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ABSTRACT

The thesis is concerned with the relation between
a microscopic approach and a macroscopic approach to the
study of the nuclear binding energy as a function of neutron
number, proton number and nuclear deformations.

First of all we give a general discussion of the
potential energy of a system which can be divided into
a bulk region and a thin skin layer. We find that this
energy can be written down in the usual liguid drop type of
expression, i.e., in terms of the volume, the surface area
and other macroscopic properties of the system. The discus-
sion is illustrated by a study of noninteracting particles
in an orthorhombic potential well with zero potential inside
and infinite potential outside. The total energy is calcul-

ated both exactly (a microscopic approach) and also from a
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liquid drop type of expression (a macroscopic approach).
It turns out thét the latter approach reproduces the
smooth average of the exact results very well.

We next make a digression to study the saddle
point shapes of a charged conducting drop on 'a pure liguid
drop model. We compare the properties of a conducting
drop with those of a'drop whose charges are distributed
uniformly throughout its volume. The latter is the usual
model employed in the study of nuclear fission. We also
determined some of the more important symmetric‘saddle
poinﬁ shapes.

In the last part of the thesis we generalize a
method due to Strutinéki to synthesize a microscopic
approach (the Nilsson model) and a macroscoplc approach
(the ligquid drop model). The results are applied to
realistic nuclei. The possible occurrence of shape isomers
comes as a natural consequence of the present calculation.
Thelr trends as a function of neutron and proton members
are discussed and the results are tabulated. We also work
out the stabilities of the predicted superheavy nuclei, with
proton number around 114 and neutron number around 184 and
196. Some of these nuclei appear to have extremely long
life times. The possible experimental production of these

superheavy nuclei are also discussed.



1. General Introduction

0f central ilmportance in the physics of the nucleus is a study
of the nuclear binding energy as a function of its deformation and mass
number A. Such a study is not only relevant for the ground state
masses and deformations, but is also essential in the theory of alpha
decay, beta decay as well as the spontaneous fission of the nucleus.

It also provides a possible explanation for the so-called shape or
fission isomers which have recently induced extensive experimental
‘efforts.

For the last thirty-five years both a microscopic and a macro-
scopic approach for the calculation of the nuclear binding energy have
been developed in parallel. By the macroscopic approach we are thinking
of an approach in which one expresses the binding energy as a function
of macrpscopic properties such as the volume, surface area, and the
integrated curvature over the surface of the nucleus. The approach is
usually associated with the liquid drop modell) of a nucleus, although
in some aspects it is considerably more general than the representation
of a nucleus as a fluid droplet. We shall discuss this in detail in
the next part of the thesis. By the microscopic approach we are
referring to an independent particle model, whére one‘considers the
nucleons to move around in an average nuclear field. Residual inter-
actions such as pairing effects can be included. This model is commonly
applied with great success to correlate nuclear spectroscopic data and
to explain the occurrence of magic numbers. Its succeséful application
to a quantitative descriptiong’5> of nuclear masses and deformabilities

is a development of the last few years.



The microscopic approach 1s more fundamental than the macro-
scopic approach in the sense that all results of the latter should be
derivable in principle as some sort of an average of the results of the
former. However in its present state, it turns out that the independent

particle model does not give correctly the absolute values of the experi-

)

; though it is very successful in reproducing

mental binding energiesg’3
the relative values for neighbouring nuclei. On.the other hand the
macroscopic approach looks at the nucleus as a whole and considers the
binding energy as a sum of the volume, surface, curvature as well as
coulomb energy terms. The coefficients in these terms are fitted to
experimental values and the approach is able to reproduce the absolute
values of the binding energy correctly.

It is important to study the relation between the two approaches
and to try to synthesize them in some way so that we may have the useful
results of both in a unified approach. The basic idea advocated by

h) 5)

Myers and Swiatecki and Strutinski among others is that onevshould
replace the smooth average trends of the results of the independent
particie model, which do not reproduce experimental trends adequately
by those from the liquid drop model. The resulting unified model will
then represent the real nucleus more closely than is possible with
either the microscopic or the macroscopic model.

In the next part of the thesis we will discuss the Jjustification

of a macroscopic approach. We are going to look specifically at a




system with a thin skin (of constant thickness), which we will call a
leptodermousJr system. A liquid drop is a special example of such a
system., By considering just the geometry of this system we can write
down its energy as a sum of a volume term, a surface term, and an
integrated curvature term.

The third part is a study of the energy of noninteracting
nucleons in an orthorhombic potential well with infinite potential walls,
which will be referred to as a Hill-Wheeler box6). The total energy as
a function of the relative lengths of the sides can be calculated
exactly as well as from a macroscopic point of view. A comparison shows
that the macroscopic approach does indeed give very closely the smooth
trends of the energy calculated exactly.

The fourth part is a study of a pure collective phenomenon. It
is a digression from our main theme of studying the relation between the
mlcroscopic and macroscopic approaches, to which we shall return in
the fifth‘and last part. It deals with the theory of fission of a
charged drop which is electrically conducting so that the charges reside
on the surface of the drop. The usval liguid drop model of nuclear
fission assuﬁes a charged nonconducting drop with a uniform distribution
of charges. However there are sufficient similarities and rather inter-
esting differences to make a study of a charged conducting drop prefit-

able. This is coupled with the great advantage that a macroscopic

T e wora "leptos" in Greek means "thin" and the word "derma' means

"skin". A leptodermous system is then a system having a thin skin.
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charged conducting liquid drop can actually be investigated experi-
mentally. We have looked at the statics of the fission of such a drop
and have been able to determine some of the more important equilibrium
shapes of thé drop.

The fifth partJr of the thesis tries to combine the microscopic
and macroscopic appréaches. Specifically we study the synthesis of the

2) and the liquid drop modell). Such a unified model is

Nilsson model
then applied to realistic nuélei from the rare earth elements up to the
yet unknown superheavy elements. Besides accounting for many known
nuclear properties, we have been able to predict the stabilities of

superheavy nuclei and to discusgss features in our results which we

believe to be associated with the shape or fission isomers. A

T This part of the thesis was done with the guidance and collaboration

of Professor S. G. Nilsson of Lund Institute of Technology, Lund,

5) were developed by C.

Sweden. The Nilsson Model calculations
Gustafson, T. L. Lamm, B. Nilsson, and 8. G. Nilsson of Lund Institute
of Technology, Sweden. The initial version of the computer problem

5)

eﬁploying the Strutinski Prescription was written by J. R. Nix of
Los Alamos Scilentific Laboratory, University of California.

A. Sobiczewskl, Z. Szymanski, and S. Wycech of the Institute of
Nuclear Research, Warsaw, Poland, performed the microscopic calcula-
1)

tion of the inertial parameter associated with spontaneous fission

that is used in the present work.




discussion is also given on the prospect of the experimental production

of superheavy elements as well as on the possibility that they might

occur in nature. |
The various parts of the thegis are presented schematically in

Table 1.



2. A Discussion of Leptodermous (Thin-skinned) Systems

2.A, Leptodermous Systems and the Liquid Drop Model

In this part of the thegis we shall discuss the nature of the
potential energy expression for a class of physical systems that may be
considered as consisting of a bulk region . and a thin surface region.

- (We shall refer to such systems as leptodermous.) In some cases, when
the bulk region is uniform, the potential energy expression reduces to
that usually assoclated with the Ligquid Drop Model of a nucleus. The
principal energy terms are then a volume energy and a surface energy.

\ For historical reasons, however, the Liquid Drop Model of the -
nucleus is often understood to imply more than just the presence of a
bulk region and a surface region. Thus it is often taken to imply the
existence of strong correlations between the particles constituting the
system, and, in dynamical problems, it is frequently taken to be synon-
ymous with the assumption of an irrotational flow of fluid. When
understood in this sense the ILiguid Drop Model is an extremely poor
representation of the nucleus. This seems to havé led to an unjustified
skepticism as regards the relevance of the Liquid Drop Model for the
description of even the purely static aspects of the nuclear binding
energies and deformabilifies.

To clarify this confusion we would like to stress two points.
Pirst, the wvalidity of the Liauid Drop type of expressions for the
description of static properties has of course nothing to do with

further possible assumptions concerning dynamics, such as the assumption



of irroﬁational flow. Secondly, as we hope to demonstrate, it has also
nothing to do with the assumption of strong correlations between the
particles constituting the system. In facf the basic condition for the
validity of a Liquid Drop type of expression for the potential energy is
the possibility of dividing the system into a bulk region and a thin
surface regicn. We have thought it worthwhile to introduce a name -
leptodermous - to describe systems satisfying this specific assumption
regarding their constitution, in order to avoild confusion with the lesé
well defined phrase "Liguid Drop Model'.

Fxamples of leptodermous systems are

1) A drop of water (made up of strongly interacting molecules).

2) A classical gas of noninteracting point particles in a
~container.

3) A degenerate gas of noninteracting fermions in an external
potential well.

4) A system of particles interacting by short-ranged saturating
forges treated in the statistical Thomas-Fermi approximationB).

5) Same as (L), but with nonsaturating electrostatic forces
also present8).

6) Amorphous solids.

7) Nuclei.

In example 1, the constituent particles interact strongly and
are highly correlated. BExample 2 is a trivial special case of

noninteracting particles where the skin thickness is zero. Example 3,

which is the subject of Part % of this thesis, is a case of noninteracting



particles treated quantum mechanically and is a prototype of a nuclear
shell model. The skin thickness turns out to be of the order of the
wavelength of the fastest particle present. In example L4 there are
(saturating) forces between the particles but no correlations and the W
quantum nature of individual particles is disregarded. The skin
thickness turns out to be of the order of the range of the forces
between the particles. In example 5 the presence of electrostatic
forces results in a nonuniform bulk density but the thickness of the
surface region remains as in 4. In the case of an amorphous solid
(example 6) the potential energy would, we presume, also be a sum of a
volume and a surface term provided any deformations of thé system were
sufficiently slow so that internal stresses would be relievedby plastic
flow. Example 7, a nucleus, is known from electron scattering experi-

9)

ments to satisfy moderately well the condition of being thin-skinned.
The nuclear potential energy also appears to be well represented by a
bulk term and a sufface ferm.

Examples of nonleptodermous systems are atoms and stars, for
whicﬁ’it is not possible to make a distinction between a bulk region

and a thin surface region.

2.B, The Potential Energy of a Leptodermous System

Let us write down the potential energy of a leptodermous system

with a uniform bulk particle densityT Por The density p falls to

T The more general case where the bulk density is smoothly varying
(Example 5 above) can be treated as a straightforward generalisation8)

of the present calculation.




zero in a thin surface layer. The total number of particles is given

N :fpd’r

The total energy is

E_:fped'r, | (1)

wnere e 1is the energy per particle at every point. In general e

by

is a functional of the density distribution p. It is the purpose of
the present section to write down the potential energy E as a sum of
terms proportional %to the volume, surface area, and integrated curvature
of the system.

Let us assume that in the bulk region every point is just like
any other point in the sense that a constant value e, can be Written

for the energy per particle in the bulk. Then Eq. (1) may be written

E = fpech+fp(e—ec)dT

Let’ us define an "equivalent system" as one with the same bulk density
Co but having a sharp surface; the original leptodermous system
results when the sharp surface is diffused into a skin layer of constant

thickness. Thus the volume of the equivalent system is
fp dr
Pe

Hence we may write

=1
!

e, po V + d/%(e - eC) dr
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The integrand in the second term is nonzero only in the thin skin layer
because p tends to zero outside the skin and e - €0 inside. Now we
define a normal n to any point in the surface with n = O at the sharp
surface of the equivalent system. Then the integrand as a function of
n 1is zero for large positive or negative values of n. We may denote
this integrand by

F(n, k) = ple - ec) 3
where we have indicated that the integrand is also.a function of the

curvature & at the point on the surfaceT. Let us write down an

T o1 general one would think that ¥ 1is a function of -l/Rl and l/R2
where Rl and R2 are the principal radii of curvature in two per-
pendicular planes through the point. If one makes an expansion about

a plane, for which l/Rl =0 = l/Rg, then

11 1 OF 1 OF
F‘(}—y ——) = 70, 0) + = 4 e + e
R © Ry ’ Rl %— Byl o %-
| 1/0 2 /0

Since all directions in a plane are equivalent, the two derivatives .

of ¥ with respect to l/Rl and l/R2 are equal.
F(é_" %) = F(O, O) +<%{'—" + %—) aFl + eee
~1 2 1 2 o R
1/0

Hence to the first order in the deviations from a plane we have,

.
P(e) = FO) + k(L)  where k = im + , F is then a function
ok 0 R

1 2

‘;UII-—'

o

of k rather than of the separate components l/Rl and l/R2°
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expansion of F in k +to the first order:
F(n, k) = F(n, 0) + ¢ F'(n, 0) ,

where the prime indicates differentiation with respect to k. We also
write the volume element dt in terms of the co-ordinate, n, and the

curvature, k, to the first order,
dr = (1 + kn) dn do ,

where do 1s the area element at the point on the equivalent sharp

surface. Hence We have
E = e, p, V + ‘[dgm[”dn(l + wn)[F(n, 0) + &« F'(n, 0)]

= e, p, V+ [dgj'dn F(n, 0) + fdg den[nF(n, 0) +F'(n, 0)] .

Since F(n, 0) and F'(n, O) are evaluated for k = O, -i.e., for a

plane surface, they are independent of the position on.the surface and
the surféce integrations in the second and third terms may be carried

out at once. vawe define the surface area S and the integrated

curvature L of the equivalent sharp surface by
S = jda 5
[Kda 5

=
i

we have the result

E = av +bS + cL + *++ _ (2)
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where

c = jlhﬂﬁ”(n, 0) + nF(n, 0)]

Equation (2) shows how the energy of a leptodermous system may be
decomposed, under the stated assumptions, into volume, surface and
curvature terms. Equations (3) shows explicitly how the relevant
coefficients can be calculated from the properties of the system. The
cocefficient a is the volume energy density. The coefficient b is
the surface tension coefficient which gives the difference per unit
area of a plane surface, between the energy of a number of particles
touching the surface and the energy of the same number of particles in
the bulk.

The coefficient ¢ 1is the curvature coefficient which describes
the modification in the effective surface energy resulting from the
curvature of the surface. Note that both b and ¢ are integrals over
functions localized in the surface layer and may therefore be regarded
as intrinsic probérties of the surface region. As discussed in Ref. 8
(pp. 69 and 126) the coefficient c¢ consists of two parts. The first
part is assoclated with the modified conditions (i.e., increased
>exposure or "fewer neighbours'") for particles in a curved surface. The
modification is expressed in terms of T' describing the response of

the surface energy function F +to a bending of the surface. The second
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part is associated with the purely geometrical fact that a given surface
layer contains fewer particles when (convexly) curved than when flat.
(The two effects are usually of opposite sign and may even cancel
exactly. See Ref. 8)

Tt should be noted that the simple structure of Eg. (2) and the
above interpretation of the coefficients of 8§ and L 1is intimately
related to our definition of an equivalent sharp volume V (ahd the
associated area 8 and integrated curvature L) of the originally
diffused leptodermous system. The fact that for a s&stem with a diffused
surface there appears at first sight to be a degree of arbitrariness in
the definition of‘its volume, surface area, and integrated curvature,
has led in the past to some confusion and even to serioﬁs misinterpreta-
tions of the surface tension coefficient6).

We denote the remainder of this section to a discussion of these
problems. We shall give below a detailed demonstration of the sometimes
subtle effects involved, but we would like to state at the outéet what
the root of the problem is: if the volume, surface area, etc. of the
diffuse system is defined in any other way than the above (i.e., by
means of the equivalent system with a sharp surface which contains the
total number of pafticles at the bulk density) then in general the
associated volume energy differs from the true bulk énergy by terms
which may have the appearance of surface and curvature terms (even
though their origin is in the bﬁlk). The result is in fact a host of
spurious terms parading as contributions to the surface tension and
curvature correction coefficients and creating confusion in the

identification of correct values of these coefficients.
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To illustrate this let us consider what would happen to Eq. (2)
if instead of the equivalent sharp volume V (and its area and integrated
curvature) we choose‘to express the energy in terms of another volume
Q0 and its area Y .and the integrated curvature A. The cases of most
relevance and which have caused confusion in the past are those in
which @ is related to V by a (small) normal shift of the surface by
an amount t, say, of the order of the diffuseness of the surface. The
relations between V, S, L and §, %, A are easily derived by
noting that the element of area on a normally displaced surface is

related to an element of area on the original surface by

dgdisplaced (L + wt) do
Hence
L o= 55(1+mt)d0:8+tL
Also Tt |
QO = V o+ at ¢ (1 + wt) do
t=0

= V + 8t + % tgL

Inverting these relations we may write

R N RS .

<
it

€2}
It

5= BA e (W)

L — A+ol.



