2
- -- - r w(r) dr

2M v
o
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The function w(r) is zero when r is greater than the distance from

the center of the box to its farthest corner. The total correction

£1 is just the above quantity multiplied by the number of lattice

points which, to the lowest order, is given by

n: 3 1
b g v

.. £1 n: 3 1 11
2 J. 2- b q v2 2M r w(r) dr

The second simplification was made when we smoothed out the

bumps and dips by assuming a smooth effective Fermi surface of radius

q (Fig. 2) this amounts to removing the bumps and filling up the dips.

Since the bumps are associated with a higher energy than the dips, we

have underestimated the true energy. To calculate the correction to

be denoted by £2' we proceed as follows. First we note that the

bumps are portions of the orthorhombic boxes that stick out of the

curved Fermi surface. For boxes that are at a fixed distance from the

Fermi surface, we consider all the possible shapes of the bumps over

the Fermi surface. Taking an average of such shapes, it turns out (see

below) that we can represent an average typical bump by a series of

portions of spherical shells centered at the center of the orthorhombic

box with radius from zero up to the value equal to the distance from

the center to the farthest corner of the box. Then we calculate the

change in average energy when we remove the portion of a shell above

the Fermi surface and fill up a similar portion below. Lastly we
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average this change of energy with respect to the position of the box

relative to the Fermi surface. The correction is shown as an

integral over the series of spherical shells.

Since w
l

(w2, w
3

) is much smaller than q, we may consider a bump

to be the portion of an orthorhombic box left when one cuts it by a

plane Fermi surface at a distance d, say, from the center of the box.

Over the Fermi surface the boxes are found to be cut in all orientations

(Fig. 2). Let us assume that all orientations are equally probable,

then one may describe the box averaged over orientations by specifying

the amount of matter in the shell between rand r + tir where r

is measured from the center of the box. This quantity is given by

1: w(r) tir
v

where w(r) has been defined before in connection with the Eq. (13) for

The factor
1
v

has been included for normalisation since

r
Jw(r) dr v

For a shell between rand r + tir, consider the portion

outside the Fermi surface when the center of the box is at a momentum

value k. (See Fig. 3) This is related to d, the distance of the

center to the Fermi surface:

d q - k
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The volume of the portion of the shell outside the Fermi surface is

6 2nr(r - d) ~

Its energy is given by

1 ·l Go

- ~
6

o

2112
rdG 2nr sin G(~ +~) 2M

where 8
0

is given by

d r cos go

After some algebra one gets

2 2
k + r + k(r + d)

Now consider a dip on the Fermi surface to be a similar portion of a

shell below the surface (see Fig. 3), we would be looking at a box

with its centre at a momentum of value k + 2d. Its energy is given by

sin

" A similar calculation gives

k
2

+ r
2

+ 4d(k + d) - (k + 2d)(r + d)

Thus the change in energy of the shell when we replace the bump by the

djp :is, after simplification,
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2(k + d)(r - d) 2M

112

2q(r - d) 2M

where we have made use of the relation, q = k + d.

Now we average this change in energy over all possible values of

k between q - rand q. This may be done by writing the total energy

change, 6E, for such a shell over all the boxes on the Fermi surface

(which is in the form of the curved surface of an octant) as follows:

j
-r

- q-r

Carrying through the integral, we get to the lowest order,

This corresponds to one of the shells of radius r. The total correction

is then

S2 ; J6E w(r) dr

11 3 1 n
2 J 2b q v2 2M r (u(r) dr

Hence we arrive at the result that to the lowest order the two correc-

tions Sl and S2 add up to zero:



It is most remarkable that the lowest order effects from two apparently

unrelated sources (the replacing of lattice points by boxes in the

volume of the octant, and the smoothing of bumps and dips on its surface)

should cancel each other.

Let us now look at the order of the energy correction ~l and

~2' We find that we can actually calculate ~l explicitly. Equation

(12) gives the correction due to the replacing of a lattice point by

a box:

1}2 1

- 2M v

11
2

1- --
2M v Jw3 .J w.2 Jw

l
(x2 + 2 2y + z )dxdydz ,

-w -w -w. 3 2 1

have been defined in the last section to be halfwl ' w2 ' and w3

of the lengths of sides. The integration can be carried out trivially.

where

The total correction Sl in just the number of lattice points N

multiplied by the correction due to one such case. Remembering that

v = 8w
l

w
2

w
3

= 113/abc, we get,

,. '
Sl

h
2

1 2 2 2
2M N • 12 (wl + w2 + w3 )

Expressing this in terms of the volume, Q, surface area ~ and

integrated curvature A of the Hill-Wheeler box we finally obtain after

some algebra,



This shows explicitly that the lowest order correction enters into the

Nl / 3 term in the energy Eq. (9).

We show theterm.up to the

The above completes the proof that E! should be able to

N1 / 3reproduce the true energy E

numerical compa.rison of E and E' in the next section.

3.E. Results and Comparisons of the Microscopic and Macroscopic

Approaches

We exhibit results from the microscopic and macroscopic

approaches in this sect ion. From the former, we obtain the exact total

energy E (Eq. (6) . By the latter, the approximate total energy E'

is calculated by successively including terms of order N, N2/ 3 and,

N
l

/ 3 CEq. (7). In both these ca.lculations we have assumed that N

is proportional to n.

In Figs. 4a-d, we show the energies as a function of the

particle number N for a cubic box, an oblate box, a prolate box, and

a box with three unequal sides. We display the energies also as a

function of the deformation parameter a (putting y = 0) in Figs.

5a,b, which is on a somewhat larger scale t . In the latter case two

t The exact results E as a function of deformation are the lowest

possible energies at each deformation. They correspond to an adia-

batic process of deforming the Hill-Wheeler box.
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systems are studied, one with N = 60 when a shell occurs at zero

deformation, and one with N = 68 where no shell occurs at zero

deformation.

When we calculate E' only up to the volume term, i.e., the

N-term, we find that the results give (at N = 6o) about 7010 of E.

We can make a correspondence between our calculated energies with the

realistic nuclear energies, by requiring the density of particles in

the box to be given by nuclear matter density (corresponding to a radius

constant r
O

= 1.2 fm). We remember also that we are filling every

energy level with one particle whereas in the nuclear case there are two

protons and two neutrons in each level. It then turns out that the

calculated total energy for N = 60 in the case of zero deformation,

corresponds to 6914 MeV in a nucleus of A = 2LfO; the energy correspon

ding to the N-term is 4830 MeV. The figures also shows that the difference

increases with increasing N. As a function of deformation a, E' is

a constant (not shown in the figures), whereas E increases with

deformation.

The inclusion of the term in the ealculatiem of B'

improves the picture substantially. Values of E' are still smaller

than E but the difference is less. At N =60, E' is 6675 MeV

which accounts for 97% of the true value. The differeflce is a less

rapidly varying function of N. Also as a function of deformation,
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E' now represents the trend of E fairly wellt , though there is a

difference in absolute values. In Figs. 6a-d and '7a,b we plot the

differences between E and E' both as a function of N and as a

function of a on a much expanded scale. The differences are shown

to be increasing slightly with N or a.

The further inclusion of ~/3 term in the calculation of E'

seems to be capable of reproducing the exact energy E very well. In

Figs. 4 and 5 there appears to be no difference at all on the scale

used. In the Figs. 6 and '7 where the differences of E and E' are

plotted on a much expanded scale we find that E' is still slightly

below E. The mean difference over N values is only about 14 MeV

putting E' within 99.8% of the exact value. The difference is

expected to be in the NO term, and we find indeed that it does

appear to be constant as a function of N. It also appears to be

fairly constant as a function of a, apart from local fluctuations.

The strong convergence of the various terms in the macroscopic

result E' to the exact result E is illustrated by listing below the

contributions from these terms for the case of N = 60:

t Hill and Wheeler6 ) in their work show a graph which appears to

indicate that the trend of E' to order N2/ 3 is quite different

from that of E. However as was pointed out by M;yers and SWiatecki4) ,

there seems to be a mistake in their plot though their equations are

correct.
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N-term 4830 MeV

2/3
1845N .. -term Mev

Nl / 3-term 225 MeV

0 Rest 14 MeVN -term +

Exact result E 6914 MeV

It thus appears that by including enough terms in E', the exact

result E may be reproduced very closely by the macroscopic calculation.

term have beenwhere terms up to theE'

Let us study further the difference between the true result E

Nl / 3and the result

included. In Figs. 6 and 7 we see a wiggly structure in the differences

"both as a function of N and as a function of a. A dip in energy

occurs where there is a shell. Thus the difference between E and E'

furnishes a convenient way of studying the shell effects. For zero

deformation (Fig. 4a) we find shells at N = 1,4,17, 35, 38, 6o,' ".

These correspond to gaps in the single particle level diagram (Fig. 1).

We note that the occurrence of shells is associated with a given

deformation. For instance, the N = 60 shell for zero deformati~n is

completely removed when the shape becomes prolate (ex = 0.25, Y 0)

as shown in Fig. 4c. In this prolate case shells appear at N 7, l~,

27, 54,"', bearing little resemblance to the positions of shells ~t

zero deformation,
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3.F. Summ~ry and Conclusions

In this part of the thesis we have considered the model of

noninteracting spinless Fermions in a Hill-Wheeler box. The exact

values of the total energy as a function of the particle number Nand

the shape of the box were calculated. This is a prototype of the

microscopic Nilsson model calculation2 ). In the macroscopic approach

the energy is found as a liquid drop type of expression, i.e., as an

expansion in -1/3
N with terms dependent on the volume, surface area,

and integrated curvature of the system. It is found that as one

successively includes terms of orders N,
1/3and N . , the results

converge very quickly to the smooth average of the exact results.

Hence we see that the liquid drop type of expression for the

energy is applicable even in the present case which assumes no inter-

actions between particles and is in fact a pure shell model. The

applicability is based only on the fact that the system we are consider-

ing is leptodermous.

In application to nuclear problems the liquid drop type of

expression is usually truncated at the leading volume, surface, (and

curvature) terms. A question may be asked how bad is such a trunca.tion.

This has been discussed by Swiatecki13 ). The main point is that in

practice the coefficients of these leading terms are adjustable para-

meters chosen so that the masses of all nuclei in the periodic table

as well as the known fission barriers are approximately reproduced. This

means that any smoothly varying higher order terms are partly absorbed

in the leading terms. Although this compensation cannot be perfect,
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only a fraction of these smooth higher order terms ~ill not be accounted

for. On the other hand, rapidly oscillating terms, such as the single

particle shell corrections neither remain constant throughout a nuclear

deformation, nor can they be absorbed in the smooth leading term.

All these discussions lead one to a hypothesis that for a

nucleus (which is a leptodermous system: See Part II), the liquid drop

type of energy expression with the first few terms gives correctly the

smooth average trends both as a function of the nucleon number and as

a function of the deformation. The single particle shell effects may

be considered as local wiggles superimposed on these smooth trends.

This is the basic philosophy behind the method of the synthesis of a

microscopic model and a macroscopic model that will be presented in

Part V of this thesis.
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4. On the Symmetric Saddle Point Configurations

of a Charged Conducting Drop

4.A. Introduction

In this part of the thesis, we turn to a pure liquid drop model

study of fission of a charged conducting drop whose charges reside on

its surface. Such a model is in contrast to the usual liquid drop model

of nuclear fission which assumes a liquid drop with charges uniformly

distributed throughout its volume. Nevertheless it is interesting to

carry out a theoretical and an experimental investigation on a charged

conducting drop as a parallel to the theoretical and experimental study

l~ )
of nuclear fission. Beginnings in this direction have been made .

Furthermore the charged conducting drop is also interesting for its own

sake and for its role in the cloud physics and other fields lS ).

In 1882 Lord Rayleigh published a paper on the stability of a

charged conducting sPhere16). If one had combined the results of this

't t . ." 17)work Wl h he seml-empirical nuclear mass formula due to Welzsacker

in 1935, one would have been led to expect nuclear fission. It even

turns out that the criterion for the stability of a charged conducting

drop is identical with the criterion for the stability of the nucleus

against fission. Ryce and collaborators14 ) in 1964, 1965, and 1966

considered some simple aspects in the splitting of a conducting drop.

They looked at only the initial and final stages of the fission and

speculated on features that could possibly be applied to nuclear fission.

Very recently at the International Symposium on Electrohydrodynamics

(19l)9) more studies lS) on the charged conducting drop were reported.

'"



It is the purpose of this present work to study the first stage

of the theory of fission of a conducting drop, i.e., its statics. In

particular we have determined approximately, the most important sYmmetric

equilibrium configurations of the drop. The similarities and differences

of the conducting drop and a volume charged drop are also discussed.

4.B. Basic Concepts in Fission Theory

In this section we shall review some basic concepts and results

. th th f 1 f'· 18) F· . bl 1In . e . eory 0 nuc ear lSSlon . or an lncompressl e vo ume

charged drop, two forces are acting: a Coulomb force which tends to

break up the drop and a surface tension which tends to keep it together.

A quantity of importance is then the ratio of the Coulomb energy and

the surface energy. One may define what is called the fissility para-

meter, x, as

x

E (0)
c

2E (0)
s

cc
Q,2

V
,

where E (0)
c and E (0)

s are Coulomb and surface energies of a sphere

with charge Q" radius R, and volume V. For x < 1, the spherical

drop is stable with respect to deformations and for X > 1, the Coulomb

force is greater than the surface tension and the drop is unstable.

Let us write down the energy excess of a deformed drop over the original

spherical drop as

E
s - Es

(0)
+ Ec

_ E (0)
c

E (o)(B - 1) + E (o)(B - 1)
s s . c c

E (o)((B - 1) + 2x(B - l)}
s s c
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B = E /E (0)
If we

c c c

E
(0) then ~ is just the

s
E (0)

s

case of a sphere.

define s as the energy excess in units of

above expression divided by

where Es and Ec are the surface and Coulomb energies of the drop

and the superscript (0) implies that the quantity is evaluated for the

Also B = E IE (0) and
s s s

B-1 + 2x(B - 1)
s c

In Fig. 8, we sketch the behavior of s as a function of

deformation for a particular value of x < 1. The configuration at

zero deformation, i.e., a sphere, is a potential energy minimum. The

energy is increased as one deforms the drop until a point is reached

where the disruptive Coulomb force is dominant and the drop undergoes

fission. The configuration corresponding to the point where the drop

will start dividing of its own accord is called the saddle point shape.