(For our purposes, it suffices to write the three relations to
successively lower orders in t.) We may now insert the above relations

in Eq. (2), which may first be rewritten as
E = e(p)N +b(p)s + c(p)L

We have displayed explicitly the dependence of the coefficients on the
bulk density p. (We have dropped the suffix ¢ on p as well as e,
the bulk energy per particle. We have also written the leading term as
el instead of aV.) Our objective is to write E as a function of

Q, >, and A. Thé density o 1is given by N/V, which is related to

o = N/Q through Eq. (4). Thus

-1
N _NAy 2 LA
p“v“sz(l Qt+2tQ>

2
_ow Ly oL Aue Z) 2 4 e
_0[1+Qt 55 b I-<Q £° 1

Tf we insert his expression for p in the argument of e(p), say, and

make a Taylor expansion about the value ¢ = e(a), we find

2
elp) = € + e’ %t +[(e' 4—%6”)(%) - %(%) e'] 2

where

(D.—

1
N
81
N4
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Dealing similarly with b(p) and c(p) and using Egs. (4), we find

E = eN + by + oA + &(22/9) R ‘ (5)
where
.’5 = b + et St
~ 1 ~, 2
¢ = ¢ - bt - 5 e' pt
d = bt + (e + -;— e") M2

Suppose now we assume the volume  +to be proportional to N and
independent of the shape of thevsystem (i.e., we take S to be
constant). The coefficients 3, a, b, ¢, d are then constanfs and
Eq. (5) gives the total energy as a function of N (or @), &, and
A, di.e., as a function’of volume, area, and integrated curvature of ak
surface obtained from the standard equivalent sharp surface by a small
normal shift t.

To the relevant order this equation is equivalent to Eq. (2), but
note the following features. First, in addition to terms proportional
to N (or Q), 5, and A, there is a new term proportional to ZE/Q.
Second, the values of the coefficients of ¥ and A are different
from the previous values and if one were to identify b with the surface
tension coefficient and ¢ with the curvature éorrection coefficient
one would deduce values quite different from those given by Eq. (2).
Thus the coefficient of £ has an additional term e'pt which comes

from the bulk energy and the coefficient of A has two additional terms,
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~bt, which comes from the surface energy, and ~% e'p tg, which comes

from the bulk energy. 1In Eq. (5) there are altogether six spurious

terms e'pty, -bta, -% e’StgA, b'tzg/Q, e'Stgzg/Q, and -é—e"gtgzg/a.

Note that of these, the first, third, and fifth vanish if e' =0

(}.e., it (p ée/ép)g = O). This means that for a system whose bulk
energy is stationary with respect to density deviations from 5 (i.e., .
a saturating system) these terms do not appear. It has recently been

8)

shown ™/ that for a saturating system the surface tenslon coefficient is
also stationary, i1.e., b' = 0, and the fourth term would also be
absent for such a system. The second and sixth terms are, however,
present even for a éaturating system. For a nonsaturating system (like
a Fermi gas or a nuclear individual particle model in an external
potential well) all six terms are present, and great care must be
exercised iﬁ interpreting the results of the energy caiculations of such

systems, unless the proper choice of the equivalent sharp surface has

been made to begin with.
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3. On the Total Energy of Noninteracting
Particles in a Hill-Wheeler Box

3.A. Introduction

It is the purpose of this part of the thesis to demonstrate the
relation between a microscopic approach and a macroscopic approach on
as simple a model as possible. One such model is furnished by non-
interacting spinless Fermi-Dirac particles iﬁ an orthorhombic box with
infinite repulsive potential outside and zero potential inside. Such
a box will be referred to as a Hill-Wheeler box. It was first intro-
duced by Hill.and Wheelér6) who applied it in an attempt to obtain the
coefficients of the nuclear surface and curvature energies. Due to a
miginterpretation of their equations they did not get the correct

10)

results which had been given by Swiatecki in a semi-infinite model.

The correct interpretation for the surface energy was given by Knaak

! 9]
ll). HilflL) considered also the cases of cylindrical and

ét al
spherical boxes.

The Hill-Wheeler box is a particularly simple model because all
the wavefunctions in the box can be easily written down in terms of
trigonometrié functions. The total energy as a function of the particle
number and the deformation of the box can be exactly written down. On
the other hand we can also take a macroscopic point of view and approxi-
mate the total energy by a function of macroscopic quantities such as
the volume and surface area of the Hill-Wheeler box. We shall démon—

strate that this macroscopic approach gives the smooth trends of the

exact results very well.



-19-

3,B. The Microscopic Approach

The solution of the problem of noninteracting spinless Fermi-
Dirac particles in an orthorhombic infinite potential well is well-
known. It suffices that we indicate the main results below.

Let the three sides of the box be specified by

a = R exp [a cos (~ - §1>]
i 3
27
b = R =
exp {a cos <}‘+ 3 :)]
¢ = R exp [a cos 1]

where o and 7y are two deformation parameters. We have chosen the
definition such that the volume of the box is equal to R5 independent

of & and. Y. When o =0 and 7 =0, the box is simple cubic. When

1

Y=0 and « >0, we have a = b < ¢ and the box is "prolate". When

T

i

w/% @and o > 0, we have a = c¢ > b and the box is "oblate".
All the wave functions in the box have to go to zere at the
walls. This requires the single particle energy levels to be given by

‘“2?022m

where M 1is the mass of the particle. The guantum numbers n, mn,
and £ are integers greater than or equal to one. The single particle
energies as a function of the deformation parameter « (with 71 = 0)

are shown in Fig. 1, which is essentially the familiar Nilsson diagramg)
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for the present case of spinless fermions in a Hill-Wheeler box. The
above calculation is in effect a prototype of the Nilsson model
calculationsg). We have indicated in the figure the positions at o = O,
where large gaps among the levels are found. These correspond to magic
numbers where special binding occurs. For a particular shape of the box,
a given number of particles fills the energy levels up to a level whose
energy is referred to as the Fermi energy €p All levels below €p

are filled and all levels above €p are empty.
We can associate each particle with a momentum vector ki such

that the particle's energy is given by

Let us look at the momentum space with the coordinate axes along the ‘
three axes of the Hill-Wheeler box. Then an octant of a sphere is
drawvn with its center at the origin and having positive wvalues of kX,

ky’ and kZ. The radius of the octant kF is given by

o
A >
oM |kF| = Sy

A lattice is constructed in this space by choosing the units in kx’

ky’ and kZ directions to be ﬂ/a, ﬁ/b, and n/c respectively. The

N

set of quantum numbers n, m, £ of the energy levels. In particular the

designation of the lattice points in (kx’ k_, kZ) would be just the

lattice point (1, 1, 1) corresponds to the lowest energy state with

n=1, m=1 and £ = 1. Since the particles fill the energy levels up



-0]-

to eF, all the lattice points in the momentum space within the octant -
of radius kF are occupied by particles, and those without are not.
The number of lattice points inside the octant is equal to the number

of particles in the box. The energy of the system, &, 1is given by

2

2 4

i

where the summation is carried over all the lattice points inside the
octant.

3.C. The Macroscopic Approach

By the macroscopic approach we hope to write down the total
energy of the particles in a Hill-Wheeler box in terms of some macro-

scopic quantities. One way to do this is to imagine each lattice point

in k space inside the octant of radius kF to be smeared out into an

orthorhombic box centered at the lattice poiht and with sides equal to
n/a, /b, and x/c. Suchorthorhombic boxes build up into an octant

with slabs of thickness w, = x/2a,

1 = 1/2b, and w, = x/2c cut

3

away from the planes kX = 0, ky = 0, and kz = 0 vrespectively.

(see Fig. 2, which shows only the kxky plane.) Also on the curved

Yo

surface of the octant, bumps and dips occur that correspond to parts of
the boxes sticking out and parts missing from the smooth curved surface.
We can adjust the position of this curved surface to an effective Fermi
radius q (see Fig. 2) such that the volumes of the bumps and dips

cancel. The volume F of the resulting "incomplete octant”" with slabs
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cut away is then related to N, the number of particles in the Hill-

Wheeler box, by

5 .
N = 8 wiwéWEN ,

7

Fo= abe

since the unit box around each lattice point has the volume

A straightforward calculation gives TF as a function of q:

W, W
Fo= Lx q5 -0 tan_l l 2 T
56 54 (02 - w.? - wP)?
alq 1 5
W W
12 1 3) -1 2 -1 %
+<2qwl gwl sin _-——_—T(Q_wg)’é + Sin WWT(E_WE)TQ
- 4 1 q 1
2 1 2 2 2% x 3
I A G A ]

1 . . ) v
- 3 WlWQWB + Permutations with respect to wl, WE’ WB

(including the first term)

If we assume LEERY w3 << g, which is the case corresponding to a
large number of particles, we can make an expansion in wl/q, wp/q,

d w .
an ws/q
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5. ﬁ qg(wi +ow, wg) + q(WiWQ + W W, + W W)

I
F o= zd o'3 T Wsl

5 4w

2 3

- W1W2w3 + e,

+ %E(wiB + oW
The first three terms are equivalent to the results obtained by Hill
and Wheeler6). The first term corresponds to the volume of the whole
octant in k space. The second term corresponds to the slabs that are
to be cut away from the octant at the kx = 0, ky = 0, and kZ = O‘
planes. Where the slabs interseét we subtract too much by the columns
along the kx’ ky’ and kZ axes. This is the origin of the third term.
The fourth and fifth terms represent even higher corrections to the
geometry of the volume F of the incomplete octant. Given ¥, one can
calculate the particle number N. Convergely if we are given N, we
can find thé effective Fermi momentum q.

We next proceed to calculate the energy in terms of macroscopic
guantities. The exact energy E calculated in the last section is
given by Eq. (6), which is a summation of the function kigfﬁE/EM over
the lattice points. For the sake of clarity, we make two provisional
simplifications. TFirst we assume each lattice point to bé smeared out
into an orthorhémbic box around this point with sides =x/a, /b, and

2 in the equation, we use an integral of 12

x/c. Thus instead of L
over the box. Second, near the Fermi surface we smooth out the bumps and
dips by means of a smooth curved surface of radius ¢q as defined before.

In other words we replace the integration of kg over a bump by that

over a dip of equal volume. We shall discuss the consequences of these



two simplifications in the next section. What these simplifications
amount to is that one can now get an approximate energy E' by inte-

grating ﬁgkg/EM over the volume F

e b
B! ___'ﬁ_.?’._g.:[
M 3 ’
ﬂ -
where
.15
T = 75 a
W W
1 12 -1 2
¥ (5 - ten 2 5T - ten > 25 oz
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-1 1 L
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+
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fie)
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=
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1
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N
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+
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=
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1
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. g w W ™
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(Equation continued on next page)
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(Equation continued)

+ Permutations with respect to w., Vo, W

~05-
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1 5

If we again make an expansion in wi/q, wg/q, and wg/q, we get

L

T 1 1
O - - : + W + =
I 10 4 8 4 (wl * Yo w3) 3 4

We can express the energy ERE'

3(ww +WW W

23 T V3"

in terms of N by substituting for

Remembering that O = abc, we get after some algebra,

2 2 2 2
2M L Bp 23 (N3 u, 203 % (g%
FE o= 36 (3) v e 55 1)

2 2 '
37 % L A 3 5 een
* [6u RYCIMERNY, }(9) N ’

)+...

q.

(1)
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whereT
. = abc
5. = 2(ab + bec + ca) (8)
A = % bia +Db + c)

If we assume that N 1s proportional to @, we find that the terms in
the energy are proportional to N, Ng/g’ and Nl/B. We sghall refer to
these terms as the N-term, Ng/B-term, and Nl/B-term respectively.

To bring out the shape dependence, we may make a simple

rearrangement in the equation, giving

T it is found that A 1is just the integrated curvature of a Hill-
Wheeler box. The plane gurfaces of the box have zero curvature. At
the edges of the box, we have an infinitely large curvature on an
infinitesimal surface area. The iﬁtegrated curvature may be calcul-
ated by first rounding off the edge and then taking the appropriate
limit of the integrated curvature of this rounded edge. 1In general
at the edge formed by two plane sﬁrfaces at an angle «, the integrated
curvature turns out to be just o per unit length. For the Hill-
Wheeler box, the integrated curvature is thus ﬂ/2 per unit edge

length.
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2 5 2 4
Mo, 3,235 (N3 3 25(@5
_E = 5 (6x7) (Q) Q+E-<6ﬂ> Q) %

2 2
w3 2 1
+ g [GE“ ) 5 A] + . (9)
This equation has the same form as Eq.(5) in Part II of this
thesis, where we discussed the potential energy of a leptodermous
system. The system of particles in a Hill-Wheeler box is in fact an

10)

example of a leptodermous system. Swiatecki has shown that its
skin thickness is of the order of the wavelength of the fastest
particle in the box. More specifically, with reference to the volume
V, surface area 8, and integrated curvature L of an "equivalent
system" (with zero skin thickness, containing the same total number of

particles at the bulk density), one may express the volume ( and

area, ¥ of the Hill-Wheeler box to the first order as follows:

Qo= V+ 8+ e
(10)
‘Z:S.{_.o. B
where t  1is the skin thickness (SWiateckilo) used the symbol b) given
: by10)

| 1
t:ézi_:il(l_)g_
8 kF 8 6K2N

This is to be compared with a characteristic dimension of the box given
by Vl/g. Thus the skin thickness is smaller by one order in Nl/B.

Hence particles in the Hill-Wheeler box form a leptodermous system.



-08-

Let us write the energy Eq. (9) in terms of the V, §, and
L of the equivalent system, which is the reference system we should
use, as explained in Part ITL. Then one has to wriﬁe Eqs. (10) up to
‘ the curvature term (see Eq. (h)). Here a difficulty appears, associated
with the singular nature of the boundaries of a Hill-Wheeler box (the
occurrence of infinite curvatures over infinitesimal areas of the
boundary). For a smooth leptodermous system the additional terms can
be found by expanding about a plane surface (see p. 14). The result is
two extra terms: % tEA in the expression for V and -tpA in the
expression for S. (see Eq. 4) These terms are thus both determined
once t is known. It turns out that for a Hill-Wheeler box the
additional terms are still proportional to A but the constants of
proportionality ére not, in general, % t2 and t. They are unknown
coefficients which could only be determined from a closer study of the
properties of a Fermi gas in the neighbourhood Qf a right-angled edge

in a potential well. 1In considering the relations between Q, %, A

and V, S, L we are thus force to write

8 = V+tS8 + gl + .-
L= 8 +hL + .-
A _ L+... 5

instead of Eq. (4). Using these relations, one finds
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e | (11)

As eXpected the term proportional to SQ/V drops out, demonstrating the
digcussion in Part II Cﬁq. (5)) that such a term is spurious, and arises
from an inappropriate choice of a reference system. The surface tension
coefficient is given by the coefficient of S and this confirms the

value obtained by Swiatecki by a different methodlo

). If we had taken
the coefficient of % in Eq. (9) to be the surface tension coefficient
we would have obtained a value which is five times too large. Thus
four-fifth of this term is spurious, coming from the bulk term
proportional to Q. These conclusions are independent of the wvalues of
g and h and do not require their knowledge. However, in order to
deduce the true curvatufe correction coefficient for a Hill-Wheeler

box (i.e., the coefficient of I in Eg. (11) rather than the coefficient
of A in Eq. (9)) a knowledge of g and h would be required. These
numbers, characteristic of the properties of fermions in the neighbour-
hood of a right;angled edge, are unknown at the present time.

%.D. The Meaning of the Approximate Energy Expression

The approximate energy expression E' in terms of macroscopic
quantities has been obtained by making use of two simplifications in

our calculation of I (p. 2%). We have studied the corrections that
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should be applied to account for these simplifications. It will be
shown below that both these corrections enter the energy Eq. (9)
through the Nl/5 and higher order terms, and these two corrections
miraculously turn out to cancel each other to this order. Thus it will
turn out that E' 1is correct up to and including the Nl/5 term.

The first simplification was made when we smeared each lattice
point into an orthorhombic box. Thus instead of taking the enefgy as

2

proportional to ki at the lattice point, we integrated k2 over

the box (k, + w

ix 1’ Kk

+ + w i ! ;
iy * Vo LI w5). This overestimates the true

energy. The energy we calculated is

|

nof %
=
<=

2 2
[ (}Ngi+£)2 Or = gﬁkig+2———M%[rgd5r ,

box

where 1 1s measured from the center of the box so that ‘jrrdjr = 0.
(The term J[k- rdBr vanishes by symmetry.) The volume of the box

is v = ﬂB/abc. The first term gives the correct energy. Thus the

correction to our calculated value is

2
h™ 1 2 .3
-gM'er d’'r . (12)

Let us define a function w(r) such that the portion of the box that
is in the shell between r and r + dr is given by w(r) dr. Then the

correction may be written as
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The function w(r) is zero when r is greater than the distance from
the center of the box to its farthest corner. The total correction

13 is just the above quantity multiplied by the number of lattice

1

points which, to the lowest order, is given by

o=
(o]

W

<+

. . _n 3
-8 = -gd

o
ig‘%ﬁ r? w(r) dr . (15).
The second simplification was made when we smoothed out the
bumps and dips by assuming a smooth effective Fermi surface of radius
g (Pig. 2) this amounts to removing the bumps and filling up the dips.
Since the bumps are associated with a higher energy than the dips, we
have underestimated the true energy. To calculate the correction to
be denoted by Eg, we proceed as follows. First we note that the
bumps are portions of the orthorhombic boxes that stick out of the
curved Fermi surface. For boxes that are at a fixed distance from the
Permi surface, we consider all the possible shapes of the bumps over
the Fermi surface. Taking an average of such shapes, it turns out (see
below) that we can represent an average typical bump by a series of
portions of spheiical shells centeredvat the center of the orthorhombic
box with radius from zero up to the value equal to the distance from
the center to the farthest corner of the box. Then we calculate the
change in average energy when we remove the portion. of a shell above
th¢ Fermi surface and fill up a similar portion beléwu Lastly we

/
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average thig change of energy with respect to the position of the box
relative to thg Fermi'surface. The correction ‘&2 is shown as an
integral over the series of spherical shells.

Since Wl(wé’ ws) is much smaller than q, we may consider a bump
to be the portion of an orthorhombic box left when one éuts it by a
plane Fermi surface at a distance d, say, from the center of the box.
Over the Fermi surface the boxes are found to be cut in all orientations
(Fig. 2). Let us assume that all orientations are equally probable,
then one may describe the box averaged over orientations by specifying

the amount of matter in the shell between r and 1 + Ar where 71

is measured from the center of the box. This quantity is given by

1
b w(r) oro,

where w(r) has been defined before in connection with the Eg. (13) for

1 . ‘
El. The factor 7 has been included for normalisation since
4 3
( a = = .....TI.._
'jqwr) r v pyes

For a shell between r and r + Ar, consider the portion
outside the Fermi surface when the center of the box is at a momentum
value k. (See Fig. 3) This is related to d, the distance of the

center to the Fermi surface:
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The volume of the portion of the shell outside the Fermi surtace is
& = 2yr(r - d) Ar

Its energy is given by

o
1 [ ° 2 A7
Ey = % Ar rde 2rr sin o(k + 1) 5
0
where OO is given by
d = r cos @O .
After some algebra one gets
My - k¥ k(r + d)
62 B

Now consider -a dip on the Fermi surface to be a similar portion of a
shell below the surface (see Fig. 3), we would be looking at a box

with its centre at a momentum of value k + 2d. Its energy is given by

)z,ﬁg
oM

g - + Arrde - 2xr sin 6(k + 24 + r
) N

ﬂ-@o

A similar calculation gives

My L WP e rf Ak v d) - (k¢ 2d)(r + Q)

Thus the change in energy of the shell when we replace the bump by the

dip is, after simplification,
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2
2(k + a)(x - @) o

=
1

=
t

2

A
QQ(T - d—) M P)

it

where we have made use of the relation, g =k + 4.

Now we average this change in energy over all possible values of
k between g - r and g. This may be done by writing the total energy
change, AE, for such a shell over all the boxes on the Fermi surface

(which is in the form of the curved surface of an octant) as follows:

-1

T o,2
LB = (EB-ED)gkdk

<+

q-r

Carrying through the integral, we get to the lowest order,

FAVH =

O\\"f:(
Ko)
<k
=3

!

This corresponds to one of the shells of radius r. The total correction

is then

1taay
e
I
]
B>
&=
€
Py
&
-
o,
=

Hence we arrive at the result that to the lowest order the two correc-

tions El and EQ add up to zero:

£, F 8,70



It is most remarkable that the lowest order effects from two apparently
unrelated sources (the replacing of lattice points by boxes in the
volume of the octant, and the smoothing of bumps and dips on its surface)
should cancel each other.

Let us now look at the order of the energy correction El and

Eg. We find that we can actually calculate explicitly. Equation

gl
(12) gives the correction due to the replacing of a lattice point by

a box:

A1 - RN
= -5y 5 (x= + y~ + z7)dxdydz ,

where Wy W, and w5 have been defined in the last section to be half
of the lengths of sides. The integration can be carried out trivially.
The total correction gl in just the numberbof lattice points N

multiplied by the correction due to one such case. Remembering that

il

v = 8w, w. W ﬂB/abc, we get,

12"z

Expressing this in terms of the volume, Q, surface area ¥ and
integrated curvature A of the Hill-Wheeler box we finally obtain after

some algebra,
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This shows explicitly that the lowest order correction enters into the

’:D{M
H
=

ml&
=

£y

oo

Nl/5 term in the.energy Eq. (9).

The above completes the proof that E' should be able to
reproduce the true energy E up to the Nl/3 term. We show the
numerical comparison of E and E' in the next section.

3.E. Results and Comparisons of the Microscopic and Macroscopic

Approaches

We exhibit results from the microscopic and macroscopic
approaches in this section. From the former, we obtain the exact total
energy E <?q. (6)). By the latter, the approximate total energy E'
is calculated by successively including terms of order N, NE/B, and
Nl/5 Cﬁq. (7)). In both these calculations we have assumed that N
is proportional to Q.

In Figs. 4a-d, we show the energies as a function of the
particle number N for a cubic box, an oblate box, a prolate box, and
a box with three unequal sides. We display the energies also as a
function of the deformation parameter « (putting v = 0) in PFigs.

5a,b, which is on a somewhat larger scaleT. In the latter case two

T The exact results E as & function of deformation are the lowest
possible energies at each deformation. They correspond to an adia-

batic process of deforming the Hill-Wheeler box.
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systems are studied, one with N = 60 when a shell occurs at zero
deformation, and one with N = 68 where no shell occurs at zero
deformation.

When we calculate E' only up to the volume term, i.e., the
N-term, we find that the results give (at N = 60) about 70% of E.

We can make a corregpondence between our'calculated enefgies with the
realistic nuclear energies, by requiringithe density of particles in

the box to be given by nuclear matter density (corresponding to a radius
constant Ty = 1.2 fm ). We remember also that we are filling every
energy level with one particle whereas in the nuclear case there are two
protons and two neutrons in each level. It then turns out that the
calculated total energy for N = 60 in the case of zero deformation,
corresponds to 691L MeV in a nucleus of A = 2h0; the energy correspon-
ding to the N-term is.h850 MeV. The figures also shows that the difference
increases with increasing N.i As a functionvof deformation o, E' 1is
a constant (not shown in the figures), whereas E increases with
deformation.

The inclusion of the Ng/5 term in the ealculation of E'
improves the picture substantially. Values of B' are still smaller
than E but the difference is less. At N = 60, E' is 6675 MeV
which accounts for 97% of the true value. The difference is a lesé

rapidly varying function of N; Also as a function of defdrmation,
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E' now represents the trend of E fairly wellT, though there is a
difference in absolute values. In Figs. 6a-d and 7a,b we plot the
differences between E and E' both as a function of N and as a
function of o on a much expanded scale. The differences are shown N
to be increasing slightly with N or .

The further inclusion of Nl/5 term in the calculation of E'
seems to be capable of reproducing the exact energy E very well. In
Figs. 4 and 5 there appears to be no difference at all on the scale
used. In the Figs. 6 and 7 where the differences of E and E' are
plotted on a much expanded scale we find that E' 1is still slightly
below E. The mean difference over N values is only about 14 MeV
putting E' within 99.8% of the exact value. The difference is
expected to be in the w° term, and we find indeed that it does
appear to be constant as a function of N. It also appears to be
fairly constant as a function of @, apart from local fluctuations.

‘The strong convergence of the various terms in the macroscopic
result E' to the exact result B i1s illustrated by listing below the

contributions from these terms for the case of N = 60:

T Hill and Wheeler6) in their work show a graph which appears to
indicate that the trend of E' to order Ng/5 is quite different o
from that of K. However as was pointed out by Myers and Swiateckiu),

there seems to be a mistake in their plot though their equations are

correct.
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N-term 4830 MeV
7
N2 term 1845 Mev
Nl/B—term 225 MeV
N°-term + Rest 14 Mev
Exact result & 691k Mev /4 L

/

It thus appears that by including enough terms in E', the exact
result E may be reproduced very closely by the macrbscopic calculation.
Let us study further the difference between the true result E
and the result. E' where terms up to the Nl/5 term have been
included. In Figs. 6 and 7 we see a wiggly structure in the differences
both as a function of N and as a function of «. A dip in energy
occurs where there is a shell. Thus the difference be£ween E and E"
furnishes a convenient way of studying the shell effects. TFor zero
deformation (Fig. La) we find shells at N =1, 4, 17, 35, 38, 60, .-
These correspond to gaps in the single particle level diagram (Fig. 1).
We note that the occurrence of shells is assoclated with a given
deformation. TFor instance, the N = 60 shell for zero deformation is
completely removed when the shape becomes prolate (o = 0.25, 1 = 0)
as shown in Fig. kc. 1In this prolate case shells appear at N = 7, 14,
27, 5h,*++, bearing little resemblance to the positions of shells at

zero deformation.
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3. F. Summgry and Conclusions

In this part of the thesis we have congidered the model of
noninteracting spinless Fermions in a Hill-Wheeler box. The exact
values of the total energy as a function of the particle number N and
the shape of the box were calculated. This is a prototype of the
2)

microscopic Nilsson model calculation In the macroscopic approach

the energy is found as a liquid drop type of expression, i.e., as an

1/3

expansion in N with terms dependent on the volume, surface area,
and integrated curvature of the system. It is found that as one
successively includes terms of orders N, NQ/B, and Nl/B, the results
converge very quickly to the smooth average of the exact résults.

Hence we see that the liguid drop type of expression for the
energy 1is applicable even in the present case which assumes no inter-
actions between particles and ig in fact a pure shell model. The
applicability is based only on the fact that the system we are consider-
ing is leptodermous.

In application to nuclear problems the liquid drop type of
expression is usually truncated at the leading volume, surface, (and
curvature) terms. A question may be asked how bad is such a truncation.
This has béen discussed by SwiateckilB). The main point is that in
practice the coefficients of these leading terms are adjustable para-
meters chosen so that the masses of all nuclei in the periodic table
as well as the known fission barriers are approximately reproduced. This
means that any smoothly varying higher order terms are partly absorbed

in the leading terms. Although this compensation cannot be perfect,
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only a fraction of these smooth higher order terms will not be accounted
for. On the other hand, rapidly oscillating terms, such as the single
particle shell corrections neither remain constant throughout a nuclear
deformation, nor can they be absorbed in the smooth leading term.

All these discussions lead one to a hypothesisbthat for a
nucleus (which is a leptodermous system: See Part II), the liquid drop
type of energy expression with the first few terms gives correctly the
smooth average trends both as a function of the nucleon number and as
a function of the deformation. The single particle shell effects may
be considered as local wiggles superimposed on these smooth trends.
This is the basic philosophy behind the method of the synthesis of a
microscopic model and a macroscopic model that will be presented in

Part V of this thesis.
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4, On the Symmetric Saddle Point Configurations
of a Charged Conducting Drop

L,A. Introduction

In this part of the thesis, we turn. to a pure liquid drop model -
study of fission of a charged conducting drop whose charges reside on
its surface. Such a model is in contrast to the usual liquid drop model
of nuclear figsion which assumes aliquid drop with charges uniformly
distributed throughout its volume. Neverthelegs i1t is interesting to
carry out a thecretical and an experimental investigation on a charged
conducting drop as a parallel to the theoretical and experimental study
of nuclear fission. Beginnings in this direction have been madelu).
Turthermore the charged conducting drop is also interesting for its own
sake and for its role in the cloud physics and other fieldsl5>.

In 1882 Lord Rayleigh published a paper on the stability of a

16).

If one had combined the results of this

17)

charged conducting sphere
work with the semi-empirical nuclear mass formula due to Weizsacker
in 19%5, one would have been led to expect nuclear fission. It even

turns out that the criterion for the stability of a charged conducting

drop is identical with the criterion for the stability of the nucleus

against fission. Ryce and collaboratorslu) in 1964, 1965, and 1966

considered some simple agpects in the splitting of a conducting drop. o
They looked at only the initial and final stages of the fission and ’
speculated on features that could possibly be applied to nuclear fission. ﬁ!
Very recently at the International Symposium on Electrthdrodynamics

15)

(19:9) more studies on the charged conductihg drop were reported.
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It is the purpose of this present work to study the first stage

of the theory of fission of a conducting drop, i.e., 1its statics. 1In

particular we have determined approximately, the most important symmetric
equilibrium configurations of the drop. The similarities and differences
of the conducting drop and a volume charged drop are also discussed.

4.B. Basic Concepts in Fission Theory

In this section we shall review some basic concepts and results
in the theory of nucleaf fissionlB). For an incompressible volume
charged drop, two forces are acting: a Coulomb force which tends to
break up the drop and a surface tension which tends to keep it together.
A gquantity of importance is then the ratio of the Coulomb energy and
the surface energy. One may define what is called the fissility para-

meter, x, as

where EC(O) and AES(O> are Coulomb and surface energies of a sphere
with chérge Q, radius R, and volume V. For x < 1, the spherical
drop is stable with respect to deformations and for x > 1, the Coulomb
force is greater than the surface tension and the drop is unstable.

Let us write down the energy excess of a deformed drop over the original

spherical drop as

E - ES(O) +E, - EC<O) - E (O)(BS - 1) + EC(O)(B

S S —l)

c

ES(O)((BS - 1) + 2x(B, - 1)) ,
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where Es and Ec are the surface and Coulomb energies of the drop
and the superscript (o) implies that the quantity is evéluated for the
case of a sphere. Also B_ = ES/ES(O) and B, = EC/EC(O). If we
define € as the energy excess in units of Es(é)

(o)

then £ 1s Just the

above expression divided by ES

£ = B, -1+ EX(BC - 1) . (1h)

In Fig. 8, we sketch the behavior of & as a function of
deformation for a particular value of x < 1. The configuration at
zero deformation, i.e., a sphere, is a potential energy minimum. The
energy is increaged as one deformg the drop until a point is reached.
where the disruptive Coulomb force is dominant and the drop undergoes
fission. The configuration corresponding to the point where the drop
will start dividing of its own accord is called the saddle point shape.
It is unstable with respect to the deformation leading to fission.
Obviously the curve will be different for different values of charge
on the drop, i.e., different values of x (see Fig. 9). Thus for
x > 1, the sphere is at a potential maximum. |

Let 'QR denote the difference in energy between the
initial sphere and the final fragments at infinity in ﬁnits of ES(O).
For division into two equal spheres which i1s illustrated in the figure,

=0 at x = 0.%35. For x> 0.35, < 0, and for x < 0.3%5,

ER
£, > C. 1In the general case of division into n equal spheres, a

19)

general formula may be written for § The charge on each sphere

R



-l -

E -1/
is Q/n and its radius is (Rj/n)l/5 = Rn 1/5, so that the Coulomb
energy of the n spheres is n multiplied by the Coulomb energy of

cach sphere:

E = 1 2 q/n ’
¢ 2 R n_luB
. 29,78/
= 5Rn
B = n_g/3
C

Total surface energy of the n spheres is

- 2 2 1
ES = vn-Ug(Rn l/3) LeR™m /3
. B = nl/5
s
Hence the energy excessl9) over the sphere in units of ES(O) is
- ’
S I I R (15)

This ig shown in Fig. 10, where the energy release is plotted

En
against x for division into two, three, four, up to eight equal
spheres. For each value of n, the plot is a straight line. The
straight line for n = 2 goes through zero at x = 0.%35. For x < 0.35,
the gphere has the lowest energy. Tor 0.55 < x < 0.61, the division

into two spheres gives the lowest energy. TFor 0.61 < x < 0.87, the
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division into three equal spheres giveé the lowest energy. Finally,
for 0.87 < x < 1.12, the division into four equal spheres gives the
lowest energy.

In fig. 11, we present the shapes of a volume charged drop at
the saddle point as'found by Nixgo), so that we can compare it with the
results we are going to obtain for a surface charged drop. The
abscissa gives the fissility parameter x from O to 1. The ordinate
gives RMIN/R and RMAX/R as a measure of the shape, where for an
asymmetric shape rgdius RMIN is the minimum radius of the neck of the

drop and the two maximum radii RMAX are the distances from the center
of the neck (at its minimum radius) to the two ends of the drop. TFor
a symmetric shape the two maximum radii are equal.

Along RMAX/R = 1 1is the sphere which is at a potential energy
minimum for all x < 1., The rest of the curves represent a family of
reflection symmetric saddle point shapes and a family of reflection
asymmetric saddle point shapes. The two families cross each other at
x = 0.3%396. Their shapes are schematically indicated in the figure.

A point to notice is that along the symmetric family there is a fairly

rapid change in the trend of R at x wvalues around O0.7. It

MAX/RO
is found below (Sec. F) that for a conducting drop a similar change

occurs at a larger value of x.

h.c. Comparison of a Conducting Drop and a Volume Charged Drop

In the last section we have reviewed some basic properties of
a volume charged drop. In this section we shall point out some simil-

arities and differences in the properties of a conducting drop and of a
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volume charged drop. For a conducting drdp the fissility parameter x
can be similarly defined as the ratio of the Coulomb energy to twice
the'surface energy evaluated for a conducting sphere. The equation (lﬁ)
for the energy excess & will be the same as for the volume charged
drop case except that the Coulomb energies will now be evaluated on the
assumption that the drop is conducting.

Let us first consider the similarities.

(1) Por x = 0, there is no charge on the drop so that the
equilibrium shapes are the same whether the drop is conducting or not.
For x =1, it turns out nontrivially that as in the case of a volume

21)

charged drop : , the Coulomb force is Just balanced by the surface
tension for a spherical conducting drop.

(2) A second similarity is apparent if we look at the energy
difference ER

divided into equal spheres. We have described this in detail for a

from the initial to the final state when the drop is

volume charged drop in reférence to Fig. 10. When we make a similar
study for a conducting drop, we get completely identical straight lines
and conclusions. The reasion is that only spherical shépes are involved
in both the initial and final states, and the Coulomb energy of a
volume charged sphere (which is % QE/R) and that of a conducting
sphere (which is % QE/R) differ by only a numerical factor, 6/5,
that 1s the same for both states. Hence BS and BC are the same for
both cases and the same energy Eq. (15) holds good. .