It is unstable with respect to the deformation leading to fission.

Obviously the curve ·will be different for different values of charge

on the drop, i.e., different values of x (see Fig. 9). Thus for

x > 1, the sphere is at a potential maximum.

Let ~R denote the difference in energy between the

initial sphere and the final fragments at infinity in units of E (0).
s

For division into two equal spheres which is illustrated in the figure,

SR 0 at x = 0·35. For x > 0·35, ~R < 0, and for x < 0.35,

SR > O. In the general case of division into n equal spheres, a

general fornnl1a19 ) may be writt.en for ~R' The charge on each sphere
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is Q/n and its radius is (R3/nll3 = R n -1/3, so that the Coulomb

energy of the n spheres is n multiplied by the Coulomb energy of

each sphere:

Ec

Bc

n 2 (Q,/111
2

_
5~R n .

2. 2: n-2 / 3
5 R

-2/3n '

Total surface energy of the n spheres is

E
s

-1/3 2yn·4 rr (Rn . )

... Bs
1/3n

Hence the energy excess19 ) over the sphere in units of E (0)
s

is

This is shown in Fig. 10, where the energy release SR is plotted

against x for division into two, three, four, up to eight equal

spheres. For each value of n,the plot is a straight line. The

straight line for n = 2 goes through zero at x = 0.35. For x < 0.35,

the sphere has the lowest energy. For 0.35 < x < 0.61, the division

into two spheres gives the lowest energy. For 0.61 < x< 0.87, the
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division into three equal spheres gives the lowest energy. Finally,

for 0.87 < x < 1.12, the division into four equal spheres gives the

lowest energy.

In fig. 11, we present the shapes of a volume charged drop at

the saddle point as found by Nix20 ), so that we can compare it with the

results we are going to obtain for a surface charged drop. The

abscissa gives the fissility parameter x from 0 to 1. The ordinate

gives RMIN/R and RMAX/R as a measure of the shape, where for an

asymmetric shape r~dius R
MIN

is the minimum radius of the neck of the

drop and the two maximum radii R
MAX

are the distances from the center

of the neck (at it s minimum radius) to the two ends of the drop. For

a symmetric shape the two maximum radii are equal.

1 is the sphere which is at a potential energy

minimum for all x < 1. The rest of the curves represent a family of

reflection symmetric saddle point shapes and a family of reflection

asymmetric saddle point shapes. The two families cross each other at

x = 0.396. Their shapes are schematically indicated in the figure.

A point to notice is that along the symmetric family there is a fairly

rapid change in the trend of RMAX/Ro at x values around 0.7. It

is found below (Sec. F) that for a conducting drop a similar change

occurs at a larger value of x.

4.c. Comparison of a Conducting Drop and a Volume Charged Drop

In the last section we have reviewed some basic properties of

a volume charged drop. In this section we shall point out some simil-

arities and differences in the properties of a conducting drop and of a



volume charged drop. For a conducting drop the fissility parameter x

can be similarly defined as the ratio of the Coulomb energy to twice

the surface energy evaluated for a conducting sphere. The equation (14)

for the energy excess S' will be the same as for the volume charged

drop case except that the Coulomb energies will now be evaluated on the

assumption that the drop is conducting.

Let us first consider the similarities.

(1) For x = 0, there is no charge on the drop so that the

equilibrium shapes are the same whether the drop is conducting or not.

For x = 1, it turns out nontrivially that as in the case of a volume

21)charged drop ,the Coulomb force is just balanced by the surface

tension for a spherical conducting drop.

(2) A second similarity is apparent if we look at the energy

difference SR from the initial to the final state when the drop is

divided into equal spheres. We have described this in detail for a

volume charged drop in reference to Fig. 10. When we make a similar

study for a conducting drop, we get completely identical straight lines

and conclusions. The reasion is that only spherical shapes are involved

in both the initial and final states, and the Coulomb energy of a

volume charged sphere (which is ~ Q2/R) and that of a conducting

h ( h · h' _1
2

Q,2,/R)sp ere w lC lS differ by only a numerical factor, 6/5,

that is the same for both states. Hence Band B are the same for
s c

both cases and the same energy Eq. (15) holds good.

(3) It also turns out that the Coulomb energy of a volume

charged ellipsoid and that of a conducting ellipsoid differ also by the
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same numerical factor. Thus the Coulomb energy of a conducting ellipsoid

. . b 22)lS glven y

f
oo

1 2 2 2 2 _..14 Q 0 [(a + ~)(b + ~)(c + ~)J ? d~

so that

Bc

where a, b, and c are the lengths of the axes of an ellipsoid. The

B for a volume charged case turns out to be the same23).rn the case
c

of a prolate spheroid b:= c we get on integration

Bc
1R _.- .en

2ae (~)1 - e

where 2
e

2 2
1 - a Ic . Since R3 2

ac , we get

For an oblate

and find

spheroid, we can just set e to ie and 2
e to 2

-e ,

B
c

These expressions for B hold good for both a volume charged drop andc

a conducting drop. Hence if we make the drop to take on only ellipsoidal

shapes, then any conclusions about the statics of the volume charged

drop will be true for the conducting drop.
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Now let us look at some differences between the two cases.

The first difference between the volume charged drop and a conducting

drop can be found if we consider the division of the drop into two unequal

spheres at an infinite distance apart, one with volume r3V and the other

with volume (1 - r3)V. In Fig. 12 is plotted the energy change SR

between the initial and final states24 ) as a function of r3 for various

values of the fissility parameter x. For r3 = a and r3 1 we get

a sphere with volume V which is just the initial state. For r3 = 0.5,

we get two equal spheres. The energy change is zero at x = 0.35 for

r3 = 0·5, as was pointed out above in connection with Fig. 10. For a

2~-)conduction drop Fig. 13 is found . We note that here again the energy

is zero at x = 0.35 for r3 ~ 0.5 consistent with our previous statement

that Fig. 10 also applies to a conducting drop. Except for the points

at r3 = 0, 0.5, and 1.0 the curves in the two figures are very different.

A potential minimum for a volume charged drop occurs at r3 = 0.5 for

x > 0.2, but a potential maximum for a conducting drop occurs at ~ = 0.5

for all x values less than one. In the latter case minima occur at

points where the fragments are unequal.

The major reason for the above difference is that the charge

to mass ratio for the volume charged drops is a constant, but for the

conducting drops it is not required to be a constant. This is also the

underlying cause for the second difference that appears when we try to

find the configuration with the absolute lowest energy for a drop with

a given fissility parameter x. For a volume charged drop, this

configuration is n equal droplets at infinity19) and the number n
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depends on the x value of the drop [Eq. (15)J. One would at first

expect that the same conclusion might hold for a conducting drop. But,

as we shall show, for a conducting drop, the configuration at the lowest

energy is one with all the charges Q, on the drop taken off and

distributed among many infinitesimal droplets at infinity. It turns

out that the total energy of the droplets may be made to vanish and we

are just left with the surface energy of the original drop. The possi-

"

bility of such a configuration is shown as follows. Let 1
n

of the

original drop of radius R be taken off carrying all the charge Q,.

This is then divided into m equal spheres, each with a charge Q,/m.

Thus for each sphere the sum of the Coulomb and surface energy is

(
2/3 2 -

4R2 1·) .1Q, ( )1/3(1)211 Y - + - - nm -nm 2 R m

Hence the total energy of the small spheres is m times this quantity:

2 2/ 1 Q2 1/ 24JtR y m(nm) - 3 + 2' R(nm) 3 m- . m

o 1/3 2/3 1 Q,2 1/3 -2/34nR
L

y m n- + '2 if"" n m

Now let us choose

to

-s
m ce n The energy of the droplets is now equal

,
.,

which is zero when n goes to infinity provided

1
-2 < s < -2'
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and we obtain the proposed configuration. In other words, we have made

the Coulomb energy of the given drop zero by dispersing the charges onto

an infinite number of infinitesimal droplets without increasing the

surface energy by a finite amount.

4.D. Parameterization of a Conducting Drop

In the remainder of this part of the thesis we shall try to

determine the equilibrium shapes of a charged conducting drop.

The calculation of the Coulomb energy of a conducting drop

with an arbitrary shape is in general a difficult problem. We have

side-stepped this difficulty by requiring the drop to assume a pres-

cribed family of shapes, and have in fact made the calculation of its

Coulomb energy a trivial matter. It is well-known from the theory of

electrostatics25 ) that the electric potential of any system of charges

is the same at every point outside any equipotential which surrounds

all the charges, as that of the same total charge spread over a

conductor that has the shape of this equipotential. Hence we require the

drop to assume the shape of an equipotential of potential a due to a

system of point charges with total charge Q,. Then if we put the

charge Q on this conducting drop, its potential is equal to a, and

its Coulomb energy is just ~ aQ.

Consider an example of two equal point charges. The shapes of

equipotentials that enclose the point charges are shown in Fig. 14,

where the volumes of the shapes have been normalised to the same value.

We shall refer to these shapes as the sYmmetric N = 2 family since

! '



they are generated with two point charges and are reflection symmetric.

Each of these equipotentials is associated with a potential a. Then

the Coulomb energy of a drop with this shape is
1'2 aQ, where is

the charge on the drop. If R is the radius of a sphere that has the

same volume as the drop and possesses the same amount of charge, its

Coulomb energy is
1 2o Q /R. Hence we get
'-

aR/Q (16)

The surface energy relative to that of the sphere B
s

can simply be

found by calculating its area numerically. Hence for a given fissility

x the energy of the drop is calculated [Eq. (14)J. Equilibrium shapes

are then the shapes whose energy is stationary.

The symmetric N = 2 family has only a very restricted series

of shapes. However it is easy to increase the possible shapes by

looking instead at the shapes that correspond to the equipotentials of

a larger number of point charges. We have put the charges on a straight

line so that all our shapes remain axially symmetric. The reflection

symmetric N = 3 family is generated with two equal charges situated

at equal distances on opposite sides of a third point charge. The

shapes are shown in Fig. 15. They include the symmetric N = 2 family.

Similarly we can go on to N = 4,5,'" family of shapes.

Let us consider in general the N-family of axially symmetric

shanes. To specify the situation we need to give the magnitudes of the

N l'oint charges and their positions as well as the value of the poten-

t.in1 "\1 t.he l',jUipotential we are looking at. These are 2N + 1 numbers.
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However not all these numbers are required to specify a shape. Three

numbers may be arbitrary: (1) The center of mass of all the point

charges may be at any point in space; (2) The total charge may be fixed

beforehand; (3) We can also preset a scale by which the distances

between the point charges are measured. The first point just puts the

drop at any place in space, while the last two points just introduce a

scaling factor into the volume of the shape, which will be taken care of

when we calculate Band B eventually. Hence we set the sum of all
s c

the point charges to be unity:

a + q + •.. + q 1
·'1 -2 N

We also place the charges on a horizontal axis with the end charges at

positions -0.5 and +0.5 with respect to the origin, and specify the

relative positions of the other charges in units of the distance between

the end charges.

-0·5 < .E. < 0.5
l -

Thus we are left with 2N - 2 parameters; (For refle~tion sYmmetric

shapes, the distribution of point charges and their magnitudes are

reflection sYmmetric with respect to the origin and we have only N - 1

parameters. )



Let u. be the distance from the point charge i to any point
l

on the equipotential surface. Then a point on this surface may be

specified by the sYmmetric and antisYmmetric variables v and w given

by

v

The surface of the drop cuts its axis at w = ±l and cuts the plane

through the origin perpendicular to its axis at w = O. The distance,

y, of this point from the axis and its position along the axis z, as

well as u. and the value of the electric potential a can be found
l

to be given in terms of v and w as follows:



Since ex is given as one of the parameters, we can use the last equation

to solve for v when w is given.

The total volume V and surface area S can be written down

V

s f 2 2 l
• 2n y(dz- + dy )2

Then we can find R from

4 3'3 nR

and

B
s

V

B
c

exR

We sha.ll find later that we require the curvature K: and the electric

field ~ a.t any point on the surface, which may be shown to be given

by

C 2y2 + (c Z _ C )2
o o· 1

K:
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where the prime superscripts denote derivatives with respect to z.

The coefficients Co and Cl as well as the derivatives that enter

into these equations are listed below:
"

dv
dw

dz
dw

1
C Cl-'2 w + v

0

1
C - w C'2 v

0 1

~ (v + w :~)

d(y2)
dw

1
'2 ( 2) dv (21 - w v dw - w v - 1)

d(y2)
dz

2
d Y ) dw

dz dw

where

-2 + ~~D _ CID1) _ 6Cl ~ _ CIDo)
C 2 C C 2 1 Co 0 0

o

Do
r 5~-' q. /u.

l l

~ 2 5
L q.£. /u.

-l l l
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The Determination of Equilibrium Shapes

In our numerical calculations, we have restricted the drop to

assume only reflection symmetric shapes. Thus we have chosen the

magnitudes and positions of the point charges such that they are

reflection symmetric with respect to the origin. As discussed in the

last section, a total of N - 1 parameters will specify the shape.

Let us denote them by p (PI P2 ... PN-l)' The energy of a conducting

drop with fissility

equal volume is then

~ (p)

x in units of the surface energy of a sphere of

= B-1 + 2x(B - 1)s c

Let f. be the derivative of ~
1.

with respect to p ..
1.

Then f. (p) = 0
1.

if P represents the equilibrium shape. Expanding fi(p) about the

parameters p, we have,

f. (p)
1.

to the first order. Since the left-hand-side is zero,

f. (p)
1. L6Pj

j

df.
l-

op.
J

The factors are the differences of the parameters p from the

equilibrium values p. Thus for a given fissiljty x, a first guess of

the parameters p close to the equilibrium values is made, and f.
1.

and its first derivatives are calculated numerically. Then solving the



system of simultaneous linear Eqs. (17), (i = 1,2,· .. ,N-l), we obtain

corrections 6p. to the guessed values. Corrections to successive
J

guesses are found until they are less than a prescribed accuracy. Then

the parameters finally obtained are assumed to describe an equilibrium

shape and the energy of the drop is calculated. By calculating and

diagonalising the second derivatives of the energy with respect to all

the parameters, we find the number of co-ordinates with respect to which

the equilibrium point is a maximum and the number of co-ordinates with

respect to which it is a minimum.