(3) It also turns out that the Coulomb energy of a volume

charged ellipsoid and that of a condﬁcting ellipsoid differ also by the
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same numerical factor. Thus the Coulomb energy of a conducting ellipsoid

is given bygg)
[o6]
12 2 2 -1
E, = 19 [(a” + A)(dT + A)(e”™ + )] 7 an
0
so that
P > -3
B, = % R [(a” + x)(b? + >\)(c2 +2)] 2 an
0

where a, b, and c¢ are the lengths of the axes of an ellipsoid. The

23).

BC for a volume charged case turns out to be the same ‘In the case

of a prolate spheroid b = ¢ we get on integration

1 1 + e
Bc = R?_aezn<l—e>
2

where e~ =1 - ag/cg. Since R = acg, we get

AN VLY _l__t_<z>
B, = 3 (1 - e%) - £n<:

c 1 ~-e

2

For an oblate spheroid, we can just set e to ie and e2 to -e,

and find
| -1
B = (1 + 62)1/5 % tan T e

These expressions for BC hold good for both a volume charged drop and
a. conducting drop. Hence if we make the drop to takeoﬁ only ellipsoidal
shapes, then any conclusions about the statics of the volume charged

drop will be true for the conducting drop.
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Now let us look at some differences between the two cases.
The first difference between the volume charged drop and a conducting
drop can be found if we consider the division of the drop into two unequal

spheres at an infinite distance apart, one with volume AV and the other

with volume (1 - B)V. 1In Fig. 12 is plotted the energy change ¢

2k)

R

between the initial and final states as a function of g for various
values of the fissility parameter x. For B =0 and B =1 we get
a, sphere with volume V which is Jjust the initial state. For g = 0.5,
we get two equal spheres. The energy change is zero at x = 0.35 for
B = 0.5, as was pointed out above in connection with Fig. 10. Tor a

ok

conduction drop Fig. 1% is found™ /. We note that here again the energy
is zero at x = 0.35 for B = 0.5 consistent with our previous statement
that Fig. 10 also applies to a conducting drop. Except for the points
at B =0, 0.5, and 1.0 the curves in the two figures are very different.
A potential minimum for a volume charged drop occurs at p = 0.5 for
x > 0.2, but a potential maximum for a conducting drop occurs at g = 0.5
for all x values less than one. In the latter case minime occur at
points where the fragments are unequal.

The major reason for the above aifference is that the charge
to mass ratio for the volume charged drops is a constant, but for the
conducting drops it is not required to be a constant. This is also the
underlying cause for the second difference that appears when we try to
find the configuration with the absolute lowest energy for a drop with
a given fissility varameter x. TFor a volume charged drop, this

19)

configuration is n equal droplets at infinity and the number n
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depends on the x value of the drop [Eg. (15)]. One would at first
expect that the same conclusion might hold for a conducting drop. But,
as we shall show, for a conducting drop, the configuration at the lowest
energy 1s one with all the charges Q on the drop taken off and .
distributed among many infinitesimal droplets at infinity. It turns
out that the total energy of the droplets may be made to vanish and we
are just left with the surface energy of the original drop. The possi-
bility of such a configuration is shown as follows. Let % of the
original dfop of radius R be taken off carrying all the charge Q.
This is then divided into m equal spheres, each with a charge Q/m.

Thus for each sphere the sum of the Coulomb and surface energy is
2/3 2 —
2 1 1 Q 1/3 /71\2
by <Hm> e 2L () <m> .

Hence the total energy of the small spheres is m times this quantity:
2 -2/3 1 Q7 1/3 -2
byR™y m(nm) + 5 ﬁ—(nm) m . +m
o, /5 2f3 L& 15 -2/3
= LRy m n + 5 gD m

Now let us choose m o n °. The energy of the droplets is now equal

to
2

S
bRy n 0 O+

Wi
+

2
Q

SR

N

which is zero when n goes to infinity provided

- < <
2 S 5
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and we obtain the proposed configuration. In other words, we have made
the Coulomb energy of the given drop zero by dispersing the charges onto
an infinite number of infinitesimal droplets without increasing the
surface energy by a finite amount.

4.D. Parameterization of a Conducting Drop

In the remainder of this part of the thesis we shall try to
determine the eqguilibrium shapes of a charged conducting drop.

The calculation of the Coulomb energy of a conducting drop
with an arbitrary shape is in general a difficult problem. We have
side~-stepped this difficﬁlty by requiring the drop to assume a pres-
cribed famiiy of shapes, and have in fact made the calculation of its
Coulomb energy a trivial matter. It is well-known from the theory of

25)

electrostatics that the electric potential of any system of charges
is ﬁhe same at every point outside any equipotential which surrounds
all the charges, as that of the same total charge spread over a
conductor that has the shape Qf this equipotential. Hence we require the
drop to assume the shape of an equipotential of potential @ due to a
System of point charges with total charge Q. Then if we put the
charge @ on this conducting drop, its potential is equal to «, and
its Coulomb energy is just % aq,.

Consider an example of two equal point charges. The shapes of
. equipotentials that enclose the point charges are shown in Fig. 1h,

where the volumes of the shapes have been normalised to the same value.

We shall refer to these shapes as the symmetric N = 2 family since



they are generated with two point charges and are reflection symmetric.

Each of these equipotentials is associated with a potential «. Then

the Coulomb energy of a drop with this shape is %-GQ where § 1is

the charge on the drop. If R is the radius of a sphere that has the &
same volume as the drop and possesses the same amount of charge, its

Coulomb energy is % QQ/R. Hence we get
B, = OR/Q . (16)

The surface energy relative to that of the sphere BS can simply be
found by calculating its area numerically. Hence for a given fissility
x the energy of the drop is calculated [Eq. (14)]. Eguilibrium shapes
are then the shapes whose energy is stationary.

The symmetric N = 2 family has only a very restricted series
of shapes. However it is easy to increase the possible shapes by
looking instead at the shapes that correspond to the eguipotentials of
a larger number of point charges. We have put the charges on a straight
line so that all our shapes remain axially symmetric. The reflection
symmetric N = % family is generated with two equal charges situated
at equal distances on opposite sides of a third point charge. The
shapes are shown in Fig. 15. They include the symmetric N = 2 family.
Similarly we can go on to N = 4,5,.-- family of shapes.

Let us consider in general the N-family of axially symmetric
shapes. To specify the situation we need to give the magnitudes of the
N point charges and their positions as well as the value of the poten-

tinl on the equipotential we are looking at. These are 2N + 1 numbers.
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However not all these numbers are required to specify a shape. Three
numbers may be arbitrary: (1) The center of mass of all the point
charges may be at any point in space; (2) The total charge may be fixed
beforehand; (%) We can also preset a scale by which the distances
between the point charges are measured. The first point just puts the
drop at any place in space, while the last two points Just introduce a
scaling factor into the volume of the shape, which will be taken care of
when we calculate BS and BC eventually. Hence we set the sum of all

the point charges to be unity:

a

+ Qs+ oo +
1, 95

Uy

We also place the charges on a horizontal axis with the end charges‘at
positions -0.5 and +0.5 with respect to the origin, and specify the
relative positions of the other charges in units of the distance between

the end charges.

-0.5 < £, < 0.5

2

i

g =05 .

Thus we are left with 2N - 2 parameters. (For reflection symmetric
‘shapes, the distribution of point charges and their magnitudes are
reflection symmetric with respect to the origin and we have only N - 1

parameters. )
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Let us be the distance from the point charge i to any point
on the equipotential surface. Then a point on this surface may be

gpecified by the symmetric and antisymmetric variables v and w given

by

ey -y

The surface of the drop cuts its axis at w = #1 and cuts the plane
through the origin perpendicular to its axis at w = 0. The distance,
y, of this point from the axis and its position along the axis 1z, as
well as u, and the value of the electric potential « can be found

to be given in terms of v and w as follows:

z = vw
T2
2 1 2 2
y = 1 (L - w)(v: -1)
o 1,2 2 1 2
woo= (v +w") - vw b, - (H - £y )
N
43
o = —
- ui
i=1

or
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Since o 1is given as one of the parameters, we can use the last equation
a to solve for v when w is given.

The total volume V and surface area S can be written down

<

il
g-\.

s
no
e

N
2

[€2]
il

1
/‘En y(dz2 + dy2)2

~

- 2
= [ 21( [yg %% + %‘ (

Then we can find R from

2o
et
n
N4
. NS
| SN }
=
g

-5- R = V
and
Bs - : 2
hxR
B = OR
c

We shall find later that we require the curvature k and the electric
field é; “at any point on the surféce, which may be shown to be given

by

2 22 2
Cy + (coz - cl)

™
I

8" + h[(3°)' I° - hy®
)

( 2
Uy° + (7)) 1°)°/°

y )H
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where the prime superscripts denote derivatives with respect to =z.
The coefficients CO and Cl as well as the derivatives that enter

into these equations are listed below:

1 ' a

gz B _E W'CO + v Cl
dw =~ 1 ,
EVCO"WCl
dz 1 dv
aa = § (V + W aﬁ
2

aly™) 1 2\ dv o

3 =3 (1L - w)v 5 - (v - 1)
a(y°) MQSL__Z _ Ao faw
dz B Co T dz/dw

where

2 7 171 i
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4 E. The Determination of Equilibrium Shapes

In our numerical calculations, we have restricted the drbp to
assume only reflegtion symmetric shapes. Thus we héve chosen the
magnitudes and positions of the point charges such that they are
reflection symmetric with respect to the origin. As discussed in the
last section, a total of N - 1 parameters will specify the shape.

Let us denote them by p = (pl b, The energy of a conducting

* PN"]_) .
drop with fissility x 1in units of the surface energy of a sphere of

equal volume is then

t(p) = Bs—l+2x(Bc—l) .

Let f, De the derivative of ¢ with respect to p,. Then fi(g) =0
if p represents the equilibrium shape. Expanding fi(ﬁ) about the

parameters p, we have,

of,
: J
: J

to the first order. Since the left-hand-side is zero,
‘ afi
£6) = =) o, =t . an

The factors Apj are the differences of the parameters‘ p from the
equilibrium values p. Thus for a given fissility X, a first guess of
the parameters p close to the equilibrium values is made, and fi

and 1its first derivatives are calculated numerically. Then solving the
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system of simultaneous linear Egs. (17), (i = 1,2,--.,N-1), we obtain
corrections A@j to the guessed values. Corrections to successive
guesses are found until they are less than a prescribed accuracy. Then
the parameters finally obtained are assumed to describe an equilibrium
shape and the energy of the drop is calculated. By calculating and
diagonalising the second derivatives of the energy with respect to all
the parameters, we find the number of co-ordinates with respect to which
the equilibrium point is a maximum and the number of co-ordinates with
respect to which it is a minimum.

The shapes generated even by a large number of point charges
are not general enough to represent an arbitrary shape. Thus an
oblate shape cannot be found in our scheme. This raises the question
whether the equilibrium shapes we have determined are indeed true
equilibrium configurations when the drop is free to take on any arbitrary
shape. To answer this question a criterion will be developed to test a
giveh shape for equilibrium. (A similar criterion exists for a volume
charged dropgl).)

If we deform a conducting drop at equilibrium by specifying a
normal displacement &n of the surface element d4dS without affecting

25)

its total charge, the Coulomb energy change is found to be

6Ec = —f%—cf&nds

The change in surface energy may also be found:
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ESES = Yflc&nds

where 7Y 1is the surface tension coefficient. The total energy change
is
OF = ©OE_ + OF
c s
Subtracting dndS times a Lagrange multiplier k +to ensure conserva-

tion of volume and equating the integrand to zero (for equilibrium

shapes) gives

B
I

eief

By Gauss' Theoremn,

£

a
11
i

éj2
k = YK-S—T{—

' ' 2 2

f® é:o é;

T\ % T Birx 2
BT &

il

where we have introduced k, as the curvature on a sphere with the game
volume as the drop and E? o to be the electric field on the sphere.

Since
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(o) . 2
1 E:o
t T °R (0] = T® 8
s o} "
k = <——-x—(2—> (18)
The Lagrange multiplier is determined by considering the

effect of a uniform change of scale (while keeping @ constant) on the
shape satisfying Eq. (18). If &m is the nonvolume-preserving dis-
placement of the surface associated with the change of scale and &V

is the corresponding volume change, Then

SE = f(m—%aéj)@mds = kf&mds = k& . (19)

On the other hand by dimensional considerations,

B o Vg/5
S

o V'l/3
C

0
=
@]
7
.
<
o
=
Ay
'_l
~
W
+
=
w0
YN
<
<
o)
=
./
~
W

E(V + &V)
1

8E = - = E

3

Comparing with Eq. (19),
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Expressing all quantities in units of their values for a sphere we get

after some algebra,

k = 7y K:O(BS - ch) . | (20)

Comparing Egs. (18) and (20), we get

2
%—'ng
O o 1
B - xB
S8 ¢}

Thus for an equilibrium shape, any point on its surface should satisfy

A = 0, where A 1is given by

2
K o
L
K E: 2
© 0
A = —m— =]
B - xB
s c

As a measure of the deviation from equilibrium we can define a root-

mean-square value of A over the surface of the drop:
) 1
rus = ([]al” as)?

If RMS << 1, the drop is close to equilibrium. If RMS > 1, the shape
is far from equilibrium. This quantity will be used as a measure of how

close the shapes we have determined are to the true equilibrium.
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J,F. Results

The results for symmetric equilibrium shapes of a charged
conducting drop based on a family of shapes generated by two, three
up to six point charges are shown in Fig. 16 as a series of curves.
The figure is equivalent to Fig; 11 for a wvolume charged drop. The
series of curves with different N Valueé are Just successive orders
of approximation of the true equilibrium shapes. One would hope that
for a high enough order of approximation, the results may be very
close to the true ones, so that an even higher order will change the
results very little. Typically, for successive orders the RMS values
improve by a factor of two. For N = 6 paraﬁeterization, RMS ~ 0.01
for x close to 1 and x < 0.8, and RMS ~ 0.1 for x ~ 0.9. This
indicates that for x < 0.8 and x 1.0, the shapes we obtain are
close to true equilibrium shapes, but for =x ~ 0.9, there are more
uncertainties. By studying the change of RMS values at x ~ 0.9 for
successive approximations, we find that the RMS values decrease very
“slowly in this region, much less than factors of two. This indicates
that our model of a cohducting drop using the equipotential surfaces of
point charges is probably not good enough for x ~ 0.9. A more general
or appropriate family of shapes appears to be in demand here. Hence
one should regard the calculated results in this region with great
reservations.

Let us take the N =6 curve at its face value and examine its
main features. As we follow the curve from x = 1 %toward small x

values, the equilibrium shape elongates from a sphere, i.e., RMAX/R
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increases with decreasing x in the region near x = 1. This is in
contrast to cases of small x values (x 550.7) where RMAX/R is
slowly decreasing with decreasing values of x. The shapes in the
latter cases are long and look like a dumbbell. (see also Fig. 17)
Similar to a volume charged drop there is a rapid change of shape, but
occurring at x =~ 0.9 in the present case. Actually the curve for
RMAX/R even turns back at s = 0.887 and again at x = 0.906; However
it’is in exactly this region that our results become unreliable and the
dé&ﬁie turn might be spurious (see Refs. 26 and 27 for a similar
uncertainty which once existed in the volume charged case).

Let us now consider the nature of these equilibrium shapes by
looking at the signs of the second derivatives of their energy with
respect to ali the parameters. The following results are found when we
restrict the shapes to only the degrees of freedom that allow reflection
symmetric shapes. For 1 > x > 0.887 +the energy of the drop is a
maximum in one degree of freedom, but a minimum in the other N - 2.
Between the bends, for 0.887 < x < 0.906, the energy is a minimum.

For values of x smaller than 0.906, it is again a maximum in one
degree of freedom. With respect to the degrees of freedom that describe
reflection asymmetric deformation, the energy of the drop is a minimum
from x =1 to x =0.892. From x = 0.892 to x = 0.68 it is a
maximum in one degree of freedom. Below x = 0.68 it appears to be a
maximum in two degrees of freedom. The implication of the change of the
number of degrees of freedom with réspect to which an equilibrium shape

has a maximum energy is part of a general problem of the trend of
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equilibrium shapes as a function of a parameter x, which has been
discussed by various authorsg6’28’29)ﬂ
shapes into three types. The first is a minimum, i.e., the systém is
stable in all directions. The second is a saddle point, at which the
system is unstable in only one direction, i.e., it is a maximum in this
direction. Physically this corresponds to a pass in a mountain range.
The system has to go over the saddle point to get from one side of the
range to the other. The third is what we shall call a "mountain top",

at which the system is unstable in two or more directions. Thus in a

subspace contalning these directions this equilibrium point appears as

a mountain top. Looking at the equilibrium shapes we have obtained with

reference to both the symmetric and asymmetric degrees of freedom, we
can distinguish the various types. The equilibrium point is a saddle

from x =1 to x = 0.892. From x = 0.892 to x = 0.887 it is a

i

mountain top. Between the bends at x = 0.887 and x = 0.906 it is
again a saddle. TFor xv smaller than 0.906, it turns out to be a
mountain top. As discussed before the saddle point close to x = 1 is
fairly ;ell determined, but at the bends the results are no longer
reliable.

In Fig. 18 we show the energy of the symmetric equilibrium
shapes above that of a spherical liquid drop. It has an oVerall trend
of an increase with a decreéase of x, but it also éxhibits kinks cor-
responding to the region of a bend shown in Fig. 16. In Fig. 17 we

display several shapes along the N = 6 curve. Their RMS values are

also indicated.

One may classify the equilibrium

by
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L.¢. Summary and Conclusions

We have looked at the static properties of a charged conducting
drop and compared them with a volume charged drop. We have discussed
the similarities as well as éome of the differences. The symmetric
equilibrium shapes of a conducting.drop are determined with reasonable
confidence for x valués not in the neighbourhood of x = 0.9. At x
close to 0.9 the shapes found may not approximate the true equilibrium
shapes _adequately. The next step would be to try to use another param-
eterisation (e.g. that introduced by Nixl8)) so that equilibrium éhapes
at these values of x are determined with greater reliability. This is
important because it is in this region that we find interesting stability
features, such as the occurrence of a bend in the family of equilibrium
shapes and of points at which there is a change in the number of degrees
of freedom with respect‘to which the shape has.a maiimum energy.

It is interesting to note that even some eighty years after
Lord Rayleigh's study of a charged conducting drop, the whole problem
is still a very open subject. We have been able to determine the saddle
pointé of a charged conducting drop for values of x between 1 and
0.892. But for the region of x from zero up to 0.892, one is still
very ignorant of the saddle point shapes and energies of a charged

conducting drop.
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5. On the Synthesis of the Liquid Drop Model
and the Nilsson Single Particle Model

With Applications to the Study of Shape Isomers
and the‘Stability of Superheavy Nuclei

5.A. Introduction

In the first three parts of the thesis we have referred, from
several angles, to the idea of synthesizing a macroscopic and‘a micro-
scopic model. In this part, which represents joint Work with the éuthors
quoted on p. 4, we shall attack the problem directly and study in
detail the synthesis of the ligquid drop modell’u) and the Nilsson single
particle modelg’B).

| We shall begin by describing the Nilsson model on which the
microscopic calculation is based, and also a calculation of the most
important residual interaction that is not included in the model. This

- ...30)

residual interaction is the pairing force which is responsible for.
the familiar odd-even mass differences. The description will be very
Vbrief both because it is not directly rele&ant to the main theme of this
wo?k and also because the materials have already been publishedBl).
Details of the.single particle calculations may be found in these
refefences. In a similar manner the liquid drop mass formula due‘to
Myers and Swiateckih) is briefly deécribéd. Thenvthe method of thé.
synfhesis of these two models is discussed in detail: The unified
model is applied to give nuclear mésses and deformations with very

good agreement with experimental values. The calculations suggest the

existence of metastable states of nuclei that correspond to nuclear
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shapes different from the ground state shapes. These shape isomerng)
are believed to be associated with the experimentally studied spontaneous
fisgion isomers that occur in the actinide region. Some comparisons
between theory and experiments are made. We next turn to the study of
superheavy nuclei in the neighbourhood of Z = 114 and N = 18k - 196
which are predicted to be relatively stabled?? 5™ . Half-lives of alpha
decay and spontaneous figsion as well as stability againét beta decay

are calculated for the actinide elements as well as for these superheavy
nuclei. By these quantitative studies we find that these superheavy
nuclei could have very long total half lives. - Several of them might

even have life times comparable to the age of‘the solar system. A
discussion is given of their possible production and of the most
favorable candidate for. survival in earthly matter and iﬁ primary

cosmic radiationBu).

5.B.  8ingle Particle Calculations

31)

The single particle calculations are based on.the Nilsson
model which assumes that the neutrons or protons move in a harmonic
oscillator potential whose shape is described by two deformation para-
meters € and €}, The parameter € describes a spheroidal deforma-
tion»and the parameter €), describes- a necking-in or bulging-out near
the.waist of the spheroids. Only axially symmetric and reflection
symmetric shapes have been considered. The shapes in the (e,(eh)
plane are shqwn in Fig. 19. The relation of € and €, with the»

commonly employed deformation parameters, «, and ah given by

2

T Tt is seen in the figure that the shapes for ¢ #0 is too "rec-

tangular' and is probably not good enough a description of the real

nucleus.
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R = Ro(l + o + P+ ++) is shown in Fig. 20. The usual modifica-

2Fo
tion of the harmonic oscillator potential by the addition of a spin-orbit
coupling (&-ﬁ) is employed. A further modification is made such that
effectively the central part of the harmonic oscillator, which is
originally a parabolic shape, is flattened to some extent. Two para-
meters k and p are assoclated with thése two modifications and they
are adjusted to reproduce experimental energy level speétra.

The Nilsson model has been applied with great success to the
known nuclei. However one may question its reliability when one tries
to apply it, in extrapolation, to very heavy nuclei far beyond the
presently known region. One may suggest that a Hartree-Fock calculation based
on detailed knowledge of nuclear forces may be more reliable. But the
large number of matrix elements associated with the interactions among
the great number of particles involved makes such a calculation imprac-
tical with presently available computers. A more realistic one-body-
central potential than the Nilsson potential described above is the
‘Woods—Saxon ﬁotentia156) shape with a constant surface diffuseness.
Séveral groups are currently studying this potential. So far this
problem has not yet been adequately solved for strong deformations. AOn
the other hand the Nilsson model has been studied for rather large.
deformations and is fairly well understood; Thus we consider the Nilsson
model to be the be;t:availaﬁle microscopic approach fér éur purpose
of calculating the nuclear binding energy.

Thertwo shell parameteé k and p have been adjusted_by_

13)

Gustafson et a to approximately re?roduce the expefimental level
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schemes for the rare earth nuclei (A ~ 165) and the actinides

(A ~ 242). We take these values and for the other regions we assume

k and p to vary linearly with A. The parameters used are tabulated
in Table 2. The results of the calculations reproduce the known magic
numbers. For the A ~ 300 region, we find the proton number 11k to be

53)

a fairly good magic number, confirming previous results In this

region we find, besides the magic neutron number 184 that is generally
expected, also the magic neutron numbeﬂ_196. These results are shown

in Figs. 21 and 22, which also shows the level schemes obtained by
Rost55) who used a spherical Woods-Saxon potentia136). Although in
detail considerable differences are found, there ié an overall agreement
in the prediction of low level density for spherical shapes for

7 = 114 - 126 and for N = 178 - 184. We show for illustration in

Fig. 23 the Nilsson diagram for protons in the A ~ 298 region. A gap
exists in the level density for the spherical nucleus at Z = 114 which
is a proton shell. At each particular deforﬁation, the potential energy
can be found by filling up the levels with nucleons. The energy of

the highest level that is filled is called the Fermi energy.

5.C. The Pairing Force

The average interaction among the nucleons hés been repfesented
by the Nilsson potential. The most important residual interaction is
the pairing force, which is responsible for the ocgurrenée of odd4é§en
mass differences. This force was originally introduced by Bohr,

30)

Mottelson, and Pines and may be basically thought of as being a

simplified representation of a 5-force interaction. It is limited to

T See also p. 103 for a further comment on this neutron magic number.
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act only between péirs of time reversed states, which have complete
orbital overlap. Since protons and neutrons have different orbitals in
general, the pairing force is assumed not to act between them. It is
also assumed not to act in levels far below the Ferml energy, since
interactions in these levels are much hindered because of the exclusion
principle and the fact that neighbouring levels are all occupied.  This
latter point 1s discussed in detail in Ref. 37.

The effect of the presence of neutrons (or protons) on the
pairing interaction of the other kind of nucleons is represented by
assuming a (N - Z)/A dependence of the pairing strengths. Furthermore

38,40)

there are indications in both theory and experimentsg9) that the

pairing effect increases with increasing surface area of the nucleus.

%0)

We thus follow Stepien and Szymahski in assuming that the pairing
strengths are proportional to the surface area. The choice of these j
strengths and the number of levels near the Fermi surface where the
pairing force is assumed to act, is made so that the odd-even mass
differences of the rare earth and actinide huclei and their general

1
AT? dependence are approximately reproducedBl).

The effect of the inclusion of the pairing interaction relative

to a simple summation of single-particle energies is exhibited in Fig.

2l for the case of 25k

Fm. The palring effect increases the binding “
for all deformation. Though the increase in binding is in general not

independent of €, 1t does not significantly change the equilibrium

deformations from the values given by the Nilsson calculations without

pairing.
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5.D. The Liquid Drop Formula

We have discussed in some detail in Part IT of this thesis the
potential energy formula of a leptodermous system, which is usually
referred to as the liquid drop formula. We shall not repeat the
discussions here but merely state below the liquid drop formula due to
Myers and Swiateckih). We have chosen this particular formula, because
it involves only a fewparameters which have been chosen to reproduce
both the ground state masses and the spontaneous fission barriers. Thus
the formula has been adjusted for large deformations that correspond to
these fission barriers. This is ﬁost important for our purpose of

calculating binding energies as a function of deformations.

The formula is given by

2) 1 - 6 19)82/3 £(snape) + E,

E = —al(l—KI

D A+ a

2(

where T = (N - 7)/A and f(shape) is proportional to the nuclear
surface area, having the value of 1 when the nucleus is spheriéal.‘
The Coulomb energy EC is>calculated by aséuming the charge to be
uniformly distributed in the nuclear volume. Surface diffuseness and
exchange energy corrections to the Coulomb enérgy are also considered.
The parameters in the above formula are given by Ref. 41. Note in
particular that the same coefficient k' . is assumed for both the
volume and the surface symmetry energies.

5.FE. Generalised Strutinski Prescription and the Synthesis of the

!

Liquid Drop Model and the Nilsson:Model

Tn this section we shall study the prescription by which the

synthesis of a microscopic and a macroscopic model is effected. As a
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preliminary, we shall give a discussion of the basis for such a synthesis.
Though we have commented on it in the previous parts in some general
terms, we shall now discuss the basis more specifically with reference

to the Nilsson model and the liquid drop model.'

5.E.1. The basis for the synthesis

In the Nilsson model, the nuclear potential energy may be
written as the sum of single particle energies of nucleons filling up
the Nilsson energy levels. It is well known that such a simple summa-
tion of single particle energies of the Nilsson potential is inadequate
in the study of binding energies. In particular one is unable to
account for the observation that the separation energy and the average
ho)

252

binding energy are equal In Fig. 25 we display a potential energy

surface for the nucleus 'm as a function of deformation parameters
€ and €), baged on the simple summation procedure., It is seen that
the energy gets larger and larger for large € and large €), This

is in disagreement with experiment since we know that the fission
barrier of 252Fm is only three or four MeV. This is not unexpected
since we do not expect the Nilsson model to give correctly the absolute
values of the binding energy as a function of deformation and mass
number. However we find that it gives the relative values for
neighbouring nuclei very well. On the other hand we have discussed in
Part IT that a ligquid drop formula should reproduce the smooth trends
and absolute values. The success of the liquid drop model as applied

to fission phenomenon, where large deformations are involved and to the

calculation of nuclear masses, where large number of nucleons are
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considered seems to confirm this. All this leads to the basic idea

5)

advocated by Myers and Swiateckiu), Strutinski among others that if we

take away the average trend from the single particle and pairing energies
and replace it by the liquid drop formula, we would get a much improved
potential energy surface, where the local wiggles ére given by the Nilsson
model calculations and the smooth trends are given by the liquid drop
formula. In other words in the formula of the potential energy PE given

by the sum of the single particle energies 'ESP

PE = T

we replace the average single particle energy sum ESP by the liquid

drop energy ELD:

PE = (Bgp - Bgp) + Bpp

We may write out E in terms of the shell energy and the pairing

SP

energy of the neutrons and protons. Then,
FE(N, Z, €, €),)

+ E (N) +E

= Byt Eper () + Bp i

gne11(2) + Bpyp . (2) s

where FE and E are the shell and pairing correétions obtained

Shell Pair

by subtracting from the shell energy and pairing energy their average

values.
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The smooth trend of the pairing energy turns out to be approxi-
mately a constant independent of A and is egqual toBl) ~2.%3 MeV which

is conveniently subtracted off from the pairing energies. The smooth

trend of the shell energy is however not a constant as a function of the w%

mass number or of deformations. TIts extraction is the key to the
synthesis of the liquid drop and the Nilsson model. Once the smooth
avefage of the ghell energy is found, we can obtain the shell correction
by subtracting it from the shell energy. The shell correction and the
pairing correction are then added to the liquid drop energy to give the
total potential energy, which hés the useful features of both the micro-
scopic and macroscopic approaches. The crucial problem of the extrac-
tion of the smooth average trend of the sheil energy is discussed in

the next subsection.

5.E.2.  Generalised Strutinski prescription

In this subsection we shall study and generalise a prescription
due to Strutinski fof finding the smooth trend of the shell energy.
The method is very similar to the method of data smoothing where one
tries to obtain the average value at a point by evaluating a weighted
mean of a region around that point.

5)

Strutinski introduced a method to average over the energy levels

rather than over the total energy itself. Given a level density G(e) .

we may write the total shell energy as
B

¥
E(G) = / 2e G(e) de
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where EF is the Fermi energy. The factor 2 comes from the fact

that there are two nucleons per level. Tbe function G(e) has the
characteristic that it has both a smooth trend with a characteristic
length L which should be of the order of the Fermi energy and also
short range fluctuations whose wavelengths are less than or egual to the
energy spacing A Dbetween shelis. The problem is to find a smooth
level density g(e) which retains the long range variations but removes

the short range oscillations (the shells).

One may formulate the problem by writing G as follows

Gle) = Gle) + Gyle)

where GL(e) is the slowly varying part and G, is the rapidly

S
fluctuating part. Strutinski suggested that to smooth out Gs(e) bne‘
could find an average by weighting the points by a Gaussian of suitable
width. As already recognized by Strutinskl, a simple Gaussian weighting,
turns out to be inadequate because while it smooths out the rapidly
fluctuating part, it also distorts the slowly varying part. In order

to preserve the latter (i.e., GL(e)) one introduces a correction

factor F. Then the weighting is given by

e ~ e'
—— e Flu); u = —————

r(x)? T

where 7y 1is the width of the Gaussian. The requirement on F may be

written as
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2
——r ¢ F(u) G(e) de = G le') ,
()7

=0

which is equivalent to the two relations

1 —u2
—=— e F(u) GL(e) de = GL(e')
-0 r()?
and
* 2
—L ™ g(u) Gy(e) de = O
T(x)?

-00

In the case that GL is a finite polynomial of order

can be found explicitly. Equation (21) gives

o0
1 n —u2
——— u e Flu) du = & .3 0<n<p
(x)? we T
-00
Setting F(u) to be a polynomial

i
Flu) = §: c,u ,
i

we find, after some work, from the last equation
., = O for all 1 >0p

c. = 0 for all odd 1

(22)

p, F



_77..

and

E o (n -1 =-1)tt 5
O 2(n+i)/2 n,0

i=even

which can be solved for the coefficients Ci' In other words, if GL

is a polynomial of order p, we find a polynomial for F(u) also of
order of p with only terms of even orders, such that with our

weighting function, GL is retained in the smoothing procedure. When

the polynomial for F(u) is of order m < p, denoted by Fm(u) we do

not retain GL completely and the error made can be written down in

general. The error ¢§ made when m = p -~ 2 and the coefficient of

L
the pth order term in GL is ap turns out to be
m+2
T m+2
b T <E> o T (23)
where
o0
m+2 1 2
T =~ e g™ F (u) du
2
COLNN
L
(_)m/E m+ i+ 1 il
h ' 2i+1 _my,
i=m/2 2

When m is given, EL would be small when Y 1is small compared with
L.

The prescription is also supposed to smooth out the shoft-

range fluctuating part of the level density, Gs(e). Let us represent



the term in GS(e) with the longest wavelength . » Dby
Gs(e) = b exp(ie/\)

If this term is smoothed away, terms of shorter wavelength are also
smoothed away (see below Eq. 24). The error introduced by our prescrip-

tion with Fm(u) of the order m is then given by

2
by = | == " (W) Gyle) de

Y(ﬂ)s n

=00

After some manipulation, we find

by - o) (7N ;: Y GJ;_)_ N
.

k=0,even

When we put m to infinity the summation is just exp(Y/Ex)g and

£, =G

g q i.e., we do not smooth away G, at all. It is also clear that

3

the smoothing is more effective when Y 1s large compared with .

We sketch in Fig. 26 the total error lng + |§S| as a function
of v for the cases of m = 0, 6, and . The ternm EL dominates at
large Y values and decreases as m 1is increased. The term ES

dominates at small v values. When 7Y =0, ¢§ is maximum, 1l.e., ho

S

smoothing has been done, but as Y increases ES decreases. The
spread of gs is dependent on the values of m. It is larger for larger

m and in the limit when m is infinite, ¢ has an infinite spread

S

and no smoothing is made for any value of 7Vv. TFrom the figure we see
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two points. First that we should use an m value which is not too

large (for which cases &_. is spread over all values of 7), and also,

S

which is not too small (for which cases & is large even for v

L
values close to Zx). Second, one should choose a 71 value between
2. and I such that the total error is a minimum. For an appropriately
chgsen m value (m = 6 in the figure) there actually exists a flat
region inside these limits where the total error is small and is
independent of Y. This 1s the case one should choose.