The shapes generated even by a large number of point charges

are not general enough to represent an arbitrary shape. Thus an

oblate shape cannot be found in our scheme. This raises the question

whether the equilibrium shapes we have determined are indeed true

equilibrium configurations when the drop is free to take on any arbitrary

shape. To answer this question a criterion will be developed to test a

given shape for equilibrium. (A similar criterion exists for a volume

charged drop21).)

If we deform a conducting drop at equilibrium by specifying a

normal displacement on of the surface element dS without affecting

its total charge, the Coulomb energy change is found to be25 )

oEc

.,

The change in surface energy may also be found:
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oEs Y f K on dS

where y is the surface tension coefficient. The total energy change

is

oE oE +oE
c s

Subtracting ondS times a Lagrange multiplier k to ensure conserva-

tion of volume and equating the integrand to zero (for equilibrium

shapes) gives

By Gauss' Theorem,

k

~
. K

Y K --o K
o 811 Y Ko

where we have introduced K as the curvature on a sphere with the same
o

volume as the drop and t: 0 to be the electric field on the sphere.

Since
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E (0)
1 Co

2
c

x
2E (0)

)'Ko 8ns

. k y" C~-x£) (18)..
o K

O
C 2

0

The Lagrange multiplier k is determined by considering the

effect of a uniform change of scale (while keeping Q constant) on the

shape satisfying Eq. (18). If am is the nonvolume-preserving dis-

placement of the surface associated with the change of scale and aV

is the corresponding volume change, Then

aE = J(YK - ~ cr e) am dS k JamdS kaV

On the other hand by dimensional considerations,

E
s

Ec

E(V + aV)

aE

Comparing with Eq. (19),

! E aV + ~ E aV
3 c V 3 s V

k
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Expressing all quantities in units of their values for a sphere we get

after some algebra,

k Y K (B - xB )
a s c

(20)

Comparing Eqs. (18) and (20), we get

2
K C- - x (] 2Ka

a 1
B - xB

s c

Thus for an equilibrium shape, any point on its surface should satisfy

6 == 0, where 6 is given by

2
K L- - X
K £,2a

6 a
1== -

B - xBs c

As a measure of the deviation from equilibrium we can define a root-

mean-square value of 6 over the surface of the drop:

RMS ( [161 2 dS)~
""

If RMS« 1, the drop is close to equilibrium. If RMS > 1, the shape

is far from equilibrium. This quantity will be used as a measure of how

close the shapes we have determined are to the true equilibrium.
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4.F. Results

The results for symmetric equilibrium shapes of a charged

conducting drop based on a family of shapes generated by two, three

up to six point charges are shown in Fig. 16 as a series of curves.

The figure is equivalent to Fig. 11 for a volume charged drop. The

series of curves with different N values are just successive orders

of approximation of the true equilibrium shapes. One would hope that

for a high enough order of approximation, the results may be very

close to the true ones, so that an even higher order will change the

results very little. Typically, for successive orders the RMS values

improve by a factor of two. For N = 6 parameterization, RMS ~ 0.01

for x close to 1 and x < 0.8, and RMS ~ 0.1 for x ~ 0.9. This

indicates that for x < 0.8 and x 'V 1.0, the shapes we obtain are

close to true equilibrium shapes, but for x 'V 0.9, there are more

uncertainties. By studying the change of RMS values at x 'V 0.9 for

successive approximations, we find that the RMS values decrease very

slowly in this region, much less than factors of two. This indicates

that our model of a conducting drop using the equipotential surfaces of

point charges is probably not good enough for x 'V 0.9. A more general

or appropriate family of shapes appears to be in demand here. Hence

one should regard the calculated results in this region with great

reservations.

Let us take the N = 6 curve at its face value and examine its

main features. As we follow the curve from x = 1 toward small x

values, the equilibrium shape elongates from a sphere, i.e., RMAX/R

]
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increases with decreasing x in the region near x = 1. This is in

contrast to cases of small x values (x ~ 0.7) where RMAX/R is

slowly decreasing with decreasing values of x. The shapes in the

latter cases are long and look like a dumbbell. (see also Fig. 17)

Similar to a volume charged drop there is a rapid change of shape, but

occurring at x ~ 0.9 in the present case. Actually the curve for

RMAX/R even turns back at s = 0.887 and again at x = 0.906. However

it. in exactly this region that our results become unreliable and the

double turn might be spurious (see Refs. 26 and 27 for a similar

uncertainty which once existed in the volume charged case).

Let us now consider the nature of these equilibrium shapes by

looking at the signs of the second derivatives of their energy with

respect to all the parameters. The following results are found when we

restrict the shapes to only the degrees of freedom that allow reflection

symmetric shapes. For 1 > x> 0.887 the energy of the drop is a

maximum in one degree of freedom, but a minimum in the other N - 2.

Between the bends, for 0.887 < x < 0.906, the energy is a minimum.

For values of x smaller than 0.906, it is again a maximum in one

degree of freedom. With respect to the degrees of freedom that describe

reflection asymmetric deformation, the energy of the drop is a minimum

from x = 1 to x = 0.892. From x = 0.892 to x 0.68 it is a

maximum in one degree of freedom. Below x = 0.68 it appears to be a

maximum in two degrees of freedom. The implication of the change of the

number of degrees of freedom with respect to which an equilibrium shape

has a maximum energy is part of a general problem of the trend of



-6~-

equilibrium shapes as a function of a parameter x, which has been

. 'th 26,28,29) 1 'f th 'l'b .dlscussed by varlOUS au . ors " One may c aSSl y e equl l rlum

shapes into three types. The first is a minimum, i.e., the system is

stable in all directions. The second is a saddle point, at which the

system is unstable in only one direction, i.e., it is a maximum in this

direction. Physically this corresponds to a pass in a mountain range,

The system has to go over the saddle point to get from one side of the

range to the other. The third is what we shall call a "mountain top",

at which the system is unstable in two or more directions. Thus in a

subspace containing these directions this equilibrium point appears as

a mountain top. Looking at the equilibrium shapes we have obtained with

reference to both the symmetric and asymmetric degrees of freedom, we

can distinguish the various types. The equilibrium point is a saddle

from x = 1 to x = 0.892. From x 0.892 to x = 0.887 it is a

mountain top. Between the bends at x = 0.887 and x = 0.906 it is

again a saddle. For x smaller than 0.906, it turns out to be a

mountain top. As discussed before the saddle point close to x = 1 is

fairly well determined, but at the bends the results are no longer

reliable.

In Fig. 18 we show the energy of the sYmmetric equilibrium

shapes above that of a spherical liquid drop. It has an overall trend

of an increase with a decrease of x, but it also exhibits kinks cor-

responding to the region of a bend shown in Fig. 16. In Fig. 17 we

display several shapes along the N = 6 curve. Their RMS values are

also indicated.



4.G. Summary and Conclusions

We have looked at the static properties of a charged conducting

drop and compared them with a volume charged drop. We have discussed

the similarities as well as some of the differences. The symmetric

equilibrium shapes of a conducting drop are determined with reasonable

confidence for x values not in the neighbourhood of x = 0.9. At x

close to 0.9 the shapes found may not approximate the true equilibrium

shapes adequately. The next step would be to try to use another param

eterisation (e.g. that introduced by NixI8» so that equilibrium shapes

at these values of x are determined with greater reliability. This is

important because it is in this region that we find interesting stability

features, such as the occurrence of a bend in the family of equilibrium

shapes and of points at which there is a change in the number of degrees

of freedom with respect to which the shape has a maximum energy.

It is interesting to note that even some eighty years after

Lord Rayleigh's study of a charged conducting drop, the whole problem

is still a very open subject. We have been able to determine the saddle

points of a charged conducting drop for values of x between I and

0.892. But for the region of x from zero up to 0.892, one is still

very ignorant of the saddle point shapes and energies of a charged

conducting drop.

I

I
~.
I
f
~
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5. On the Synthesis of the Liquid Drop Model

and the Nilsson Single Particle Model

With Applications to the Study of Shape Isomers

and the Stability of Superheavy Nuclei

5.A. Introduction

In the first three parts of the thesis we have referred, from

several angles, to the idea of synthesizing a macroscopic and a micro-

scopic model. In this part, which represents joint work with the authors

quoted on p. 4, we shall attack the problem directly and study in

detail the synthesis of the liquid drop modell ,4) and the Nilsson single

particle mode12,3).

We shall begin by describing the Nilsson model on which the

microscopic calculatio~ is based, and also a calculation of the most

important rE;sidual interaction that is not included in t he model. This

residual interaction is the pairing force30 ) which is responsible for

the familiar odd-even mass differences. The description will be very

brief ~oth because it is not directly relevant to the main theme of this

work and also because the materials have already been published3l ) .

Details of the single particle calculations may be found in these

references. In a similar manner the liquid drop mass formula due to

MYers and SWiatecki4) is briefly described. Then the method of the

synthesis of these h,o models is discussed in detail; The unified

model is applied to give nuclear masses and deformations with very

good agreement ,vi th experimental values. The calculations suggest the

existence of metastable states of nuclei that correspond to nuclear



shapes different from the ground state shapes. These shape isomers32 )

are believed to be associated with the experimentally studied spontaneous

fission isomers that occur in the actinide region. Some comparisons

between theory and experiments are made. We next turn to the study of

superheavy nuclei in the neighbourhood of Z = 114 and N = 184 - 196

which are predicted to be relatively stable33 ,34). Half-lives of alpha

decay and spontaneous fission as well as stability against beta decay

are calculated for the actinide elements as well as for these superheavy

nuclei. By these quantitative studies we find that these superheavy

nuclei could have very long total half lives. Several of them might

even have life times comparable to the age of the solar system. A

discussion is given of their possible production and of the most

favorable candidate for. survival in earthly matter and in primary

cosmic radiation34 ).

5.B. Single Particle Calculations

The single particle calculations3l ) are based on the Nilsson

model which assumes that the neutrons or protons move in a harmonic

oscillator potential whose shape is described by two deformation para-

meters € and €4' The parameter € describes a spheroidal deforma-

tion and the parameter €4 describes a necking-in or bulging-out ~ear

the waist of the spheroids. Only axially sYmmetric and reflection

symmetric shapes have been considered. The shapel in the (€'€4)

plane are shown in Fig. 19. The relation of € and €4 with the

commonly employed deformation parameters, 0:2 and 0:4 given by

t It is seen in the figure that the shapes for is too "rec-

tangular"and is probably not good enough a description of the real

nucleus.
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R = Ro(l + a
2P2 + a4P4 + .•• ) is shown in Fig. 20. The usual modifica

tion of the harmonic oscillator potential by the addition of a spin-orbit

coupling (£.~) is employed. A further modification is made such that

effectively the central part of the harmonic oscillator, which is

originally a parabolic shape, is flattened to some extent. Two para-

meters K and ~ are associated with these two modifications and they

are adjusted to reproduce experimental energy level spectra.

The Nilsson model has been applied with great success to the

known nuclei. However one may question its reliability when Orie tries

to apply it, in extrapolation, to very heavy nuclei far beyond the

presently known region. One may suggest that a Hartree-Fock calculation based

on detailed knowledge of nuclear forces may be more reliable. But the

large number of matrix elements associated with the interactions among

the great number of particles involved makes such a calculation imprac-

tical with presently available computers. A more realistic one-body-

central potential than the Nilsson potential described above is the

Woods-S,axon potentia136 ) shape with a constant surface diffuseness.

Several groups are currently studying this potential. So far this

problem has not yet been adequately solved for strong deformations. On

the other hand the Nilsson model has been studied for rather large

deformations and is fairly well understood. Thus we consider the Nilsson

model to be the best available microscopic approach for our purpose

of calculating the nuclear binding energy.

The two shell parametes K and ~ have been adjusted by

Gustafson et al~) to approximately reproduce the experimental level
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schemes for the rare earth nuclei (A ~ 16S) and the actinides

(A ~ 242). VoTe take these values and for the other regions we assume

K and [1 to vary linearly with A. The parameters used are tabulated

in Table 2. The results of the calculations reproduce the known magic

numbers. For the A ~ 300 region, we find the proton number lll~ to be

a fairly good magic number, confirming previous results33 ). In this

region we find, besides the magic neutron number 18» that is generally

expected, also the magic neutron numbei 196. These results are shown

in Figs. 21 and 22, which also shows the level schemes obtained by

Rost35 ) who used a spherical Woods-Saxon potentia136 ). Although in

detail considerable differences are found, there is an overall agreement

in the prediction of low level density for spherical shapes for

Z = 114 - 126 and for N = 178 - 184. We show for illustration in

Fig. 23 the Nilsson diagram for protons in the A ~ 298 region. A gap

exists in the level density for the spherical nucleus at Z = 114 which

is a proton shell. At each particular deformation, the potential energy

can, be found by filling up the levels with nucleons. The energy of

the highest level that is filled is called the Fermi energy.

S.C. The Pairing Force

The average interaction among the nucleons ha's been represented

by the Nilsson potential. The most important residual interaction is

the pairing force, which is responsible for the oc~urrence of odd-even

mass differences. This force was originally introduced by Bohr,

Mottelson, and Pines30 ) and may be basically thought of as being a

simplified representation of a a-force interaction. It is limited to

t See also p. 103 for a further comment on this neutron magic number.
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act only between pairs of time reversed states, which have complete

orbital overlap. Since protons and neutrons have different orbitals in

general, the pairing force is assumed not to act between them. It is

also assumed not to act in levels far below the Fermi energy, since

interactions in these levels are much hindered because of the exclusion

principle and the fact that neighbouring levels are all occupied. This

latter point is discussed in detail in Ref. 3'7.

The effect of the presence of neutrons (or protons) on the

pairing interaction of the other kind of nucleons is represented by

assuming a (N - Z)/A dependence of the pairing strengths. Furthermore

there are indications in both theOry38,40) and experiments39 ) that the

pairing effect increases with increasing surface area of the nucleus.

We thus follow Stepien and SzymanSki40 ) in assuming that the pairing

strengths are proportional to the surface area. The choice of these

strengths and the number of levels near the Fermi surface where the

pairing force is assumed to act, is made so that the odd-even mass

differences of the rare earth and actinide nuclei and their general

A-~ dependence are approximately reproduced31 ).