Now we apply the smoothing prescription to the results of the

Nilsson calculation. The Nilsson calculation gives a series of sharp

energy levels ev, so that

G(e)kl = Y o(e - e

v

Then for a prescription with given values of m and Y, the smoothed

level density g is given by

T(x)?

, ﬁ * 2
gle') = [ —— ™ F(W) ole) de

o -
1 o E ‘
) -0 ;—(-;_)“g ) ) Fm(u) 1% (e - eV) N

— o ¥ F ) ep(-u )
()7 Z e Y

Vv
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where

+
For the order m to be seven

_ L. N 5.3 .21 u‘)
Fm(uv) = l+<'§'uv> +<-g—"2"uv +§UVJ

Then g(e) will have the same smooth polynomial behavior as G(e)

to the seventh order. Any error will be in the eighth order.

The smooth total single particle energy is then

E

‘ F
E(g) = j 2e g(e) de

with the Fermi energy EF given by

up

+

R. A. Miller 5) has done calculations along similar lines and
written down F as derivatives of g(e). He has tried to stu
the convergence of the results of smoothing as a function of
However he used only one value of 7Y close to 2) (see Fig.
and so reached the wrong conclusion that the results of the

prescription do not converge.

dy
m.

26)
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E

N = .]. F.E g(e) de

where N 1is the neutron number. Similar equations can be written down

for the protons. The shell correction EShell is then given by

Boners = B(6) - E(e)

In Figs. 27 and 28, we show this quantity as é function of the
Gaussian width v for the neutrons in the cage of 2lLEPu and 208Pb,
respectively. Similar fiéures are valid for the protons. It is
obvious that if)we use Fm with m = 2, we have a serious‘folding error
and the result is strongly dependent on v, but when wé use m = 6, the
result is rather v-independent except when 7Y 1s too large or too
small. Tor a fixed value of ¥ (say v =0.8 ﬁwb in the figure, wheére
W 1s the oscillator frequency in the Nilsson poteﬁtial), the change
from the zeroth (m = 0) to the second order (m =2) is about
60 MeV; from second to fourth is ~1 MeV, and from fourth to sixth
only ‘N%5 MeV. It is interesting to note that (Y/L)‘2 turns out to be
Just of thig order %5 and the above rate of convergence is indeed
to be expected when the main error comes from £ (Bq. 23).

In our calculation we have used m = 6 and Y = l.ElﬁwO and we
find that our results converge very well to a unique value for the shell
correction. It is these shell wiggles that are added to the smooth ‘ g

liguid drop energy.



-8o-

In summary, we have thus a unified model obtained by replacing
the smooth part of the total potential energy surface of the Niléson
modgl by the results of the liquid drop model. All local shell structure
variations (the local wiggles of the energy surface) have, however, been
retained.

5.F. Comparison with Experiments

To study the behavior of a nucleus at various deformations we
have applied the unified model to calculate the tptal potential energy
surface for the range of € between -0.5 and 0.95 and €) between
-0.08 and 0.16. Smaller ranges of ¢ and €), are taken for some
nuclei whose physically interesting features appear to be in a smaller
region.

The lowest minimum in this potential energy surface corresponds
to the ground state of the nucleus. Hence the ground state mass (or
binding energy) and distortion can be read off from the energy surface

and compared with experimental values.

< &
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5.F.1. Nuclear ma.ssesJr

In Fig. 29, we compare empirical and theoretical masses with
reference to the liguid drop masses at zero deformation. Thus the top
curve gives the experimental values minus the respective spherical
liquid drop masses in MeV. Immediately below, the theoretical values
at ground state equilibrium deformations are plotted. These contain all
the effects of distortions and shell structure. The differences between
the theoretical and experimental values are exhibited as the third and
lowermost graph in the figure. They reflect on the appropriateness
both of the liquid drop parameters chosen and of the nuclear shell and
pairing fields employed. The comparison shows very good agreements.
Discrepancies are only around 1.5 MeV. Three points of deviation may

be pointed out:

Our calculations of masses are similar to those reported by P. A,
Seeger and R. C. Perisho, Los Alamos Scientific Laboratory Report,
LA-3751, 1967, which provided part of the original stimulus for
undertaking calculations described in this section. These authors
neglgcted the Ph degree of freedom and in their fission calcula-
tions represented the liquid drop bafrier by a cubic in e. (There is
an error in the coefficient of their cubic term.) However, they allow
for an adjustment of liquid drop parameters. Our inclusion of the

P degree of freedom appears to improve the mass fit considerably.

~
O

No adjustment of liquid drop parameters is made in the present work.
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(i) The overall trend seems to be toward too small theoretical
masses at large A values.

(ii) There appear to be relatively large discrepancies connected
with the doubly closed shell of 2O8Pb. The theoretical binding energy
is underestimated by about 2 MeV around A = 208.

(iii) Tor large A values there is a marked discrepancy in the
isospin dependence within each band of isotopic masses. |

First of all, it would be desirable to readjust the Myers-
Swiatecki liquid drop parameters using our shell corrections. Masses
of spherical and deformed nuclei could be affected differently. If we
further assume different isospin dependence (symmetry energy coefficients)
for the volume and surface energy terms, we would probably be able to
improve on the theoretical results.

On the other hand the underestimate of binding near the doubly
closed shell may reflect on the details of the single particle calcula-
tions. The pairing energy calculation described in Section 5.¢
collapses near closed shells, whereas in fact there should still remain
some pairing energy of the order of one MeV ag can be brought out by a
random-phase-approximation Calculationhh). The underestimate in binding
for A - between 190 and 200 may be associated with the neglect of the
rotational asymmetry degree of freedom which is believed to play a role
in this region.

The masses for the superheavy nuclei beyond the present experi-

mental region show a broad shell structure at Z = 114 and N = 184 to
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196. This shell effect is not as strong as for the 208Pb shell, but
it may be a bit underestimated as in the Pb region. As shown below,
this shell is the main’reason to believe that there may exist in this
region an island of relative stability which might be explored
experimentally.

5.F.2. Ground state distortions

In Figs. 30 and 31 we exhibit theoretical deformation parameters
€ and €) associated with nuclei in the rare earth and actinide
regions. We should note that there is a general trend of the nuclear
deformation to go from the spherical at one magic nucleus to a deformed
nucleus with large € but zero €}, and then back to the spherical at
the next magic nucleus. MNuclei in the intermediate region have nonzero
values of €), +

Let us comment here that if‘we look at the equilibrium ¢
calculatedu5) on the Nilsson model without renormalisation to the liquid
drop smooth trends, we find the differences from our results to be
small: in most cases less than five per cent. This is not unexpected
because we know that the liquid drop part of the total potential energy
is a smoothly varying function, always predicting ground states to.be at
zero deformation. Any deformed ground state would be due to the local
fluctuations from the part connected with the single particle calcula-
tion, that have been retained. Hence both calculationé are equally
successful in giving the € deformation. .

In the case of €) deformations, let us look at the experimental

46)

results obtained by Hendrie et al. , who did a detailed optical
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potential analysis of inelastic alpha scattering data on the rare earth

nuclei. They assume the nuclear equipotential surfaces to be given byT

R

o]
1" ,R—é—(l + Bo¥on BTyt BeYep)

The differential cross-gsection involving populations of rotational
bands of even-even deformed nuclei up to 6+ (in some cases 8+) state
are fitted by a combination of Bos Byys and Bge The experimental
values of Bh are compared with the theoretical values obtained from
a tranéformation by means of Fig. 20. ThisTJr may be seen in Fig. 32.

The agreement appears remarkable.

The relation between Bk and the conventional co-ordinate a% is

given by

LV

B, = [x/(2n +1)]% o)

T The theoretical results in Fig. %2 represent an older calculation
on a Nilsson model without renormalisation to the liquid drop
smooth trends, but, as mentioned earlier, the new results are

essentially the same within an accuracy of 5%.
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5.G. Potential FEnergy Surfaces

From the minimum of a potential energy surface we can obtain
the ground state mass and deformation which are discussed above. A
further study of the potential energy surfaces will bring out more
features of physical interest, in particular those connected with
spontaneous fission barriers and shape isomers.

In Pigs. 3%a-£4 we exhibit the barriers obtained for isotopes
of Z =92 to Z = 11k as a function of € with minimization of
energy with respect ot €) for each value of €. This type of plot
represents a cut through the two-dimensional topographical map in the
(e, eu) plane along the potential energy minimum path with the energies
projected dnto the € axis.

In the following we shall study the structures found in the
barriers with reference to these figures. The possible errors in these
potential barriers are discussed at the end of this section.

=

5.G.1. The structure of spontaneous fission bharriers of

heavy and superheavy nuclel

The conventional liquid drop barrier has the ordinary one peak
shape, but because of secondary shell effects, structures can be found
in the potential energy barrier. By the secondary shell effects, one
refers to the extra shell binding that occurs at some moderate deforma-
tion as compared with the usually understood shell effects that appear
for the spherical shapes. They were first pointed out by‘Geilikmanu7)
and studied by Myers and Swiateckiu) and Strutinski5). It was
Strutinskisg) who first emphasized that they will cause a two-peaked

fission barrier.
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As a general rule, for a nucleus with its proton or neutron
number near a magic number, the ground state is spherical and the
secondary shell effect occurs at e ~ 0.4. For a nucleus with its
proton or neutron number away from a magic number, the ground state is
at € ~ 0.2 and the secondary shell effect occurs at e ~ 0.6. 1In
Fig. 34 we show the effect of shell corrections to the liquid drop
barrier. It is seen that the fission barrier is basically that of the
liquid drop with indentations due to shell effects. For the actinide
region (A ~ 242), even though the liquid drop would like to have a
spherical ground state minimum, the nucleus has deformation e = 0.2
because of shell effects. A secondary minimum occurs at e =~ 0.6 due
to the secondary shell effect. For a nucleus near a closed shell, the
shell correction makes the liquid drop minimum at the spherical shape
even stronger and a secondary minimum is found at € ~ O.4. For the
actinides (and also the rare earth nuclei) another minimum corresponding
to an oblate shape occurs (see Fig. %3). This minimum, for the actinide
case, is usually more than 5 MeV higher than the ground state. When
the rotation asymmetric (y) degree of freedom is included, the nucleus
corresponding to this minimum is found td be unstable in the ¥

L48)

direction , leading down to the lower ground state through a path
provided by this extra degree of freedom. TFor the lighter nuclei in
the rare earth region, this minimum is not much higher than the ground

state minimum. In some cases it may actually be lower and should be

taken as the ground state. This oblate shape will then have important
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physical significance, especilally as regards the N and Z values
where a transition from a prolate to an oblate ground state takes place.

As we have seen in Fig. 34, the existence of the two-peak
structure of the potential energy barrier is due to the secondary shell
effect. If the secondary shell effect occurs at or near the liquid drop
saddle point, the two-peaked structure will be most prominent and the
peaks will be of about equal height. If the secondary shell effect is
to one side of the liguid drop barrier, the peak on this side will be
smaller than on the other. In the extreme case‘when it is far off from
the ligquid drop saddle point we see a big peak and a very small second
peak in the barrier. This is then essentially just the ordinary one
peak barrier structure.

For the actinides the secondary shell effect occurs at
€ ~ 0.60-0.70. As we go from lighter to heavier actinides, the
figeility pa.rameterT % increases and the liguid drop saddle points
will move from large e to small €. Thus the liquid drop saddle

points for 258U, gugPu, 21¥80m., 25OCf, and 25th are at values
of € about 0.85, 0.74, 0.65, 0.59, and 0.5k, respectively. Then it

appears that in the region around Cm the saddle points are at about

T The fissility parameter =x may be defined as

5 .
x - 7" /A R )

50.88(1 - 1.7826 12)

)
using the Myers-Swiatecki liquid drop parameters+l).
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the position of the secondary shell effect so that the two-peaked
character of the barrier would be most prominentJr with peaks of about
equal height. As we go away from Cm to nuclel with higher or lower
values of x, one of the peaks will become smaller than the other aﬁd
eventually it will be mostly washed out. Detailed results of actual
calculations in our model may be found in Table 3 where we tabulate the
heights of the two peaks as well as the secondary minimum in between,
relative to the ground state. Because of the inaccuracy in the deter-
mination of the energy surface which will be discussed at the end of
this section, as well as uncertainties in the assumptions explicitly
and implicitly made in the present calculations, the table should be
looked upon as an indication of trends rather than as a quantitative
prediction. The trends are also illustrated in Fig. 35.

For the superheavy nuclei (Z ~ 114 and N ~ 184). Arguments
similar to those above apply. Since there is practically no licuid
drop barrier in this region, the two peak effect is apparent for 29h‘llO
where the secondary shell occurs at the flat part of the deformation
curve, but is not apparent for cases where the secondary shell occurs
at the rapidly dropping part (see Fig. 34).

It should be pointed out that for a particular element, a

change in the number of neutrons may change the picture significantly.

T This however does not mean that Cm isomers will have the longest
spontaneous fission half lives, since these depend also on excitation
energies of the isomeric state and the competition of gamma transition

back into the ground state.
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Not only does N affect the value of x, but shell structure effects
associated with N  may have important consequences. An example is
the following result from the present preliminary investigations. For
7. between 102 and 11k and for N 1less than 176, the nuclei‘have
ground states near € = 0.%, and secondary shell effects at e = 0.70.
gince these nuclei have very large x values the fission barriers
exhibit only one peak. There ig also a minimum at zero deformation
which lies higher than the ground state.b But as N 1s increased, this
minimum is getting lower until at N ~ 176-178, it is actually lower
than the minimum at‘ € =~ 0.3 and so it has to be taken as the ground
state. Hence for N < 176 we have a deformed ground state with a one-
peaked barrier. But for N > 178, we have a spheriéal ground state
with a two-peaked barrier with the secondary minimum at € ~ 0.3.
Obviously this latter case has a much thicker fission barrier‘and
should be much more stable against sponfaneous fission.

5.G.2. Spontaneous fission isomers in the actinide region

The existence of the tWo-peaked structure with a secondary
minimum in between may be associated with the spontaneous fission
isomers that have been studied expefimentally fér some years. An
isomeric state that corresponds to the secondary minimum has a
different shape from the ground state and is higher than the gfound
state by several MeV. The isomeric state may decay by gamma emission
to the ground state or by spontaneous fission through the second
49)

barrier The transition to the ground state is hindered by the

presence of the first peak. For the actinides the first peak 1s large
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so that gamma transition is greatly hindered and it is more likely for
the isomeric state to penetrate through the second peak and undergo
fission. Obviously the ground state has a much thicker barrier against

2LIEPu has a spontaneous

fission. Thus though the ground state of
fission half life of the order of lO5 yvears, one expects that the
isomeric state has a half life of the order of 100 nano—seconds only.
Experimentally this kind of isomeric state is found in nuclel
with 236 <A §12M6. The first fission isomer, in 2ugAm, was

51 .
discovered by Polikanov et al.5o) and by Flerov et al.” ) with a

fission half 1life of 14 mg. Since then a number of other cases have

been found52’55) with half life ranging from milliseconds to nanoseconds.

The isotope 2LLgAm seems to have an extraordinary long isomeric fission
half life. This has been studied to some extent by Ni# and Walkeru9)
who also speculated about the possible explanations. The excitation
energies of these isomeric states appear to lie between 2 and 4 MeV.
Relevant data are shown in Table L togéther with our theoretical
results taken from Table 3. As pointed out before, our theoretical
values are not expected to be gquantitative predictions, but rather an
indication of the trends. Thus the discussion of trends in the last
subsection is applicable here and can be used in a qualitative way to
see where we expect to find these ghape isomers.

Additional‘evidence that appears to support the existence of the
secondary minimum is based on the study of the energy dependence of

the thermal neutron fission cross sections for elements in the region

231 < A< 2u2,  An example is the thermal neutron fission cross-section
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of 255U. Superposed on the fine structure of a few eV, occurring at
about 6-7 MeV of excitation, there appears a sequence of resonances
with a spacing of about 100 eV and a width of a few eV. The ratio of
the spacing of the resonance type states to the spacing of the usual
type of states is about 500. It is about 50 for the case of 2ulPu. If
one interprets the resonance states ag the states of the secondary

o)

minimum as suggested by Lynn , then, using the standard level density

formula, one may estimate the secondary minimum to lie 1.5-3 MeV above
the ground state for the various nuclei between 25)U and gthm.
These results appear to be in qualitative agreement with the predictions

of the present calculations.

5.G.%. Shape isomers for the neutron deficient heavy

nuclei (A ., 206)

Let us first make a comment about the shape isomers for the
rare earth nuclei along the beta-stability line. -These nucleil have their
groundrstates situated at about € = 0.2 énd the secondary shell effect
is expected to cause an‘indentaﬁionof the liquid drop barrier at
€ ~ 0.6. But since the liquid drop saddle point is at a much greater
deformation than this value, what we expect to see ié a two peak
structure with the second peak much greater than the first peak.
Actually the first peak is on the rising part of the liquid droﬁ barrier
S0 tﬁat its effect is furthef reduced. Then if the nucleus is at the
isomeric state, it would probably prefef a gamma transition to the

ground state rather than spontaneous fission through the second barrier.
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Recently Bj¢rnholm55) suggested that one might look for fission

' 1
isomers in some neutron deficient heavy nuclei such as Egan 18

. »This may v
be argued as follows. The proton and neutron numbers are close to the
magic numbers 82 and 126 respectively. One thus expects the ground
state to be spherical and the secondary shell effect to occur at ¢ = 0.h.
Compared with the rare earth nuclei, this secondary'shell effect occurs

at a smaller deformation than for the rare earths so that its effect

will be stronger. For the neutron deficient case the liquid drop
fissility parameter is increased so that the liguid drop saddle point
will be moved toward the point of secondary shell effect. As discussed
in the subsection G.1. this would enhance the two-~peak effect.

We have calculated the barriers for the neutron deficient heavy
nuclel centered round Z = 86, A = 202. The results are displayed in
Figs. 36 a-e. They seem to indicate that while the above discussion is
true, the suggested enhancement of the two-peak effect on the fission
barrier is not enough. Even though the fissility parameter is increased
somewhat, the liguid drop saddle point is still at a very large deforma-
tion. Thus the shell effects will occur at the rising part of this
liguid drop barrier with the result that the isomeric state is at a
very high excitation energy above the ground state (~5 MeV). TFor the
same reason the second peak is much broader than the first peak. Hence
for these cases one expects the same conclusions as in the rare earths ‘
case, namely that if the nucleus is in the isomeric state, it would more |
likely undergo penetration through the first barrier and gamma decay ]

to the ground state than spontaneous fission through the second barrier.



In this study one realisgses an important point that when one is
looking for regions of fisslon isomers, one should look at the shell
effects on the background of the 1liquid drop fission barrier. Just
looking at the shell correctibns by themselves may be misleading.

5.G.k. Uncertainties in the potential energy surfaces

Two representative energy surfaces are exhibited in Figs. 37a,b.
The separate contributions from the liquid drop terms and the shell plus
pairing energies are exhibited in Figs. 38 and 39. For small distortions
from the spherical shape we expect the (e, eu) parameterization as
used to be adequate{ Howeﬁer at large distortions higher multipoles
will be important in the éalculations of gaddle point energie327).
Since for larger values of the fissility parameter x, the liquid drop
saddle points occur at smaller distortions and vice versa, we expect
that higher multipoles to be important for lighter nuclel whose values
of x are small, and that the (e, eu) parameterization should be
sufficient for heavier nuclei which have large values of x. Thus when
we compare the liquid drop saddle point energies on our (e, eu) scheme
with the more general parameterization used by Cohen and Swiatecki27)
we find that for U, with its saddle point at € =~ 0.85, our value is
too high by 0.6 MeV; for Pu whose saddle point is at € ~ 0.75,
our result is too high by 0.3 MeV; and for nuclei heavier than Cm
(zZ = 96) +the error is less than 0.1 MeV. In particular for superheavy
nuclei (Z =~ 114, A =~ 298), the error due to the restricted paraméteri—

zation should be small.
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The potential energy surface plots show the importance of the
€) degree of freedom as ¢ 1is increased. Although in the ground
states both positive and negative values of €), occur, the saddle
point always occurs for a positive eu, representing a smaller waistline
relative to the spheroid. 1In, Fig. 24, one may study the effect of the

25LLFm.

€), degree of freedom on the barrier of
The further considerations of deviations from axial symmetry of
the nuclear shapes appear to reduce the saddle point energies. Thus
as reported by V. V. Pashkevich56) the energies of the saddle points
closest to the ground state for nuclei between 2AOPu and 256Fm are
reduced by amounts ranging from O.4 MeV to 2.1 MeV.
On the whole we would say that we have over-estimated the
potential surfaces somewhat at large deformations. At small deforma-

tions, they should be reasonably reliable.

5.H. Barrier Penetration and Spontaneous Fission Half Lives

For the purpose of calculating spontaneous fission half lives,
we use the simple WKB theory for the penetration of a barrier.

Let us assume that the problem is one-dimensional and that e
is the relevant fission co-ordinate. According to the WKB approximation,
the probability for the penetration of a barrier is given by the
expression

1"

€ 1
2B -
P = exp { -2 ~5((e) - E) de exp(-K)
€

1B
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where B is the inertial mass associated with fisslon assumed to be

independent of €, E is the initial excitation energy of the nucleus
towards fission, and W(e) represents the barrier as obtained from a
potential energy surface considered in the previous séction. There

57,

exists an improved expression, as shown by P. O. Froman énd N. Froman
P = (1 + exp K)"l

This differs from the one above mainly for small K values, i.e., for
energies E near the top of the fission barrier. In particular, when
E  is equal to the top of the barrier, the probability for penetration
is 0.5. 1In our calculations below we consider only very small §
values for spontaneous fission, so we use the previous expression,
which should be adequate. Since € 1s dimensionless, B will have
the dimensions of a moment of inertia. Thus if we scale the nuclear
system simply according to its mass number, the B will be propor-
tional to A5/5.

Let n be the frequency of beta vibrational motion that is
associated with the fission mode. Setting n = 1020'58 corresponding
to a nominal vibrational energy of one MeV, we have the half life

given by

IS
s
no

-20.54

T = % = 10 exp K (seconds)

or

- in
o 28.04

T o= 1 exp K (years) . (26)
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Three main sources of error enter into the half life estimation.

(1) We have made a simplification of the problem so that it is reduced
to a one dimensional barrier penetration. We construct a path in the

energy surface by minimizing the potential energy with respect to €) o
for each ¢ and then projecting this path onto the ¢ axis. (2) With
the barrier, W(e), thus obtained, there are errors for large e since

we consider only e and €), deformations whereas highef orders of

deformations are important at large distortions. This effect will be
éspecially large for light actinides whose barriers extend to rather

large distortions. (%) Furthermore, shell effects will have their main j
impact near the ground states and will be washed out at large distortions. |
Thus any error in shell calculations will distort the potential barrier

and hence affect the life time estimates. All these errors will be very

crudely accounted for when we treat BA°5/3 as a parameter to be

adjusted so that the experimentgl half lives are reproduced; We have

estimated this parameter BA’5/3 by applying Egs. 25 and 26 to the

potential barriers we have calculated for the actinides 2 = 92-102

and their experimental spontaneous fission half lives. We have attempted

to see the dependence of this parameter on saddle point shapes by

plotting it against the fissility parameter x and also against the j

mean deformation of their barriers. 1In both cases, no simple trends R
are discerned. Thus as an aséumption, we have taken BA_5/3 to be a

constant for all heavy and superheavy nuclei. This is the simplest

procedure one can take in lieu of anything definitely better, but one

is not at all clear how valid this assumption is.
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Several methods are used to estimate BA_5/5. The first is
taken from a microscopic calculation due to Sobiczewski et al.7). The
inertial parameters for the heavy nuclei are found to cluster within
30% of a mean value.

~5/3

A second esgtimate of BRA is the empirical values obtained
by using the barriers for the actinides which we found from our calcula-
tions and fequiring these to give the correct experimental half lives.
These are also found to cluster within ~%0¢, about a mean value. A
third estiméte is also empirical and 1s due to Moretto and Swiatecki58).
They used liquid drop barriers modified by a Myers-Swiatecki shell

hl1)

correction term and with the ground state masses and fission barriers
adjusted to experimental values. They are able to estimate the mean
value of BA_5/5 for the actinides with only a 10% spread. It was found
that all of these three estimates lie within 30% of each other.

' -5/3

These estimates of the mean value of BRA are shown in

Fig. 40, where we have plotted
= 1
/n T against  (BA b/B/ﬁE)Z

for 7 = 110 and 114. The slope in this plot is

o2 A5/6[<W(e‘) - E)é de

where the excitation energy E 1s taken as half an MeV, corresponding
to the zero point vibrational energy in the fission mode. From this

figure the half lives can be read off. We have taken among the three
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estimates, the Moretto-Swiatecki value which is the lowest of the three.
The reason for the choice is that this estimate incorporates the experi-
mental ground state masses and fission barriefs, whereas the other
estimates have uncertainties in both these quantities. TIf we had taken
the other estimates, some of our values for spontaneous fission half
lives would be larger by one or two orders of magnitude while others

are increased by a factor less than 10.

It is to be commented here that this inertial parameter which we
adopt is more than seven times the value obtained by the assumption
of a pure liquid drop with irrotational flow, which of course cannot be
considered to be anything more than an extreme lower limit. This ratio,
seven, turns out to be somewhat larger than the corresponding ratio for
the rotational moment of inertia for deformed nuclei and also the ratio
for the quadrupole vibration.

The spontaneous fission half lives of the superheavy nuclel are
discussed in the next subsection. The half lives for the actinides are
represented in Table 5 as the ratio in powers of ten of the experimental
to theoretical values. There seems to be a systematic underestimate of
half lives on the neutron-poor side and an overestimation on the neutron-
rich side. A readjustment of the liquid drop parameters with indepen-
dent volume and surface‘symmetry energy coefficients might be able to
take care of this systematic discrepancy.

5.1. Stability of Superheavy Nuclel

There are three main mechanisms for the decay of a nucleus:

spontaneous fission, alpha decay, and beta decay (or electron capture).
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Alphavdecay half lives can be estimated from the Q-values of the process,
which are directly found from the masses of parent and daughter nuclei.
Similarly by comparing masses of adjacent isobars, beta stability can be
determined. Since these processes involve only mass differences between
nuclei one or two units of N or 2Z from each other their half 1life
estimations will be relatively little affected by any errors that occur
in these nuclei to a similar degree. Hence the alpha and beta stabilities
can be determined with reasonable reliability. For the actinide region
(Table 5) we are able to reproduce the experimental Q-values of alpha
decay to within +0.2 MeV and beta stable nuclei are usually verified.
The results for the lead region are not so satisfactory. In this region
the differences between experimental and theoretical Q-values for alpha
decay could be about 0.6 MeV. This is partly due to the inadequacy
of our calculations in reproducing the trends of the nuclear masses
near the lead region (see Section F.1.).

The estimation of spontaneous fission half lives involves -
larger uncertainties as discussed in the last section.

5.1.1. 1Island of stability in the neighbourhood of

7 = 114 and N = 184-196

The stability against alpha and beta decay as well as spon-~
taneous fission has been worked out for nuclei with proton number from
106 to 128 and neutron numbers from 178 to 204. 1In this region are
the magic numbers Z = 114, N = 184, and N = 196 (see Figs. 21 and
P2). The results are tabulated in Tables 6-8, which are summarised in

the half life contours of Fig. Ul.
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Some general features of this figure may be poiﬁted out. The
longest fission half-lives center rather symmetrically around (Z = 11k,
N = 184-196). Tt must be emphasized here that any stability against
spontaneous fission in this region is due to the extra binding resulting
from the ghell effect so that as one goes away from Z = 114 and
N = 184-196, the fission half-lives decrease rapidly. Without the shell
effect, the alpha half-lives depend on the inclination of the AN = AZ
line (which is the direction of alpha decay) with respect to the
direction of the beta stability valley. The shell effect essentially
increases the alpha half-lives for nuclei with Z < 114 and N < 184
and decreases those for nuclei Z > 114 and N > 184 and also
7Z > 114 and N > 196. The kinks in the curves occur when either the
parent or the daughter nucleus experiences a maximum shell binding
effect.

The great uncertainty associated with the numbers obtained must
be emphasized. TFirst of all there is the uncertainty of the extrapola-
tion of the shell model potential to an unknown mass region. Further-
more, a deviation of 30% in the estimate of the inertia parameter B
corresponds roughly to a factor of 106 in the spontaneous fission half-
lives, while a 1 MeV deviation in alpha energy corresponds to a factor
106 difference’in alpha half-lives. An underestimate of a given
nuclear mass due to a locai shell effect leads normally to an over=
estimate of the fission half-life. On the other hand, the error in,
alpﬁa energy is comparatively small. For the actinide region (wﬁere

we do not have the uncertainty due to the extrapolation of parameters,
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Table 5, our alpha energies are within 5% of the experimental values
corregponding to half-lives agreeing within a factor of ten, but our
fission half-lives for some isotopes can be wrong by a factor as large
as 106 either way.

All ?hese uncertainties may move the contours of half-lives in
Fig. L1, but the general pattern should remain the same so long as
Z =114, N =184, and N = 196 are good magic numbers. The magic
numbers 7 = 114 and N = 184 have been confirmed by various calcula-

) 5o that the part of the figure around the nucleus 11&52%

tions
can be used with reasonable confidence. The magic number N :‘196,
however, has not yet been verified by other calculations. At the
moment one is not sure whether this number will remain magic when a
more reglistic calculation than ours is made.+

The use of this figure as a guide in the search for relatively

long-lived superheavy nuclei will be illustrated in Section J below.

5.1.2. Possibility of the occurrence of surviving

superheavy elements in nature

Applying a "survival-of-the~fittest" test with respect to
fission, alpha decay, and beta decay in the above region and taking the

calculated numbers at their face value, one ends up with one probable

59) calculated the single particle

Recently Bolsterli, Fiset, and Nix
energies by a scheme in which no extrapolation of parameters is

necessary. Their preliminary results indicate that there is no gap

in the levels at N = 190.
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29LlLllO, which has a

candidate for survival in earthly matter, namely
total half life of about 108 years. However, the uncertainty of our
numbers as discussed above may indicate that, instead, a nucleus closeby
may have‘a better chance of survival.

Self-consistent field calculations of the eiectronic configura-~
tions6o’6l) indicate that the elements with even Z from 106 up to
116 have chemical properties similar to those of W, Os, Pt, Hg, Pb,
and Po, respectively (Fig. 42). So these superheavy elements, if they
occur in nature, may be found in ores of their respective chemical
homologues. However if the total half-life falls below ~ 2 X 108
years, its detection in earthly matter is beyond the capabilities of
our present techniques.Jr

Even if the longest half 1life in this region of elements is
less than 2 X 108 years, it may be possible to obtain information
concerning superheavy nuclei existing at some time in the past by
searching for neutron-rich products of spontaneous fission in meteorites
or in natural ores of platinum and its neighbouring elements.

A question may be asked whether such a long-lived superheavy
element may be produced in nature in the first place. This is still an
open guestion. However, it may beJnL that such a superheavy element

62)

could be formed by the so-called r-process in which a nucleus absorbs

T We would like to thank Dr. Luciano Moretto for drawing our attention
to this point.
T We are grateful to Dr. P. A. Seeger for helpful discussions of the

r-process.
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a large number of neutrons very rapidly and then undergoes successive
beta decays, ending up as much heavier relatively stable nuclei.T Most
very neutron fich isotopes seem to be sufficiently fission stable for
this process, which algo requires a condition of huge neutron flux and
very high temperatures. This condition may have prevailed at some point
in the history of the universe and may also exist in some massive stars
and quasi-stellar radio objects at this present time. This at once
raises the possibility of detecting superheavy nuclei in the primary
cosmic radiation. According to the most optimistic estimates, the
nuclei of interest in the primary cosmic rédiation may have been
produced lO5 years ago, while elements in the solar system have an

age of ~5 109 years. If we take Fig. 41 at its face value, we see
that in the study of the primary cosmic rays, one might be able to find

a few more nuclei which live longer than lO5 years.

Our estimate of masses along the prospective r-process path is,-
however, sensitive to the value assumed for the coefficient of the
surface symmetry energy. Conceivably the value of this coefficient,
after readjustment of all the liquid drop parameters, might be such
as bto make the generation of superheavy elements impossible. The
isotopic trends of actinide fission half-lives, which we fail to

reproduce adequately (Table 5), may be indicative of this.
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A recent preliminary search of element 110 in a platinum ore

6%,64)

at Berkeley and Livermore hag yielded negative results A study
of very heavy nuclei in the primary cosmic rays has recently been carried
out by P. H. Fowler, P. B. Price,and R. W. Walker in a balloon experiment.

The data are still under analysis.

5.J. Possible Experimental Production of Superheavy Nucleil

The heaviest elements presently produced (7 > 100) are all
synthesized by the bombardment of target elements of sufficiently high
atomic number with beams of heavy ions. The heaviest ion presently

available is ig Ar, but in the future ions as heavy as U may be

92
accelerated. On the other hand there is also a possiblity of producing
these superheavy nuclei by bombarding a target with an intense flux of

neutrons in a reactor. These will be discussed belowT.

5.J.1. Heavy ionreactiongby available projectiles

By heavy ion reactions one tends to reach nuclei on the neutron
deficient side of the beta stability line. This is so because the
stability line bends more and more towards the neutron-rich side relative
to its initial 45° direction in the N-Z plane. Both target and projec-
tile are therefore less neutron-rich than the center of the superheavy
region (Z = 114, N = 184), near to which the stability line happens

to pass.

T The reader is also referred to the extensive review given in Ref. 65.
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One of the most neutron-rich targets is 2;2Cm and the most

.k
neutron-rich projectile that is presently available 1is lg Ar. 1In
. 66) : 67)
the experiments by Thompson et al. and Ghiorso et al. , the

following reaction was attempted:
2h8Cm + uOAr - 28&11& + hn

96 18

28h

One obtains only the relatively light isotope 11k, whose half life

we estimate to be much less than lO_l5 seconds. This is beyond the
sensitivity of the present experimental techniques. The unfortunate
loss of four neutrons 1ls necessary to take away the excess energy of
the compound nucleus which results from the high energy required to

overcome the Coulomb barrier between the heavy ion and the target

nucleus. Even with a ggCa projectile,

48 24k 288
2OCa + 9uPu = 1k o+ o,
288 . -10
the product 114 has a half life less than 10 seconds. At the

moment it appears from Fig. 41 that one has to obtain an isotope of
114 with mass number equal to or greater‘than 290 before the half life
becomes long enough to make detection possible. For this é‘heavy

projectile like ggKr is reguired. ‘ o
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5.J.2. Heavy ion reactions by future projectiles

Lo
When heavier and hence more neutron-rich ions than Ar can

be accelerated the prospect is much better for the production of the
superheavy nuclei. In general one has to overshoot the llh298 -
nucleus and let various decay mechanisms take one to its neighbourhood.