The effect of the inclusion of the pairing interaction relative

to a simple summation of single-particle energies is exhibited in Fig.

2~ for the case of 254
Fm . The pairing effect increases the binding

for all deformation. Though the increase in binding is in general not

independent of E, it does not significantly change the equilibrium

deformations from the values given by the Nilsson calculations without

pairing.
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5.D. The Liquid Drop Formul~

We have discussed in some detail in Part II of this thesis the

potential energy formula of a leptodermous system, which is usually

referred to as the liquid drop formula .. We shall not repeat the

discussions here but merely state below the liquid drop formula due to

Myers and SWiatecki4). We have chosen this particular formula, because

i t involves only a few parameters which have been chosen to reproduce

both the ground state masses and the spontaneous fission barriers. Thus

the formula has been adjusted for large deformations that correspond to

these fission barriers. This is most important for our purpose of

calculating binding energies as a function of deformations.

The formula is given by

where I = (N - Z)/A and f(shape) is proportional to the nuclear

surface area, having the value of 1 when the nucleus is spherical.

The Coulomb energy Ec
is calculated by assuming the charge to be

uniformly distributed in the nuclear volume. Surface diffuseness and

exchange energy corrections to the Coulomb energy are also considered.

The parameters in the above formula are given by Ref. 41. Note in

particular that the same coefficient K' is assumed for both the

volume and the surface symmetry energies.

5.E. Generalised Strutinski Prescription and the Synthesis of the

Liquid Drop Model and the Nilsson Model

In this section w€ shall study the prescription by which the

synthesis of a microscopic and a macroscopic model is effected. As a



preliminary, we shall give a discussion of the basis for such a synthesis.

Though we have commented on it in the previous parts in some general

terms, we shall now discuss the basis more specifically with reference

to the Nilsson model and the liquid drop model.

5.E.1. The basis for the synthesis

In the Nilsson model, the nuclear potential energy may be

written as the sum of single particle energies of nucleons filling up

the Nilsson energy levels. It is well known that such a simple summa-

tion of single particle energies of the Nilsson potential is inadequate

in the study of binding energies. In particular one is unable to

account for the observation that the separation energy and the average

42)
binding energy are equal . In Fig. 25 we display a potential energy

surface for the nucleus 252
Fm as a function of deformation parameters

E and E4 based on the simple summation procedure. It is seen that

the energy gets larger and larger for large E and large E)+. This

is in disagreement with experiment since we know that the fission

barrier of 252Fm is only three or four MeV. This is not unexpected

since we do not expect the Nilsson model to give correctly the absolute

values of the binding energy as a function of deformation and mass

number. However we find that it gives the relative values for

neighbouring nuclei very well. On the other hand we have discussed in

Part II that a liquid drop formula should reproduce the smooth trends

and absolute values. The success of the liquid drop model as applied

to fission phenomenon, where large deformations are involved and to the

calculation of nuclear masses, where large number of nucleons a,re
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considered seems to confirm this. All this leads to the basic idea

advocated by .Myers and Swiatecki4), Strutinski5) among others that if we

take away the average trend from the single particle and pairing energies

and replace it by the liquid drop formula, we would get a much improved

I

potential energy surface, where the local wiggles are given by the Nilsson

model calculations and the smooth trends are given by the liquid drop

formula. In other words in the formula of the potential energy PE given

by the sum of the single particle energies ,ESp

,

we replace the average single particle energy sum ESp by the liquid

,drop energy E
LD

:

We may write out ESp in terms of the shell energy and the pairing

energy of the neutrons and protons. Then,

where EShell and Ep ' are the shell and pairing corrections obtainedalr

by subtracting from the shell energy and pairing energy their average

values.



The smooth trend of the pairing energy turns out to be approxi

mately a con$t~nt independent of A and is equal to31 ) -2.3 MeV which

is conveniently subtracted off from the pairing energies. The smooth

trend of the shell energy is however not a constant as a function of the

mass number or of deformations. Its extraction is the key to the

synthesis of the liquid drop and the Nilsson model. Once the smooth

average of the shell energy is found, we can obtain the sbell correction

by subtracting it from the sbell energy. Tbe sbell correction and the

pairing correction are tben added to the liquid drop energy to give the

total potential energy, which bas the useful features of botb the micro-

scopic and macroscopic approaches. The crucial problem of tbe extrac-

tion of the smootb average trend of tbe shell energy is discussed in

tbe next subsection.

5.E.2. Generalised Strutinski prescription

In tbis subsection we shall study and generalise a prescription

due to Strutinski for finding the smooth trend of tbe sbell energy.

The method is very similar to tbe metbod of data smoothing wbere one

tries to obtain tbe average value at a point by evaluating a weighted

mean of a region around tbat point.

StrutinskiS) introduced a method to average over the energy levels

rather than over the total energy itself. Given a level density G(e)

we may write tbe totalsbell energy as

J
E

F
E(G) 2e G(e) de



where E
F

is the Fermi energy. The factor 2 comes from the fact

that there are two nucleons per level. The function G(e) has the

characteristic that it has both a smooth trend with a characteristic

length L which should be of the order of the Fermi energy and also

short range fluctuations whose wavelengths are less than or equal to the

energy spacing A. between shells. Tbe problem is to find a smooth

level density g(e) which retains the long range variations but removes

the short range oscillations (the shells).

One may formulate the problem by writing G as follows

where GL(e) is the slowly varying part and G
S

is the rapidly

fluctuating part. Strutinski suggested that to smooth out GS(e) one

could find an average by weighting the points by a Gaussian of suitable

width. As already recognized by Strutinski, a simple Gaussian weighting,

turns out to be inadequate because while it smooths out the rapidly

fluctuating part, it also distorts the slowly varying part. In order

to preserve the latter (i.e., GL(e)) one introduces a correction

factor F. Then the weighting is given by

2
e -u F(u); u

e - e'
y

where y is the width of the Gaussian. The requirement on F may be

written as



[00 1
2

-u
F(u) G(e) de GL(e')~e ,

y( J() 2"

which is eql1ivalent to the two relations

L
OO

1
2

-u
F(U) GL(e) de GL(e' )----'-T e

y( JT)"2

and

L
OO

1
2

-u
F(u) GS(e) de 0----r e

y( JT) 2"

(21)

(22)

In the case that G
L

is a finite polynomial of order p, F

can be found explicitly. Equation (21) gives

2
e-u F(u) du o 0;n,

Setting F(u) to be a polynomial

we find, after some work, from the last equation

o

o

for all i > P

for all odd i
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and

~..~
L __~
i=even

C.
l

on,O

which can be solved for the coefficients Ci . In other words, if GL

is a polynomial of order p, we find a polynomial for F(U) also of

order of p with only terms of even orders, such that with our

weighting function, G
L

is retained in the smoothing procedure. ~~en

the polynomial for F(u) is of order m < p, denoted by F (u)
m

we do

not retain G
L

completely and the error made can be written down in

general. The error ~L made when m = p - 2 and the coefficient of

the
th

P order term in is ap
turns out to be

where

~L

m+2
I m

2-u
e F (u) dum

m

E
i=m/2

m + i + 1

2 i +l

. ,
l.

When m is given, ~L would be small when Y is small compared with

L.

The prescription is also supposed to smooth out the short-

range fluctuating part of the level density, GS(e). Let us represent
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the term in Gs(e) with the longest wavelength ~ by

b exp(ie/~)

If this term is smoothed away, terms of shorter wavelength are also

smoothed aMay (see below Eq. 21l). The error introduced by our prescrip-

tion with F (u) of the order m is then given by
m

1
---r
Y(rr) ?

2
e-

u
Fm(U) GS(e) de

After some manipulation, we find

2 m
2-~'--'1 (2~)k~S GS(e)

- (Y/2~) 1
(24)e

(~)~•••..A

k==O,even

2When we put m to infinity the summation is just exp(Y/2A.) and

~S == GS' i. e., we do not smooth away GS
at all. It is also clear that

the smoothing is more effective when Y is large compared with f..•

We sketch in Fig. 26 the total error I~L I + I~S I as a function

of Y for the cases of m == 0, 6, and 00. The term ~L dominates at

large Y values and decreases as m is increased. The term ~S

dominates at small Y values. When Y == 0, ~S is maximum, i. e., no

smoothing has been done, but as Y increases ~S decreases. The

spread of ~S is dependent on the values of m. It is larger for larger

m and in the limit when m is infinite, ~S has an infinite spread

and no smoothing is made for any value of y. From the figure we see
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two points. First that we should use an m value which is not too

large (for which cases ~S is spread over all values of y), and also,

which is not too small (for which cases ~L is large even for y

values close to 2/\) . Second, one should choose a y value between

2/\ and L such that the total error is a minimum. For an appropriately

chosen m value (m = 6 in the figure) there actually exists a flat

region inside these limits where the total error is small and is

independent of y. This is the case one should choose.

Now we apply the smoothing prescription to the results of the

Nilsson calculation. The Nilsson calculation gives a series of sharp

energy levels e , so that
v

G(e)

v

5(e - e ).
v

Then for a prescription with given values of m and y, the smoothed

level density g is given by

g(e' )
2

e-u F (u) G(e) de
m

2
e-u F (u)

m
v

(e - e ) de
v

v

2F (u ) exp(-u )
m v v
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where

u
v

e' - e
v

y

For the order

F (u )
m v

+m to be seven

( 1 )2 (3 3 2
1 + '2 - U v +. '8 - '2 U v

Then g(e) will have the same smooth polynomial behavior as G(e) up

to the seventh order. Any error will be in the eighth order.

The smooth total single particle energy is then

E(g) 2e g(e) de

with the Fermi energy EF given by

+ R. A. Miller43 ) has done calculations along similar lines and

written down F as derivatives of g(e). He has tried to study

the convergence of the results of smoothing as a function of m.

However he used only one value of y close to 2;,. (see Fig. 26)

and so reached the wrong conclusion that the results of the

prescription do not converge.
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J
E

F

2 g( e) de

where N is the neutron number. Similar equations can be written down

for the protons. The shell correction EShell is then given by

E(G) - E(g)

In Figs. 27 and 28, we show this quantity as a function of the

Gaussian width Y for the neutrons in the case of and 208pb ,

respectively. Similar figures are valid for the protons. It is

obvious that if we use Fm with m = 2, we have a serious folding error

and the result is strongly dependent on Y, but when we use m = 6, the

result is rather Y-independent except when Y is too large or too

small. For a fixed value of Y (say Y = 0.8-flwo
in the figure, where

w is the oscillator frequency in the Nilsson potential), the changeo

from the zeroth (m 0) to the second order (m = 2) is about

60 MeV; from second to fourth is ~l MeV, and from fourth to sixth

only
1W MeV. It is interesting to note that turns out to be

just of this order 1bO and the above rate of convergence is indeed

to be expected when the main error comes from ~L (Eq. 23).

In our calculation we have used m = 6 and Y = 1.2 -t'rw and we
o

find that our results converge very well to a unique value for the shell

correction. It is these shell wiggles that are added to the smooth

liquid drop energy.
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In summary, we have thus a unified model obtained by replacing

the smooth part of the total potential energy surface of the Nilsson

model by the results of the liquid drop model. All local shell structure

variations (the local wiggles of the energy surface) have, however, been

retained.

5.J.i'. Comparison with Experiments

To study the behavior of a nucleus at various deformations we

have applied the unified model to calculate the total potential energy

surface for the range of E between -0.5 and 0.95 and E4 between

-0.08 and 0.16. Smaller ranges of E and E4 are taken for some

nuclei whose physically interesting features appear to be in a smaller

region.

The lowest minimum in this potential energy surface corresponds

to the ground state of the nucleus. Hence the ground state mass (or

binding energy) and distortion can be read off from the energy surface

and compared with experimental values.
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5.F.1. Nuclear masses t

In Fig. 29, we compare empirical and theoretical masses with

reference to the liquid drop masses at zero deformation. Thus the top

curve gives the experimental values minus the respective spherical

liquid drop masses in MeV. Immediately below, the theoretical values

at ground state equilibrium deformations are plotted. These contain all

the effects of distortions and shell structure. The differences between

the theoretical and eJ~erimental values are exhibited as the third and

lowermost graph in the figure. They reflect on the appropriateness

both of the liquid drop parameters chosen and of the nuclear shell and

pairing fields employed. The comparison shows very good agreements.

Discrepancies are only around 1. 5 MeV. Three points of deviation may

be pointed out:

Our calculations of masses are similar to those reported by P. A.

Seeger and R. C. Perisho, Los Alamos Scientific Laboratory Report,

LA-3751, 1967, which provided part of the original stimulus for

undertaking calculations described in this section. These authors

neglected the P4 degree of freedom and in their fission calcula

tions represented the liquid drop barrier by a cubic in E. (There is

an error in the coefficient of their cubic term.) However, they allow

for an adjustment of liquid drop parameters. Our inclusion of the

Ps degree of freedom appears to improve the mass fit considerably.

No adjustment of liquid drop parameters is made in the present work.



-84-

(i) The overall trend seems to be toward too small theoretical

masses at large A values.

(ii) There appear to be relatively large discrepancies connected

with the doubly closed shell of 208pb . The theoretical binding energy

is underestimated by about 2 MeV around A = 208.

(iii) For large A values there is a marked discrepancy in the

isospin dependence within each band of isotopic masses.

First of all, it would be desirable to readjust the Myers-

Swiatecki liquid drop parameters using our shell corrections. Masses

of spherical and deformed nuclei could be affected differently. If we

further assume different isospin dependence (sYmmetry energy coefficients)

for the volume and surface energy terms, we would probably be able to

improve on the theoretical results.

On the other hand the underestimate of binding near the doubly

closed shell may reflect on the details of the single particle ca1cula-

tions. The pairing energy calculation described in Section S.C

collapses near closed shells, whereas in fact there should still remain

some pairing energy of the order of one MeV as can be brought out by a

1~4 )
random-phase-approximation calculation . The underestimate in binding

for A between 190 and 200 may be associated with the neglect of the

rotational asymmetry degree of freedom which is believed to play a role

in this region.

The masses for the superheavy nuclei beyond the present experi-

mental region show a broad shell structure at Z = 114 and N = 181~ to

I'



196. This shell effect is not as strong as for the 208pb shell, but

it may be a bit underestimated as in the Pb region. As shown below,

this shell is the main reason to believe that there may exist in this

region an island of relative stability which might be explored

experimentally.

5.F.2. Ground state distortions

In Figs. 30 and 31 we e}wibit theoretical deformation parameters

and associated with nuclei in the rare earth and actinide

regions. We should note that there is a general trend of the nuclear

deformation to go from the spherical at one magic nucleus to a deformed

nucleus with large E but zero E4' and then back to the spherical at

the next magic nucleus. Nuclei in the intermediate region have nonzero

values of

Let us comment here that if we look at the equilibrium E

calculated45 ) on the Nilsson model without renormalisation to the liquid

drop smooth trends, we find the differences from our results to be

small: in most cases less than five per cent. This is not unexpected

because we know that the liquid drop part of the total potential energy

is a smoothly varying function, always predicting ground states to be at

zero deformation. Any deformed ground state would be due to the local

fluctuations from the part connected with the sil'lgle particle calcula-

tion, that have been retained. Hence both calculations are equally

successful in giving the E deformation.

In the case of E4 deformations, let us look at the experimental

results obtained by Hendrie et al. 46), who did a detailed optical
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potential analysis of inelastic alpha scattering data on the rare earth

nuclei. They assume the nuclear equipotential surfaces to be given byi-

The differential cross-section involving populations of rotational

6+bands of even-even deformed nuclei up to (in some cases 8+) state

are fitted by a combination of ~2' ~4' and ~6' The experimental

values of ~4 are compared with the theoretical values obtained from

a transformation by means of Fig. 20. Thistt may be seen in Fig. 32.

The agreement appears remarkable.

t The relation between

given by

and the conventional co-ordinate is

tt

1

SA. [411/ (2A. + 1) F cxA.

The theoretical results in Fig. 32 represent an older calculation

on a Nilsson model without renormalisation to the liquid drop

smooth trends, but, as mentioned earlier, the new results are

essentially the same within an accuracy of 5%.
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5.G. Potential Energy Surfaces

From the minimum of a potential energy surface we can obtain

the ground state mass and deformation which are discussed above. A

further study of the potential energy surfaces will bring out more

features of physical interest, in particular those connected with

spontaneous fission barriers and shape isomers.

In Figs. 33a-~ we exhibit the barriers obtained for isotopes

of Z = 92 to Z = 114 as a function of E with minimization of

energy with respect ot for each value of E. This type of plot

represents a cut through the two-dimensional topographical map in the

(E, E4) plane along the potential energy minimum path with the energies

projected onto the E axis.

In the following we shall study the structures found in the

barriers with reference to these figures. The possible errors in these

potential barriers are discussed at the end of this section.

5.G.l. The structure of spontaneous fission barriers of

heavy and superheavy nuclei

The conventional liquid drop barrier has the ordinary one peak

shape, but because of secondary shell effects, structures can be found

in the potential energy barrier. By the secondary shell effects, one

refers to the extra shell binding that occurs at some moderate deforma-

tion as compared with the usually understood shell effects that appear

for the spherical shapes. They were first pointed out by Geilikman47)

and studied by Myers and Swiatecki1,) and strutinski5). It was

~0)

StrutinskiJLwho first emphasized that they will cause a two-peaked

fission barrier.
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As a general rule, for a nucleus with its proton or neutron

number near a magic number, the ground state is spherical and the

secondary shell effect occurs at € ~ 0.4. For a nucleus with its

proton or neutron number awa~ from a magic number, the ground state is

at € ~ 0.2 and the secondary shell effect occurs at € ~ 0.6. In

Fig. 34 we show the effect of shell corrections to the liquid drop

barrier. It is seen that the fission barrier is basically that of the

liquid drop with indentations due to shell effects. For the actinide

region (A r~ 242), even though the liquid drop would like to have a

spherical ground state minimum, the nucleus has deformation € ~ 0.2

because of shell effects. A secondary minimum occurs at € ~ 0.6 due

to the secondary shell effect. For a nucleus near a closed shell, the

shell correction makes the liquid drop minimum at the spherical shape

even stronger and a secondary minimum is found at € ~ 0.4. For the

actinides (and also the rare earth nuclei) another minimum corresponding

to an oblate shape occurs (see Fig. 33). This minimum, for the actinide

case, is usually more than 5 MeV higher than the ground state. When

the rotation asymmetric (y) degree of freedom is included, the nucleus

corresponding to this minimum is found to be unstable in the y

d " t" 48) 1 d" d t th 1 d t t th h thlrec lon , ea lng own 0 e ower groun s ,a,e roug a pa

provided by this extra degree of freedom. For the lighter nuclei in

the rare earth region, this minimum is not much higher than the ground

state minimum. In some cases it may actually be lower and should be

taken as the ground state. This oblate shape will then have important
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physical significance, especially as regards the Nand Z values

where a transition from a prolate to an oblate ground state takes place.

As we have seen in Fig. 34, the existence of the two-peak

structure of the potential energy barrier is due to the secondary shell

effect. If the secondary shell effect occurs at or near the liquid drop

saddle point, the two-peaked structure will be most prominent and the

peaks will be of about eaual height. If the secondary shell effect is

to one side of the liquid drop barrier, the peak on this side will be

smaller than on the other. In the extreme case when it is far off from

the liquid drop saddle point we see a big peak and a very small second

peak in the barrier. This is then essentially just the ordinary one

peak barrier structure.

For the actinides the secondary shell effect occurs at

E ~ 0.60-0.70. As we go from lighter to heavier actinides, the

fissility parametert x increases and the liquid drop saddle points

to small E. Thus the liquid drop saddlewill move from large E

points for 238u, 242pu , 248Cm, and 254
Fm are at values

of E about 0.85, 0.74, 0.65, 0.59, and 0.54, respectively. Then it

appears that in the region around Cm the saddle points are at about

t The fissility parameter x may be defined as

x I
N - Z

A

)+1)
using the Myers-Swiatecki liquid drop parameters .
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the position of the secondary shell effect so that the two~peaked

character of the barrier would be most prominentt with peaks of about

equal height. As we go away from Cm to nuclei with higher or lower

values of x, one of the peaks will become smaller than the other and

eventually it will be mostly washed out. Detailed results of actual

calculations in our model may be found in Table 3 where we tabulate the

heights of the two peaks as well as the secondary minimum in between,

relative to the ground state. Because of the inaccuracy in the deter-

mination of the energy surface which will be discussed at the end of

this section, as well as uncertainties in the assumptions explicitly

and imvlicitly made in the present calculations, the table should be

looked upon as an indication of trends rather than as a quantitative

prediction. The trends are also illustrated in Fig. 35.

For the superheavy nuclei (Z ~ 114 and N ~ 184). Arguments

drop barrier in this region, the two peak effect is apparent for

similar to those above apply. Since there is practically no liquid

29Lll10

where the secondary shell occurs at the flat part of the deformation

curve, but is not apparent for cases where the secondary shell occurs

at the rapidly dropping part (see Fig. 34).

It should be pointed out that for a particular element, a

change in the number of neutrons may change the picture significantly.

t This however does not mean that Cm isomers will have the longest

spontaneous fission half lives, since these depend also on excitation

energies of the isomeric state and the competition of gamma transition

back into the ground state.

'-j
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Not only does N affect the value of x, but shell structure effects

associated with N may have important consequences. An example is

the following result from the present preliminary investigations. For

Z between 102 and ll~· and for N less than 176, the nuclei have

ground states near E = 0.3, and secondary shell effects at E ~ 0.70.

Since these nuclei have very large x values the fission barriers

exhibit only one peak. There is also a minimum at zero deformation

which lies higher than the ground state. But as N is increased, this

minimum is getting lower until at N ~ 176-178, it is actually lower

than the minimum at E ~ 0.3 and so it has to be taken as the ground

state. Hence for N::: 176 we have a deformed ground state with a one

peaked barrier. But for N ~ 178, we have a spherical ground state

with a two-peaked barrier with the secondary minimum at E ~ 0.3.

Obviously this latter case has a much thicker fission barrier and

should be much more stable against spontaneous fission.

5.G.2. Spontaneous fission isomers in the actinide region

The existence of the two-peaked structure with a secondary

minimum in between may be associated with the spontaneous fission

isomers that have been studied experimentally for some years. An

isomeric state that corresponds to the secondai'y minimum has a

different shape from the ground state and is higher than the ground

state by several MeV. The isomeric state may decay by gamma emission

to the ground state or by spontaneous fission through the second

barrier49 ). The transition to the ground state is hindered by the

presence of the first peak. For the actinides the first peak is large
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so that gamma transition is greatly hindered and it is more likely for

the isomeric state to penetrate through the second peak and undergo

fission. Obviously the ground state has a much thicker barrier against

fission. Thus though the ground state of
2~2

Pu has a spontaneous

fission half life of the order of 105 years, one expects that the

isomeric state has a half life of the order of 100 nano-seconds only.

Experimentally this kind of isomeric state is found in nuclei

with 236 < A < 246. The first fission isomer, in
'V 'V

discovered by Polikanov et 801. 50 ) and by Flerov et

242Am, was

"'1)
801.) with a

fission half life of 14 ms. Since then a number of other cases have

been found52 ,53) with half life ranging from milliseconds to nanoseconds.

The isotope 242Am seems to have an extraordinary long isomeric fission

half life. This has been studied to some extent by Nix and Walker~9)

who also speculated about the possible eA~lanations. The excitation

energies of these isomeric states appear to lie between 2 and 4 MeV.

Relevant data are shown in Table 4 together with our theoretical

results taken from Table 3. As pointed out before, our theoretical

values are not expected to be quantitative predictions, but rather an

indication of the trends. Thus the discussion of trends in the last

subsection is applicable here and can be used in a qualitative way to

see where we expect to find these shape isomers.

Additional evidence that appears to support the existence of the

secondary minimum is based on the study of the energy dependence of

the thermal neutron fission cross sections for elements in the region

231 < A < 242. An example is the thermal neutron fission cross-section
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of 235U. Superposed on the fine structure of a few eV, occurring at

about 6-7 MeV of excitation, there appears a sequence of resonances

with a spacing of about 100 eV and a width of a few eV. The ratio of

the spacing of the resonance type states to the spacing of the usual

2~1
type of states is about 500. It is about 50 for the case of Pu. If

one interprets the resonance states as the states of the secondary

minimum as suggested by Lynn54 ), then, using the standard level density

formula, one may estimate the secondary minimum to lie

the ground state for the various nuclei between

1. 5-3 MeV above

242
and Am.

These results appear to be in qualitative agreement with the predictions

of the present calculations.

5.G.3. Shape isomers for the neutron deficient heavy

nuclei (A 'V 206)

Let us first make a comment about the shape isomers for the

rare earth nuclei along the beta-stability line. These nuclei have their

ground states situated at about E = 0.2 and the secondary shell effect

is expected to cause an indentation of the liquid drop barrier at

E ~ 0.6. But since the liquid drop saddle point is at a much greater

deformation than this value, what we elrpect to see is a two peak

structure with the second peak much greater than the first peak.

Actually the first peak is on the rising part of the liquid drop barrier

so that its effect is further reduced. Then if the nucleus is at the

isomeric state, it would probably prefer a gamma transition to the

ground state rather than spontaneous fission through the second barrier.
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Recently Bj~rnholrr?5) suggested that one might look for fission

isomers in some neutron deficient heavy nuclei such as
204R 118

86 n This may

be argued as follow"S. The proton and neutron numbers are close to the

magic numbers 82 and 126 respectively. One thus expects the ground

state to be spherical and the secondary shell effect to occur at E = 0.4.

Compared with the rare earth nuclei, this secondary shell effect occurs

at a smaller deformation than for the rare earths so that its effect

will be stronger. For the neutron deficient case the liquid drop

fissility parameter is increased so that the liquid drop saddle point

will be moved toward the point of secondary shell effect. As discussed

in the subsection G.l. this would enhance the two-peak effect.

We have calculated the barriers for the neutron deficient heavy

nuclei centered round Z 86, A = 202. The results are displayed in

Figs. 36 a-e. They seem to indicate that while the above discussion is

true, the suggested enhancement of the two-peak effect on the fission

barrier is not enough. Even though the fissility parameter is increased

somewhat, the liquid drop saddle point is still at a very large deforma-

tion. Thus the shell effects will occur at the rising part of this

liquid drop barrier with the result that the isomeric state is at a

very high excitation energy above the ground state (~5 MeV). For the

same reason the second peak is much broader than the first peak. Hence

for these cases one expects the same conclusions as in the rare earths

case, namely that if the nucleus is in the isomeric state, it would more

lil\:ely undergo penetration through the first barrier and gamma decay

to the ground state than spontaneous ·fission through the second barrier.
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In this study one realises an important point that when one is

looking for regions of fission isomers, one should look at the shell

effects on the background of the liquid drop fission barrier. Just

looking at the shell corrections by themselves may be misleading.

5.G.4. Uncertainties in the potential energy surfaces

Two representative energy surfaces are exhibited in Figs. 37a,b.

The separate contributions from the liquid drop terms and the shell plus

pairing energies are exhibited in Figs. 38 and 39. For small distortions

from the spherical shape we expect the (E, E4) parameterization as

used to be adequate. However at large distortions higher multipoles

will be important in the calculations of saddle point energies27 ).

Since for larger values of the fissility parameter x, the liquid drop

saddle points occur at smaller distortions and vice versa, we expect

that higher multipoles to be important for lighter nuclei whose values

of x are small, and that the (E,E~) parameterization should be

sufficient for heavier nuclei which have large values of x. Thus when

we compare the liquid drop saddle point energies on our (E, E4) scheme

with the more general parameterization used by Cohen and Swiatecki27 )

we find that for U, with its saddle point at E """ 0.85, our value is

too high by 0.6 MeV; for Pu whose saddle point is at E "",·0.75,

our result is too high by 0.3 MeV; and for nuclei heavier than Cm

(z = 96) the error is less than 0.1 MeV. In particular for superheavy

nuclei (Z "'" 114, A """ 298), the error due to the restricted parameteri-

zation should be small.



E4 degree of freedom on the barrier of

-96-

The potential energy surface plots show the importance of the

E4 degree of freedom as E is increased. Although in the ground

states both positive and negative values of E4 occur, the saddle

point always occurs for a positive E4, representing a smaller waistline

relative to the spheroid. In, Fig. 24, one may study the effect of the

2S4Fm .

The further considerations of deviations from axial symmetry of

the nuclear shapes appear to reduce the saddle point energies. Thus

as reported by V. V. PashkevichS6 ) the energies of the saddle points

closest to the ground state for nuclei between and are

reduced by amounts ranging from 0.4 MeV to 2.1 MeV.

On the whole we would say that we have over-estimated the

potential surfaces somewhat at large deformations. At small deforma-

tions, they should be reasonably reliable.

S.H. Barrier Penetration and Spontaneous Fission Half Lives

For the purpose of calculating spontaneous fission half lives,

we use the simple WKB theory for the penetration of a barrier.

Let us assume that the problem is one-dimensional and that E

is the relevant fission co-ordinate. According to the WKB approximation,

the probability for the penetration of a barrier is given by the

expression

P exp f
E"

-2

E'

exp(-K)
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where B is the inertial mass associated with fission assumed to be

independent of E, E is the initial excitation energy of the nucleus

towards fission, and W(E) represents the barrier as obtained from a

potential energy surface considered in the previous section. There

exists an improved expression, as shown by P. O. Froman ~nd N. Froman57 ):

P (1 + exp Kfl

This differs from the one above mainly for small K values, i.e., for

energies E near the top of the fission barrier. In particular, when

E is equal to the top of the barrier, the probability for penetration

is 0.5. In our calculations below we consider only very small E

values for spontaneous fission, so we use the previous expression,

which should be adequate. Since E is dimensionless, B will have

the dimensions of a moment of inertia. Thus if we scale the nuclear

system simply according to its mass number, the B will be propor

tional to A5/ 3 .

Let n be the frequency of beta vibrational motion that is

associated with the fission mode. Setting n = 10
20

. 38 corresponding

to a nominal vibrational energy of one MeV, we have the half life

given by

or

T
lin 2 1
---

n P
-20 '5410 . - exp K (seconds)

T (years) (26)
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Three main sources of error enter into the half life estimation.

(1) We have made a simplification of the problem so that it is reduced

to a one dimensional barrier penetration. We construct a path in the

energy surface by minimizing the potential energy with respect to E4

for each E and then projecting this path onto the E axis. (2) With

the barrier, W( E), thus obtained, there are errors for large E since

we consider only E and deformations whereas higher orders of

deformations are important at large distortions. This effect will be

especially large for light actinides whose barriers extend to rather

large distortions. (3) Furthermore, shell effects will have their main

impact near the ground states and will be washed out at large distortions.

Thus any error in shell calculations will distort the potential barrier

and hence affect the l~fe time estimates. All these errors will be very

crudely acco~nted for when we treat BA-5/3 as a parmaeter to be

adjusted so that the experimental half lives are reproduced. We have

estimated this parameter by applying Eqs. 25 and 26 to the

potential barriers we have calculated for the actinides Z 92-102

and their experimental spontaneous fission half lives. We have attempted

to see the dependence of this parameter on saddle point shapes by

plotting it against the fissility parameter x and also against the

constant for all heavy and superheavy nuclei. This is the simplest

mean deformation of their barriers. In both cases, no simple trends

to be aThus as an assumption, we have takenare discerned.

procedure one can take in lieu of anything definitely better, but one

is not at all clear how valid this assumption is.
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Several methods are used to estimate BA-5/ 3 . The first is

taken from a microscopic calculation due to Sobiczewski et al. 7). The

inertial parameters for the heavy nuclei are found to cluster within

30% of a mean value.

A second estimate of is the empirical values obtained

by using the barriers for the actinides which we found from our calcula-

tions and requiring these to give the correct experimental half lives.

These are also found to cluster within ~30% about a mean value. A

third estimate is also empirical and is due to Moretto and swiateckiS8 ) .

They used liquid drop barriers modified by a Myers-Swiatecki shell

correction term41 ) and with the ground state masses and fission barriers

adjusted to experimental values. They are able to estimate the mean

value of -5/3BA for the actinides with only a 10% spread. It was found

that all of these three estimates lie within 30% of each other.

BA-5/ 3These estimates of the mean value of are shown in

Fig. 40, where we have plotted

En T against

for Z 110 and 114. The slope in this plot is

,

where the excitation energy E is taken as half an MeV, corresponding

to the zero point vibrational energy in the fission mode. From this

figure the half lives can be read off. We have taken among the three
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estimates, the Moretto-Swiatecki value which is the lowest of the three.

The reason for the choice is that this estimate incorporates the experi

mental ground state masses and fission barriers, whereas the other

estimates have uncertainties in both these quantities. If we had taken

the other estimates, some of our values for spontaneous fission half

lives would be larger by one or two orders of magnitude while others

are increased by a factor less than 10.

It is to be commented here that this inertial parameter which we

adopt is more than seven times the value obtained by the assumption

of a pure liquid drop with irrotational flow, which of course cannot be

considered to be anything more than an extreme lower limit. This ratio,

seven, turns out to be somewhat larger than the corresponding ratio for

the rotational moment of inertia for deformed nuclei and also the ratio

for the quadrupole vibration.

The spontaneous fission half lives of the superheavy nuclei are

discussed in the next subsection. The half lives for the actinides are

represented in Table 5 as the ratio in powers of ten of the experimental

to theoretical values. There seems to be a systematic underestimate of

half lives on the neutron-poor side and an overestimation on the neutron

rich side. A readjustment of the liquid drop parameters with indepen

dent volume and surface sYmmetry energy coefficients might be able to

take care of this systematic discrepancy.

5.1. Stability of Superheavy Nuclei

There are three main mechanisms for the decay of a nucleus:

spontaneous fission, alpha decay, and beta decay (or electron capture).
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Alpha decay half lives can be estimated from the Q-values of the process,

which are directly found from the masses of parent and daughter nuclei.

Similarly by comparing masses of adjacent isobars, beta stability can be

determined. Since these processes involve only mass differences between

nuclei one or two units of N or Z from each other their half life

estimations will be relatively little affected by any errors that occur

in these nuclei to a similar degree. Hence the alpha and beta stabilities

can be determined with reasonable reliability. For the actinide region

(Table 5) we are able to reproduce the experimental Q,··values of alpha

decay to within ±0.2 MeV and beta stable nuclei are usually verified.

The results for the lead region are not so satisfactory. In this region

the differences between experimental and theoretical Q,-values for alpha

decay could be about 0.6 MeV. This is partly due to the inadequacy

of our calculations in reproducing the trends of the nuclear masses

near the lead region (see Section F.l.).

The estimation of spontaneous fission half lives involves

larger uncertainties as discussed in the last section.

5.1.1. Island of stability in the neighbourhood of

Z =: llLf and N =: 184-196

The stability against alpha and beta decay as well as spon

taneous fission has been worked out for nuclei with proton number from

106 to 128 and neutron numbers from 178 to 204. In this region are

the magic numbers Z =: 114, N =: 184, and N 196 (see Figs. 21 and

2~~). The results are tabulated in Tables 6-8, which are summarised in

the half life contours of Fig. 41.
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Some general features of this figure may be pointed out. The

longest fission half-lives center rather symmetrically around (Z = 114,

N = 184-196). It must be emphasized here that any stability against

spontaneous fission in this region is due to the extra binding resulting

from the shell effect so that as one goes away from Z = 114 and

N = 184-196, the fission half-lives decrease rapidly. Without the shell

effect, the alpha half-lives depend on the inclination of the 6N = 6Z

line (Which is the direction of alpha decay) with respect to the

direction of the beta stability valley. The shell effect essentially

increases the alpha half-lives for nuclei with Z < 114 and N < 184

and decreases those for nuclei Z > 114 and N > 184 and also

Z > 114 and N > 196. The kinks in the curves occur when either the

parent or the daughter nucleus experiences a maximum shell binding

effect.

The great uncertainty associated with the numbers obtained must

be emphasized. First of all there is the uncertainty of the extrapola-

tion of the shell model potential to an unknown mass region. Further-

more, a deviation of 30% in the estimate of the inertia parameter B

corresponds roughly to a factor of 106 in the spontaneous fission half-

lives, while a 1 MeV deviation in alpha energy corresponds ,to a factor

,
t I

difference in alpha half-lives. An underestimate of a given

nuclear mass due to a local shell effect leads normally to an over'"

estimate of the fissi9n half-life. On the other hand, the error in,

alpha energy is comparatively small. For the actinide region (Where

we do not have the uncertainty due to the extrapolation of parameters,
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Table 5, our alpha energies are within 510 of the experimental values

corresponding to half-lives agreeing within a factor of ten, but our

fission half-lives for some isotopes can be wrong by a factor as large

106 either way.

All these uncertainties may move the contours of half-lives in

Fig. 41, but the general pattern should remain the same so long as

Z = 114, N = 184, and N = 196 are good magic numbers. The magic

numbers Z = 114 and N = l8~- have been confirmed by various calcula-

tions 33 ) so that the part of the figure around the nucleus

can be used with reasonable confidence. The magic number N = 196,

however, has not yet been verified by other calculations. At the

moment one is not sure whether this number will remain magic when a

more realistic calculation than ours is made.+

The use of this figure as a guide in the search for relatively

long-lived superheavy nuclei will be illustrated in Section J below.

5.1.2. Possibility of the occurrence of surviving

superheavy elements in nature

Applying a II survival-of-the-fittest" test with respect to

fission, alpha decay, and beta decay in the above region and taking the

calculated numbers at their face value, one ends up with one probable

+ Recently Bolsterli, Fiset, and Nix59 ) calculated the single particle

energies by a scheme in which no extrapolation of parameters is

necessary. Their preliminary results indicate that there is no gap

in the levels at N = 196.
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candidate for survival in earthly matter, namely 294110 , which has a

total half life of about 108 years. However, the uncertainty of our

numbers as discussed above may indicate that, instead, a nucleus closeby

may have a better chance of survival.

Self-consistent field calculations of the electronic configura

tions60 ,61) indicate that the elements with even Z from 106 up to

116 have chemical properties similar to those of W, Os, Pt, Hg, Pb,

and Po, respectively (Fig. )+;~). So these superheavy elements, if they

occur in nature, may be found in ores of their respective chemical

homologues. However if the total half-life falls below ~ 2 X 108

years, its detection in earthly matter is beyond the capabilities of

our present techniques. t

Even if the longest half life in this region of elements is

less than 2 X 108 years, it may be possible to obtain information

concerning superheavy nuclei existing at some time in the past by

searching for neutron-rich products of spontaneous fission in meteorites

or in natural ores of platinum and its neighbouring elements.

A question may be asked whether such a long-lived superheavy

element may be produced in nature in the first place. This is still an

open (iuestion. However, it may bett that such a superheavy element

could be formed by the so-called r-process62 ) in which a nucleus absorbs

t We would like to thank Dr. Luciano Moretto for drawing our attention

to this point.

tl We are grateful to Dr. P. A. Seeger for helpful discussions of the

r-process.
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a large number of neutrons very rapidly and then undergoes successive

beta decays, ending up as much heavier relf1tively stable nuclei. t Most

very neutron rich isotopes seem to be sufficiently fission stable for

this process, which also requires a condition of huge neutron flux and

very high temperatures. This condition may have prevailed at some point

in the history of the universe and may also exist in some massive stars

and quasi-stellar radio objects at this present time. This at once

raises the possibility of detecting superheavy nuclei in the primary

cosmic radiation. According to the most optimistic estimates, the

nuclei of interest in the primary cosmic radiation may have been

age of ~5

produced
")

10/ years ago, while elements in the solar system have an

109 years. If we take Fig. 41 at its face value, we see

that in the study of the primary cosmic rays, one might be able to find

a few more nuclei which live longer than years.

t Our estimate of masses along the prospective r-process path is,

however, sensitive to the value assumed for the coefficient of the

surface symmetry energy. Conceivably the value of this coefficient,

after readjustment of all the liquid drop parameters, might be such

as to make the generation of superheavy elements impossible. The

isotopic trends of actinide fission half-lives, which we fail to

reproduce adequately (Table 5), may be indicative of this.
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A recent preliminary search of element 110 in a platinum ore

6 64)
at Berkeley and Livermore has yielded negative results 3, . A study

of very heavy nuclei in the primary cosmic rays has recently been carried

out by P. H. Fowler, P. B. Price,and R. W. Walker in a balloon experiment.

The data are still under analysis.

5.J. Possible Experimental Production of Superheavy Nuclei

The heaviest elements presently produced (Z > 100) are all

synthesized by the bombardment of target elements of sufficiently high

atomic number with beams of heavy ions. The heaviest ion presently

available is 40
18 Ar, but in the future ions as heavy as 92U may be

accelerated. On the other hand there is also a possiblity of producing

these superheavy nuclei by bombarding a target with an intense flux of

neutrons in a reactor. These will be discussed belowt .

5.J.l. Heavy ion reactions by available projectiles

By heavy ion reactions one tends to reach nuclei on the neutron

deficient side of the beta stability line. This is so because the

stability line bends more and more towards the neutron-rich side relative

to its initial 45° direction in the N-Z plane. Both target and projec-

tile are therefore less neutron-rich than the center of the superheavy

region (Z = llLf, N = 184), near to which the stability line happens

to pass.

t The reader is also referred to the extensive review given in Ref. 65.
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f th t t . h t t· 2
9
486cm and the mostOne 0 e mos neu ron-rlC arge s lS

.0

neutron-rich projectile that is presently available

the experiments by Thompson et al. 66 ) and Ghiorso et

following reaction was attempted:

40
is 18 Ar.

67)al. ,the

In

+ + 4n

One obtains only the relatively light isotope 284114 whose half life,
we estimate to be much less than 10-15 seconds. This is beyond the

sensitivity of the present experimental techniques. The unfortunate

loss of four neutrons is necessary to take away the excess energy of

the compound nucleus which results from the high energy required to

overcome the Coulomb barrier between the heavy ion and the target

nucleus. Even with a 48
20Ca projectile,

+ + 4n ,

the product 288114 has a half life less than 10-10 seconds. At the

moment it appears from Fig. 41 that one has to obtain an isotope of

114 with mass number equal to or greater than 290 before the half life

becomes long enough to make detection possible. For this a'heavy

projectile like is required.
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5. J .2. Heavy ion reactions by future proj ectiles

When heavier and hence more neutron-rich ions than can

In general one has to overshoot thesuperheavy nuclei.

be accelerated the prospect is much better for the production of the

114 298

nucleus and let various decay mechanisms take one to its neighbourhood.

An extreme example is the reaction uf38 + U238 . Either a transfer

reaction takes place where the target takes off a part of the projectile

or a compound nucleus is formed which then undergoes fission. One

hopes to find products that are close enough to the center of the island

of stability so that they have long enough life times to make detection

possible.

An example that is not so extreme is furnished by reactions

induced by the ion. In Table 9, we show the compound nuclei

that might be formed by bombarding various neutron rich targets from

Pb to em with 86Kr . The question whether such a compound nucleus

would be formed will be discussed below. At the moment, let us assume

that by emitting four neutrons we get a cold compound nucleus in the

ground state. If we look at Fig. 41, we see that for 208pb and

210po targets, the compound nucleus undergoes spontaneous fission at

once and we do not expect to produce any superheavy nuclei. With targets

heavier than 226Ra , it appears that the alpha half life is always less

than the spontaneous fission half life (Fig. 41). Indeed if we let the

compound nucleus decay by emitting alpha particles all the way we end

up in each case with a long-lived superheavy nucleus.
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The above discussion assumes that the compound nucleus was

formed in the first place. This assumption is very questionable for

the following reasons. (1) There are indications that for the same

products, the cross-section of a reaction with a heavy projectile is

cut down by several orders of magnitude compared with a reaction in

which a lighter projectile is used. (2) The large angular momentum

introduced with the heavy projectile may cause the compound nucleus to

fission at once. (3) Furthermore we know that any binding of a super-

heavy nucleus is due to a shell effect. At the excitation energy of

the compound nucleus when it is first formed, the shell effect might be

greatly reduced so that little binding would be present and the compound

nucleus would break up (or would simply not be formed) before any

de-excitation can take place by neutron or charged particle emission.

The first two points are illustrated by the fact that the production68 )

of 260104 by bombardment of 242pu with 22Ne has a cross-section

of only 10-34 cm2 The last point is a difficulty characteristic of

the production of superheavy nuclei.

These effects have not yet been understood and no definite

opinion can be expressed as to their importance in any future attempts

to produce superheavy nuclei by heavy ion reactions. Further studies

of these problems are essential not only for the production of super-

heavy nuclei but also for an understanding of heavy ion reactions in

general.
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5.J.3. Neutron capture reactions

An ~lternative way to attempt the production of superheavy nuclei

is by exposing heavy nuclei to a high flux of neutrons. There is a

competition between (n, y) and (y, n) reactions. Under suitable

conditions of extremely intense neutron flux and very high temperatures,

the nuclei will capture a large number of neutrons and then beta decay,

ending up as heavy nuclei of much higher proton number, which in turn

undergo the same process. Eventually they wDuld, hopefully, reach the

superheavy region. An intense neutron flux can be found in a nuclear

reactor and also in nuclear eXPlosions65 ). By the former, one can

achieve a neutron flux of 1015/cm2 - sec. By the latter the neutron

flux is much larger, of the order of 1031/ cm2 - sec, but the exposure

time is less than 1 ~sec. The advantage of both these methods is that

comparatively large masses of target material can be used. However

these methods have produced fewer heavy elements than expected. Indeed

257Fm is the nucleus with the largest Z and A numbers that has

been made65 ). On our model we do not expect 258Fm to possess very

much shorter life time than 257Fm or 256
Fm . There are presently no

satisfactory explanations as to why heavier nuclei are not produced.

5.K. summa:;y:

In this part of the thesis we have tried to make use of the

ideas advanced in the previous parts in a practical application in the

synthesis of the Myers-Swiatecki liquid drop formula and the Nilsson

single particle calculations. By means of a generalised Strutinski
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prescription we have been able to replace the smooth average of the

Nilsson calculations by the liquid drop (or leptodermous) model. The

resulting unified model is expected to be good in accounting for not

only single particle effects but also the absolute values and trends of

the binding energies.

There are two important consequences that come out of this

study. First of all is the occurrence of single particle structure

fission barrier. In particular, one finds in the energy barrier a

two-peak structure with a secondary minimum between the two peaks. This

secondary minimum may be associated with spontaneous fission isomers

found in the actinide region. We have given a discussion of the trends

and the regions where one would expect to find observable shape isomers.

The second consequence are the predictions about superheavy

elements. We have confirmed previous calculations that Z = 114 and

N = 184 are magic numbers, but the present work suggests that N = 196

may also be magic. We have been able to make quantitative predictions

on masses, deformations, as well as half lives for the various decay

mechanisms for these superheavy nuclei. It is found that some of the

half lives might be extremely long, even of the order of the age of the

solar system. Though great uncertainties are involved in the numbers as

discussed, one can still use these predictions as an indication of

trends and as a general guide in attempts to produce superheavy nuclei

or in a search for them in nature.
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Table Captions

Table 1. Summary of topics studied in the thesis.

Table 2. Values of K and IJ. employed in the single-particle calcula

tion corresponding to different regions of mass along the beta

stability line. The first column denotes the mass of the center

of each region.

Table 3. Calculated properties of the two-peak spontaneous fission

barriers and shape isomers from potential energy surfaces of

the actinides. The deformations of the ground state and

isomeric state are listed. The heights of the two peaks and

the excitation energy of the isomeric state are given in MeV

above the ground state. It is assumed that the zero-point

vibrational energies of the ground state and isomeric state

are equal.

Table 4. Experimental properties of shape isomeric states. The first

group of columns identifies the nucleus. The second group

gives the experimental fission barriers based on the erroneous

assumption of a one-peak structure. The excitation energy of

the isomeric state is shown in the next group, estimated from

threshold measurement and from (n,f) resonance eJcperiments.

The next entry gives the ratio of distances between resonances

in the isomeric state to those in the ground state. The last column

indicates the eA~erimental spontaneous fission half-lives of

the isomers. Theoretical values are taken from Table 3. We

are grateful to Dr. S. Bj¢rnholm and Dr. J. R. Nix for their

help in supplying us with the experimental data.

'r
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Table 5. Beta stability, alpha decay energies and spontaneous fission

characteristics of the actinides. In each square classified

by Z and N, the uppermost figure gives the mass excess on

12
C scale in MeV. If the nucleus is found to be beta-stable,

this number is underlined. The two numbers below give the

theoretical and experimental alpha decay Q,-values respectively.

The integer to the right is the ratio of the experimental

spontaneous fission half life to the theoretical value.

Table 6. Table of masses, spontaneous-fission and alpha half-lives

for 106 < Z < 116 and 178 < N < 189. The upper number

in each square gives the mass excess in 12C scale (see

Ref. 41) in MeV. in the line below is listed the spontaneous-

fission half-life and in parenthesis the barrier height in

MeV. The bottom line in each square gives the alpha half-

life and the alpha Q-value (in parenthesis). Beta-stable

nuclei are underlined.

Table 7. Same as Table 6, but for the region 116 < Z < 128 and

176 < N < 190.

Table 8. Same as Table 6, but for the region 116 < Z < 128 a~~

190 < N < 204.

The firstbeam,86
36

Kr
50

column identifies the target nucleus. The second column

Production of superheavy nuclei byTable 9.

indicates the compound nucleus that is formed by the fusion of

the target and the projectile. Assuming that all the excita-

tion energy might be carried away by the emission of four
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neutrons one'gets the nucleus shown in the third column. Now

assuming that beta decays were extremely slow compared with

spontaneous fission and alpha decay one finds the longest lived

superheavy nucleus that can be reached as indicated in the

fourth column with its major mode of decay. If we let the

nucleus in column 4 undergo beta decay one gets the super

heavy nucleus shown in the fifth column with its major mode

of decay.
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General Introduction ~
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"/~"'" " " ----Mlcroscoplc -
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Table 2 .

PROTONS NEUTRONS

A value K I-l K I-l

165 0.0637 0.600 0.0637 0.420

187 0.0620 0.614 0.0636 0·393 I
208 0.0604 0.628 0.0636 0.367 I
225 0.0590 0.639 0.0635 0.346 !
242

I 0.0577 0.650 0.0635 0.325 I
265 0.0559 0.665 0.0635 0.296 f

!
285 0.0534 0.678 0.063~ 0.272

298 0.0534 0.686 0.0634 0.256

308 0.0526 0.693 0.0633 0.244

320 0.0516 0·701 0.0633 0.229
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Table 3.

Isomeric state
First Peak Second Peak

Ground State Height Excitation Height
Z N A Deformation above g.s. Deformatior{ above g.s. above g.s.

E E4 MeV E E4 MeV MeV
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Table ~ (Continued).

I Isomeric state

I First Peak Second Peak
I Ground state Height Excitation HeightI

I
z N A Deformation above g.s. Deformation above g.s. above g.s.

E El~ MeV E E4 MeV MeV

98 146 244 0.22 -0.03 6·7 0. 615 0.07 1.4 3 ~ ~~

148 246 0.23 -0.02 7. 45 0. 625 0.07 2.0 3·75

150 248 0.23 -0.01 7·8 0.68 0.07 2·5 4.1

152 250 0.23 0.00 8.0 0.695 0.08 2·7 4.4

154 25 2 0.235 0.01 7·9 0.705 0.08 2.6 4.0

100 148 248 0.23 -0.01 7·7 0·73 0.08 1.2 1.8

150 250 0.235 -0.01 7·9 0.72 0.08 1.5 2.1

152 252 0.24 0.00 8.2 0.72 0.09 1.7 2·3

154 254 0.24 0.01 8.1 0·73 0.09 1.6 2.1

156 256 0.235 0.02 7·9 0·73 0.09 1.5 1.9



~

Table 4.

,~-----_._-- _ nnl

AIT

,_ . 1 Height of Barrier Exc. Energy of Sec. Min. Fission Ii 1
_,UC: cUS (MeV) (MeV) Isomer

DII/DI ! Ref.
Theoretical From From SF l

Expt 1st Peak 2nd Peak Drr/D
r

thresh. Theory Tl / 2 \
meas. (sec) !

z

I
I-'
[\)

--J
I

3.10-7

4.10-9

3.10-8

I~10-7
j
j <2.10-9

43

540

100

2.1

2.4

2.2

2·5

3

2.4

2·5

2.1

8·9

6.2

7·0

7·6

5·8

5. 6

6,31

5. 0

®
4.7

6·3

235 5·75

238 6.04

236

237

239 j 5·5

J
144 236! 5.8

143

1 45

144 238 5.3

146 240

145

147 241

I

!
I a
I

260 1 1.1 x 10-7 I b I
I 1
II
! I

<2.10-9 ! c !
l i, .. .
I c II ,
I !

I c I
, 1

I !s ,. c !I I
t I

i d c !
I '
ie, b

I -8 i I148 242 5.2 6. )) 7 . 95 1 3 .0 5 .10 1 b

1 -8 f I149 243 5.8 ! 3.2 1900 6.10 ! a, b
] l I

92 1)+3

9h 142

93



Table 4 (Continued).

I
I-'
I\)
CD
I

Expt. Barriers quoted from

Myers and SWiateckill )

2.0

Recent experiments by the Berkeley

2.9

(2·5)

3·1

Group (Bowman, Cheifetz and Gatti) did not confirm the result.

Los Alamos Group

This result is doubtful.

Dubna Group

3·75

...

.L •

g.

t

7· Lf5

6.4

(6.2)

242

244

246

243

149

148

147

14898

a. Harwell Group

b. Copenhagen Group

c. Seattle Group

d. Saclay Group

e. Euratom Group

I ;1

Height of Barrier ! Exc. Energy of Sec. Min. i Fission I
(MeV) 0 i (MeV) I rsomer j

1--------+---------------11-----------1 Dn/Dr ! Ref.
h' I· I SF 1

Z N A E t T eorebcal I From From Theor i T i
xp 1st Peak 2nd Peak Dn/D

r
thresh. y I .1/2 I

meas. ! (sec) I

I
! l

95 143 238 I I I
, I

144 239 I 2·9 I 2.10-7 I b

145 240 I 3 . 2 I 9.10-4 I b
~ ~ 1

146 241 5.9 I 2.5 i 1.10-6 I b
~ i, -2 'I 900 1.4.10 I f, b
~ t

I J
1t 't
, ~

~ 1.10-3 ! b

~ 8 i t! (4.5. 10- )! g
~ ~
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Table 5.

1"1 2, 6II13 1 ° 1 2 1 .. "
, co

"
8~.1!1

102
8'3

1
'/6

1
3

8.23

~~- -,,-~,

7°.34 12 .6/1 75·57 79.18

100
7.

62
1,

7. 48 7.
251 0 7.

091 0
8.00 7.56 7. 16 "·32

f- .-

~1--.-.
60.29 62·73 ~ (,9.6(; 7)'·06

98 7·17 6.
67

12 6. 112\ 6.
24

1 6.
02

1·3 ." .(,

7.3° 6.87 6.37 6.13 (,.22

59.53 62.65 66.56

-
h8·34 50.69 53.61 L1.,£2 60.99 65·61

96 6·7" 6.6°1 4 6.
29 1° 5.9°1 5.

59
1 5. 391-2 '5 -6

6.62 6.40 6.22 5·91 5. 48 5·16
I

48.32 51.52 58.27 62.96
I
I

I
----- - 1----1---- ' .. - - .--- - --_..~ .'-- I

37·21 39.17 41.66 411.89 ~ 52.97 57·79 63. 23 I

94 6.60 6.17
5.

82
14 5'7

1
'\3 5.

38
12 "'

95
1

4.661 i-2 -6
6.7

'
6·31 5.87 5·59 5. 26 4.98 ".66 i

46.66 51.11 !
I
I

;0.)7 33./11 36.72 40.93 1'5·59 5°.7°

92

1
6 \6 1

5
I"

'=z,



Table 6.

II

178 179 180 181 182 183 184 185 18G 187 188 189

116

115

114

113

112

111

110

109

108

107

106

,
206.55187·87 190·36 193.1). 196.42 201. 30

(lms) (5.8) ld (7.1) 10Sy (8.3) lOlly (9.4) lOlly (9.1,)

ls (10.14) ~min (9.92) lOs (9.71) ~min (9.58) O.ls (10."') ls (10.24)

183.02 185· 75 188.85 192.45 197. 06 203.25

1
10min (8.89) 10h (8.58) ld (8.45) lOs (9.39) 10min (9.11)

178.01 180.09 181.00 183.17 184.41 186.56 188e4 191.29 19,,88 !21.:E 19\84 203.52

lmin (5.4) 102y (7. 0) 109y (8.3) 101 y (9.6) 1010y (9.4) 101'y (9.4)

lOd (7.97) 1y (7.71) ly (7.55) 10
2
y (7.20) lOy (7.40) 100d (7.87) ld (8.3

"
) Sh (8.49) 10d (8.09) 10d (8.00)

174. 43 177.84 181.57 18S.84 191. 71 198.00

lOy (7.33) 103y (6.80) 10\ (6.58) ly (7.53) lOy (7.29)

170.60 173.03 174•43 176 .93
~

180.99 183.11 186.40 189·32 193. 09 195.94 199·95
ls (4.1) 10d (5.7) 10 y (6.9) 1013y (8.1) 101\ (8.1) 1012y (8.1)

ly (7.46) 102y (7.17) 103y (6.83) 10\ (6.52) 104y (6.54) 102y (7.10) ly (7.50) 100d (7.65) lOy (7.24) lOy (7.16)

168.08 172 .34 ~ 179.47 181. 75 188.28 195·23

lOy (7.05) 105y (6.38) 107y (6.03) 102y (6.98) 103y (6.72)

164.54 ~ 169.2C, 172.04 lIft. 1', 176.87 ~ 183·01 180.27 190.36 193.54 197.88

(lms) (3.2) 10min (4.3) 10 Y (5.5) 1010y (6.8) 1010y (5.7) 109y (6.8)

lOy (7.20) 102y (6.85) 10\ (6.40) 106y (6.14) 109y (5.63) 108y (5.76 ) 105y (6.24) 102y (6.73) 102y (6.86) 104y (6.45) 10
4
y (6.35)

1162.86 168.02 171.10 173. 29 176 .18 178.87 182.66 186.08 193.68

lOlly (5.24) 105y (6.21)

159·97 163.21 165.57 168.81 171.20 174 .34 177·11 181.07 184.66 1189.10 192.60

lOs (3 .2) 10
2
y (1'.3) 108y (5.8) 10

8
y (5.9) I 107y (5.8)

103y (6.38) 104y (6.23) lOs" (5.57) 1013y (4.89) 109y (5.39) 10\ (5.86) I
171.20 174 . 49 177. 44 i

,

I

169·79 17).25 176·37 I
10d (3.9) 107y (5.3) I
lOlly (4.97) i !

I
f-J

\.N
o
I



1

-131-

Table 7.

HS,59

10':\6.21

10'~ tl!i.8~)

7.9Q.-D.H

211.71

LO·~ (6.4)

IO'~ (l~.HI

.-0.74

..~---

219.90 I teLl! l8UI

IO·~ 1(,.11 i LO·~ lUI

IO':II,,"lI II IO'~lLDij
1.8~. -0.09 7.1-9, O.ll

--f------+---lt----1f-----+---+---1----jl---j-----
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Table 9.

Production of Superheavy Nuclei by 86
36KrSO

Projectile

After f3-decayTarget

I ~;' : JI I Longest-lived '
. I Aft nuclei reached

d ,er tOtOCompoun I Ott' after compe ,l loneml lng -
Nucleus 4 between Sof. and

n 0succeSSlve
I a-decay
I

I
I--'

\..N
\..N

I

90 142

88 138

238 92 146

Th 232

Ra 226

Rn

u

~:----:- .~- r-- - -,
! A Z N ! Z N I Z N i Z N Maj or Z N Maj or
! ! I \ Decay Decay
i ! I ;
i ~ 1 '~
I Pb 208 82 126 ! 118 176 I 118 172 ! (S • f)
I ~ I :'
; ; t l'! Po 210 84 126 l 120 176 I 120 172 I (S 0 f)
, I' I

I j I; I i

I !
124188 I 124 184 1 118 178 a(10-3s) 112 184 a(10

4
y)

126 192 ! 126 188; 116 178 a(10-
1

s) 112 182 a(10
2
y)

i ;
I '

128 196 1 128 192 ~ 114 178 a(103s) 110 182 a(10
2
y)

Pu 244 94 150 ! 130 200 1 130 196 l 114 180 a(10~s) 112 182 a(10
2y)I ) I

Cm 2~8 96 1')2 1132 202 1 132 198 I 114 180 a(104s) 112 182 a(10
2
y)



Fig. 1.

Fig. 2.

Fig. 3.
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Figure Captions

Single particle energies for a Hill-Wheeler box as a function

of the deformation co-ordinate a. The other deformation

co-ordinate y has been set to zero. A large gap in the

energy levels is indicated by a number which gives the number

of levels below the gap.

The configuration in momentum space for the Hill-Wheeler box.

Only the (k , k ) plane is shown. The positions of the dot~~
x y

in units of k = n/a 2w
l

, k = n/b r) and= = cw
2

,
x y

kz = n/c = 2w
3

give the quantumnumbers of the levels. The

fermi momentum ~ is the momentum of the highest level that

is filled. The effective Fermi momentum q is defined such

that the volumes of the bumps and dips cancel.

A bump and a dip on the effective Fermi surface after averaging

with respect to orientation.

Fig. 4a. The energy of particles in a cubic Hill-Wheeler box as a

function of particle number calculated in four different ways:

(1) Using the approximate expression E' with only the N-term,

E'(N); (2) E' with the N-term and the N2/ 3-term, E' (N
2
/ 3);

up to the term, E I (Nl / 3); (4) The exact

-.;.~:. SaIne e.s Fig. 4a for an oblate Hill-Wheeler box.



-135-

Fig. 4c. Same as Fig. 4a for a prolate Hill-Wheeler box.

4d. Same as Fig. 4a for a Hill-Wheeler box with three

unequal sides.

Fig. 5a. The energy of N = 60 particles in a Hill-Wheeler box as a

function of the deformation parameter a (y = 0) calculated

in three different ways: (1) Using the approximate expression

'1/3 2/-' 1/3E' up to N
C -term, E' (N )); (2) E' up to N . term,

E' (Nl / 3); (3) The exact calculation, E. The results for E'

with only the N-term is independent of a and is not shown.

The ordinate has a different unit from that of Figs. 4. It

is converted to the latter by multiplying by N-2/ 3.

5b. Same as Fig. 5a for the case of N = 68.

Fig. 6a. The energy differences between E and E I (N2/ 3) and between

E and E' (Nl / 3) as a function of the particle number N

for a cubic Hill-Wheeler box. See Figures 4.

6b. Same as Fig. 6a for an oblate Hill-Wheeler box.

6c. Same as Fig. 6a for a prolate Hill-Wheeler box.

6d. Same as Fig. 6a for a Hill-Wheeler box with three

unequal sides.

Fig. 7a. The energy differences between E and E I (Nl / 3 ) and between

E and E' (N
2
/ 3 ) as a function of the deformation parameter

a, (y = 0) for the case of N = 60 particles in a Hill-

Wheeler box.. See Figures 5.

'ill. Same as Fig. 7a for the case of N 68.
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Fig. 8.

Fig. 9.

Energy excess s over a spherical drop as a function of

deformation.

Energy excess S over a spherical drop as a function of

deformation for different values of the fissility parameter x.

'I

Fig. 10. The energy change in the division of a volume-charged drop

2 family of equipotential surfaces.

3 family of equipotential surfaces.

Shapes in the symmetry N

Shapes in the symmetry N

into n eGual parts, as a function of the fissility parameter

x. The ordinate is just SR' Taken from Ref. 19.

The maximum and minimum radii of saddle point shapes of a

volume-charged drop as a function of the fissility parameter x.

The results for the symmetrical saddle point shapes are given

by the solid curves, and the results for the asymmetric saddle

point shapes by the dashed curve. Adapted from Ref. 20.

The energy change in the division of a volume-charged drop

into two spheres as a function of the fractional volume of one

of the spheres for various values of x. Taken from Re~. 24.

Same as Fig. 12 for the case of a conducting drop.Fig. 13·

Fig. 14.

Fig. 15·

Fig. 16. The maximum and minimum radii of the symmetric saddle point

shapes of a conducting drop as a function of the fissility

parameter x. Different curves correspond to the restriction

to different families of shapes indicated by the values of N.

Fig. 17. Saddle point shapes within the symmetric N = 6 family for

various values of x. The RMS values are also indicated.

Fig. 11.

Fig. 12.



Fig. 18. The energy excess
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(in units of over a sphere of

Fig. 19.

the symmetric saddle point shapes as a function of the fissility

parameter x is shown in solid curves. It is calculated on the

N = 6 parameterization. The broken curve indicates the results

for a volume-charged drop taken from Ref. 27.

Shapes described by the plane of the deformation parameters

E and A sphere corresponds to E) c., O.
I .

Fig. 20.

Spheroids have their E4 = o.

Relation between deformation co-ordinates E, E4, and

Note that the spheroid contains some a4
etc. not shown in the figure).

(as well as

Fig. 21.

Fig. 22.

Single-proton level diagram for spherical potential. Parameters

are fitted3) to reproduce observed deformed single-particle

level order at A::::: 165 and 242, and are extrapolated linearly

to the other regions. E. Rost's predicted level order35 ) for

A = 298 is exhibited for comparison

Analogous to Fig. 21, valid for neutrons.

Fig. 23. Single-proton levels A::::: 298; K = 0.0534; ~ 0.686,

Fig. 24. Effect of various terms in total energy as a functi0n of defor-

mation. Long-dashed curve marks simple sum of single-particle

energies, for dotted curve Coulomb energy is added, for dot-

dashed curve also pairing (G ~ S) is included, for short-

dashed curve the Strutinsky normalisation is applied. In all

these cases it is assumed that E4 = O. In the last case
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(solid curve) also the effect of the E4-degree of freedom

is included. .;

Fig. 25. Sum of single-particle, pairing and Coulomb energies without

Strutinski normalization as function of E, ELl' At large

distortions the energy ultimately rises beyond + Pj MeV

(limit for the plot).

Fig. 26. A sketch of the errors Issl and \SL! in the Strutinski

Prescription as a function of the smearing width Y, for

various order m of the correction factor F .m

Fig. 27. Shell corrections evaluated by the Strutinski method as a

Energies corresponding to three differentneutrons of

function of the shell-smearing parameter Y for case of

21+2
Pu.

Fig. 28.

distortions are considered.

Same as Fig. 27, but for neutrons of 208pb .

Fig. 29. Experimental and theoretical mass values for 150 < A < 340

plotted relative to the spherical liquid drop value as of

Ref. 41.

Fig. 30. Theoretical deformations, (E, E4)' of ground state nuclei in

the rare earth region.

Fig. 31. Theoreti~al deformations, (E, E4)' of ground state nuclei

in the actinide region. ,"

Fig. 32. Empirical rare earth ~4-values (filled circles) obtained

through the analysis of Ref. 46 compared to the present

calculations before the inclusion of the Strutinski normalisa-

tion. The effect of the latter is less than 0.01 in magnitude.
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Total energy minimized w.r.t. for each E as function

of E for isotopE::S of 92U. Dashed curve corresponds to

G set constant while the solid line is based on assumption

that G is proportional to the nuclear surface area.

33b. Same as Fig. 3380 for isotopes of 94Pu.

33c. Same as Fig. 3380 for isotopes of 96Cm.

33d. Same as Fig. 3380 for isotopes of 9SCf.

33e. Same as Fig. 3380 for isotopes of 100Fm. The extra dot-

dashed curve added for
2 r--6
~ Fm represents the new total energy

for the case G ~ S when the nuclear potential parameters

are modified from those relevant for A = 242 to those for

A = 265. As can be seen the barrier change is very small.

33f . Same as Fig. 3380 for isotopes of 102NO.

33g. Same as Fig. 3380 for isotopes of Z 104.

33h. Same as Fig. 3380 for isotopes of Z 106.

33i. Same as Fig. 3380 for isotopes of Z lOS.

33j. Same as Fig. 3380 for isotopes of Z 110.

33k. Same as Fig. 3380 for isotopes of Z 112.

33£. Same as Fig. 3380 for isotopes of Z 114.

Potential energy minimized with respect to E 4 as a function

of E for various nuclei to illustrate the effect of shell

structure of a liquid drop background. The broken curves

correspond to liquid drop fission barriers. The solid curves

are the barrier after inclusion of shell and pairing effects.



Fig. 35.
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The two-peak barrier as a function of mass number for

z = 92-100.

Fig. 3680. Same as Fig. 3380 for isotopes of 82Pb.

36b; Same as Fig. 3380 for isotopes of 84Po.

36c. Same as Fig. 3380 for isotopes of 86Rn.

36d. Same as Fig. 3380 for isotopes of 88Ra.

36e. Same as Fig. 3380 for isotopes of 90Th.

Fig. 3'780. Total-energy surface in
2"0

.J
c

Fm after

._0

application of the Strutinski normalisation. This figure

corresponds to a somewhat earlier calculation and employs

G = const and a different pairing cut-off than described in

the present paper. More recent calculations are exhibited in

Fig. 33.

37b. Same as Fig. 3780 valid for 290114 .

Fig. 3880. Liquid-drop energy surface for 252
Fm .

38b. Liquid-drop energy surface for 29011LI.

Fig. 3980. Shell and pairing energy contributions for 252
Fm . For

further details see Fig. 3780.

39b. Same as Fig. 3980 for 29011~.

Fig. 40. Spontaneous fission half lives of Z = 114 and 110 isotopes

as functions of the inertial parameter B for barrier

penetration. Three estimates of B are given. For further

explanations, see text.

Crnltours of theoretical half-lives for 106 < Z < 128 and

I'll) < N < 20Le. The thick dark lines a,'re contours of



Fig. 42.
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spontaneous fission half-lives. The broken lines are

contours of alpha half-lives. Beta stable nuclei are shaded.

Periodic Table exhibiting predicted locations of new elements.
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