238

An extreme example 1s the reaction U258 + U Either a transfer
reaétion takes place where the target takes off a part of the projectile
or a compound nucleus is formed which then undergoes fission. One
hopes to find products that are close enough to the center of the island
of stability so that they have long enouéh life times to make detection
possible.

An example that is not so extreme is furnished by reactions
induced by the ggKr ion. In Table 9, we show the compound nuclei
that might be formed by bombarding various neutron rich targets from
Pb to Cm with 86Kr. The question whether such a compound nucleus
would be formed will be discussed below. At the moment, let us assume
that by emitting four neutrons we get a cold compound nucleus in the

ground state. If we look at Fig. 41, we see that for 2O8Pb and

210Po targets, the compound nucleus undergoes spontaneous fission at

once and we do not expect to produce any superheavy nuclei. With targets
heavier than 226Ra, it appears that the alpha half life is always less
than the spontaneous fission half life (Fig. 41). Indeed if we let the %

compound nucleus decay by emitting alpha particles all the way we end

up in each case with a long-lived superheavy nucleus.
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The above discussion assumes that the compound nucleus was
formed in the first place. This assumption is very questionable for
the following reasons. (1) There are indications that for the same
products, the cross-section of a reaction with a heavy projectile is
cut down by se&eral orders of magnitude compared with a reaction in
whicha lighter projectile is used. (2) The large angular momentum
intreduced with the heavy projectile may cause the compound nucleus to
fission at once. (%) Furthermore we know that any binding of a super-
heavy nucleus is due to a shell effect. At the excitation energy of
the compound nucleus when it is first formed, the shell effect might be
greatly reduced so that little binding would be present and the compound
nucleus would break up (or would simply not be formed) before any
de-excitation can take place by neutron or charged particle emission.

68)

The first two points are illustrated by the fact that the production
of 26OlOlL by bombardment of ngPu with 22Ne has a cross-section
of only lO_Bu cmg. The last point is a difficulty characteristic of
the production of superheavy nuclei. |
These effects have not yet been understood and no definite

opinion can be expressed as to their importance in any future attempts
to produce superheavy nuclei by heavy ion reactions. Further studies
of these problems are essential not only for the production of super-

heavy nuclel but also for an understanding of heavy ion reactions in

general.
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5.J.3. Neutron capture reactions

An alternative way to attempt the production of superheavy nuclel
is by exposing heavy nuclel to.a high flux of neutrons. There is a

competition between (n, v) and (v, n) reactions. Under suitable

conditions of extremely intense neutron flux and very high temperatures,

the nuclei will capture a large number of neutrons and then beta decay,
ending up as heavy nuclei of much higher proton number, which in turn
undergo the same process. Eventually they would, hopefully, reach the

superheavy region. An intense neutron flux can be found in a nuclear

65)

reactor and also in nuclear explosions By the former, one can

achieve a neutron flux of 1015/cm2 - sec. By the latter the neutron
flux is much larger, of the order of 1051/ cmg - sec, but the exposure
time is less than 1 psec. The advantage of both these methods is that
comparatively large masses of target material can be used. Hoﬁever

these methods have produced fewer heavy elements than expected. Indeed

on
57Fm is the nucleus with the largest Z and A numbers that has

65)

On our model we do not expect 258Fm‘ to possess very

256

Fm. There are presently no.

been made
much shorter life time than 257Fm or
satisfactory explanations as to why heavier nuclei are not produced.

5.K.  Summary

In this part of the thesis we have tried to make use of the
ideas advanced in the previous parts in a practical application in the
synthesis of the Myers-Swiatecki liquid drop formula and the Nilsson

single particle calculations. By means of a generalised Strutinski
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prescription we have been able to replace the smooth average of the
Nilsson calculations by the liquid drop (or leptodermous) model. The
resulting unified model is expected to be good in accounting for not
only single particle effects but also the absolute values and trends of
the binding energies. \

There are two important consequences that come out of this
study. First of all is the occurrence of single particle structure
fission barrier. In particular, one finds in the energy barrier a
two-peak structure with a secondary minimum between the two peaks. This
secondary minimum may be asgociated with spontaneous fission isomers
found in the actinide region. We have given a discussion of the trends
and the regions where one would expect to find observable shape isomers.

The second conseguence aré the predictions about supérheavy
elements. We have confirmed previous calculations that 2 = 114k and
N = 184 are magic numbers, but the present work suggests that N = 196
may also be magic. We have been able to make quantitative predictions
on masses, deformations, as well as half lives for the various decay
mechanisms for these superheavy nuclei.' It is found that some of the
half lives might be extremely long, even of the order of the age bf the
solar system. Though great uncertainties are involved in the numbers as
discussed, one can still use these predictions as an indication of |
trends and as a general guide in attempts to produce superheavy nuclel

or in a search for them in nature.
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Table 1.

Table 2.

Table 3.

Table L.

=120~

Table Captions
Summary of topics studied in the thesis.
Values‘of k and p employed in the gingle-particle calcula-
tion corresponding to different regions of mass along the beta-
stability line. The first column denotes the mass of the center
of each region.
Calculated properties of the two-peak spontaneous fission
barriers and shape isomers from potential energy surfaces of -
the actinides. The deformationg of the ground state and
isomeric state are listed. The heights of the two peaks and
the excitation energy of the isomeric state are giVen in MeV
above the ground state. It is assumed that the zero-point
vibrational energies of the ground state and isomeric state
are equal.
Experimental properties of shape isomeric states. The first
group of columns identifies the nucleus. The second group
gives the experimental fission barriers based on the erroneous
assumption of a one-peak sfructure. The excitation energy of
the isomeric state is shown in the next group, estimated from
threshold measurement and from (n,f) resonance experiments.
The next entry gives the ratio of distances between resonances
in the isomeric state to those in the ground state. The last column
indicates the experimental spontaneous fission half-lives of
the isomers. Theoretical values are taken from Table 5. We
are grateful to Dr. S. Bjfrnholm and Dr. J. R. Nix for their

help in supplying us with the experimental data.




Table 5.

Table 6.

Table 7.

Table 8.

Table 9.

=121 -

Beta stability, alpha decay energies aﬁd spontaneous fission
characteristiés of the actinides. In each square classified
by 7 and N, the uppermost figure gives the mass excess on
120 scale in MeV. TIf the nucleus is found to be beta-stable,
this number is underlined. ‘The two numbers below give the
theoretical and experimental alpha decay Q-values regpectively.
The integer to the right is the ratio of the experimental
spontaneous fisgion half life to the theoretical value.

Table of masses, spontaneous~fission and alpha half-lives

for 106 <7 <116 and 178 < N < 189. The upper number

in éach square gives the mass excess in 12C scale (see

Ref. 41) in MeV. In the line below is listed the spontaneous-
fission half-1ife and in parenthesls the barrier height in
MeV; The bottom line in each square gives the alpha half-
life and the alpha Q-value (in parenthesis). Beta-stable
nuclel are underlined.

Same as Table 6, but for the region 116 < Z < 128 and

176 < N < 190.

Same as Table 6, but for the region 116 < Z < 128 and

190 < N < 20k.

86Kr beam, The first

36 50

column identifies the target nucleus. The second column

Production of superheavy nuclei by

indicates the compound nucleus that is formed by the fusion of
the target and.the projectile. Assuming that all the excita-

tion energy might be carried away by the emission of four
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neutrons one gets the nucleus shown in the third column. Now
assuming that beta decays were extremely slow compared with
Spbntaneous fission and alpha decay one finds the longest lived
superheavy nucleus that can be reached as indicated in the
fourth column with its major mode of decay. If we let the
nucleus in column k4 undergo beta decay one gets the super-
heavy nucleus shown in the fifth column with its major mode

of decay.




Table 1.

General Introduction <:>

Macroscopic
(ILiquid Drop Mbdel)

general dlscuss1ons <:)

//,//’

Relation:
Noninteracting nucleons in

an orthorhombic infinite

potential well <:::>

Microscopic ™~

(ilsson Model)

Acknowledgments:

Figsion of a charged

conducting drop <:>

Synthe51s applications to

superheavy nuclei and shape

(fission) isomers (:)

A
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Table 2.
PROTONS NEUTRONS
A value K i K 1L
165 L0637 0.600 L0637 0.420
187 . 0620 0.614 .0636 0.39%
208 L0604 0.628 .063%6 . 0.367
225 .0590 0.639 .06%5 0.346
2ho L0577 0.650 .0635 0.325 -
265 .0559 0.665 L0635 0.296
285 L0534 0.678 L0634 0.272
298 L0534 0.686 L0634 0.256
308 L0526 0.693% .0633% 0.24L
320 L0516 0.701 .0633 0.229
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Table 3.
Isomeric State
First Peak : Second Peak
Ground State | Height , | Excitation | Height
Zz N A | Deformation | above g.s.| Deformation above g.s. |above g.s.
€ €, MeV € €, MeV MeV
92 136 228 0.15 -0.06 3.0 flat region 5.%
138 230 0.17 -0.06 3.6 flat region 6.1
140 232 0.18 -0.06 L.o 0.59 0.06 2.9 7.5
142 234 0.195 -0.05  L.9 0.585 0.05 2.5 8.1
144 236 0.20 -0.05 5.6 0.605 0.06 2.4 8.9
16 228 0.21 -0.0h4 6.1 0.60 0.07 2.7 9.5
148 240 0.23  -0.0% 6.8 0.64  0.06 3.2 10.0
ok 138 232 0.18 -0.06 3.5 0.65 0.08 1.9 L.o
140 234 0.19 —0.65 L. .2 0.6k 0.08 2.1 5.2
142 236 0.20  -0.05 5.0 0.61 0.06 2.1 2
14 238 0.215 -0.0L 5.8 0.60 0.06 2.2 7.0
146 2h0 o.zé -0.03% 6.5 0.61  0.07 2.5 7.6
148 242 0.225' -0.05A 69 o.6i 0.07 3.0 7.95
150 24k 0.2%3 -0.02 .72 0.62 0.07 3.6 8.3
152 246 0.2%  -0.01 7.3 0.64 0.06 3.8 8.3
96 142 238 0.21  -0.04 5.1 0.63  0.07 1.5 4.0
1k 240 0.22  -0.0h  6.05  0.61 0.07  1.65 4.9
146 242 0.225 -0.0% 6.7 0.60 0.67 2.2 5.5
148 24k 0.23 -0.02 A 0.615 0.07 2.8 6.0
150 246 0.2%  -0.01 7.6 0.625 0.07 3,1 6.2
152 248 0.23  -0.0L 7.7 0.65 0.07 3.5 6.4
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Table 3 (Continued).
Isomeric State
. First Peak -4 Second Peak
Ground State Height Excitation Height
Zz N A | Deformation | above g.s. | Deformation above g.s. | above g.s.
€ ), MeV € €), MeV MeV
98 146 24l 0.22 -0.03% 6.7 0.615 0.07 1.4 3,0
148 2hk6 0.2%5  -0.02 7.5 0.625 0.07 2.0 3,75
150 248 0.23  -0.01 7.8 0.68 0.07 2.5 h.1
152 250 0.2% - 0.00 ‘8.0 0.695 0.08 2.7 h.oh
sk 252 0.235 0.0l 7.9 0.705 0.08 2.6 4.0
100 148 248 0.23 -0.01 7.7 0.73% 0.08 1.2 1.8 |
150 250 0.235 =0.01 7.9 0.72 0.08 1.5 2.1
152 252 0.24 0.00 8.2 0.72 0?09 S 2.3
154 254 0.2h 0.01 8.1 0.73 0.09 1.6 2.1
156 0.235  0.02 7.9 0.73 O 1.5 1.9

256

.09




Table L.

Height of Barrier

(MeV)

I

t ! :

§ Exc. Energy of Sec. Min. | i Fission
f (MeV) ' : | Isomer
: <+ D__/D_ |

Expt

Theoretical

1st Peak ©2nd Peak'

: LI !

¢ : i
{  From From Theor ; ¢ TSF
: D__/D_ thresh. 7 i 1/2
¢ I ! !

: meas . : i (sec)

I

Ref.

s

e e

O
Ny

9k

235
236
238
236
237
238
229
240
2&1

oho

2Lz ¢

AN TR e

\Jl
AN =1 N W

5.6

5.8

6.5

6.9

8.9

6.2

7.0

7.6

T7-95

ok 5. L 060

¢
i

2.1 % L <0107

| ;~1o'7

| <2.1077
5.1071

2.5 2.5 100 - | 4.107°

2.1 , L b3 5.1070
3.0 : ; 5.10'8
‘ 8

3.0 £ 1900 6.10"

f1.1x 1077

-L2T-



Table 4 (Continued).

Height of Barrier Exc. Energy of Sec. Min. 3 " Fission
(MeV) . (MeV) : Isomer
| . DII/DI( - Ref.
z ¥ & Eapt lsghgzzitlgié.Peak Diijg thresn. THeOTY % L/
T meas. (sec)
95 1hkz 238 ;7
ikh 239 % 2.9 2107 b
1hs 240 § 3,2 9.1o'LL b
146 2kl i 5.9 2.5 1.107° b
17 2bo % 6.4 3.1 2.9 [ 900 [1.h.107° £, b
148 b3 : |
W9 ok | (6.2) 1.107° b
08 148 26 705 375 (2.5) 2.0 g (.5.100) | gt
i :
a. Harwell Group f. Los Alamos Group Expt. Barriers quoted from
b. Copenhagen Group ‘ g. Dubna Group Myers and Swiateckill)
c. Seattle Group This result is doubtful. Recenﬁ experiments by the Berkeley
d. Saclay Group Group (Bowman, Cheifetz and Gatti) did not confirm the result.
e. Euratom_Group

BT
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Table 5.
138 1ho 142 1hh 1h6 148 150 152 15b
83,11
102 8.3
3
8.23
70.34 72,64 75.57 79.18
100 7.62 7.48 7.25) 7-09
0 o
8.00 7.56 7.16 7.32
60.29 62.73 65.88 69.66 7+.06
98 717 6.67 6.h2 6.2k 6.02
-3 -y -6
7.30 6.87 6.37 6.13 €.22
59.53 62.65 66.56
48.34 50.69 53.61 57.03 £0.99 65.61
96 6.7h 6.60 6.29 5.90 5.59 5.39
0! - -5 -6
6.62 6.50 | 6.22 5.91 5.48 . 5.16.
L8.32 51.52 58.27 62.96
i
—_ [ DU B e e . :
37.21 33.17 41.66 44.89 52.97 5779 63.23 i
9 6.60 L 6.17 5.82 5.74 5.95 h.66 P
y 3 -2 - !
6.7 6.31 5.87 5.59 1.98 n.66 !
46.66 51.17 ! !
i
20.57 33.01 36.72 43.93 ¥5.59 50.70
92
6 6 5 y




116

114

113

111

110

109

108

107

106

Table 6.

178 179 180 Yo 182 183 18l 185 180 187 188 189
187.87 190.36 19%.14 196.42 201.30 206.55
(irs) (5.8) 1 (7.1) 0% (8.3) 10ty (9.) 10ty (9.0)
1s (10.14) imin (9.92) 10s (9.71) imin (9.58) 0.1s (10.5%) 1s (10.24)
183.02 185.75 188.85 192.45 197.66 203.25
) 10min {8.89) 10n (8.58) 14 (8.45) 10s (9.39) 10min (9.11}
178.01 180.09 181.00 183.17 18k .41 186.56 188.34 191.29 193.88 197.32 199.84 203.52
lnin (5.4) 1% (7.0) 10% (8.3) 0%y (9.6) 105% (9.4) 2107y (9.4)
10a (7.97) 1y (7.71) 1y (7.55) 102y {7.20} || 20y (7.40) 1004 (7.87) | 1d (8.3h) sh (8.49) 104 (8.09) 104 (8.00)
17h.b3 177.8% 181.57 185.84 191.71 198.00
10y (7.33) 10% (5.80) 1%y (6.58) 1w (7.53) 107 (7.29)
170.60 173.0% 17h.43 176.93 178.51 180.99 183.11 186.40 189.32 193.09 195.94 199.95
1s (h.1) 104 (5.7) 1% (6.9) 10t% (8.1) 10%%y (8.1) 10%%y (8.1)
1y (7.46) | 10% (7.17) | 10% (6.85) | 10y (6.52) || 10"y (6.58) {[10% (7.10) | 1y (7.50) | 100 (7.65) | 1oy (7.24) |10y (7.16)
168.08 172,34 176.83 179.47 181.75 188.28 195.23
10y (7.05) 100y (6.38) 107y (6.03) 10% (6.98) 105 (6.72)
16k.54 167.33 169.25 172.0k 174,10 176.87 179.39 183.01 186.27 190.36 193.54 197.88
(1ms) (3.2) 10min (4.3) 10y (5.5) 10%% (6.8) 10%% (5.7) loiy (6.8) .
107 (7.20) 1% (6.85) | 10%y (6.20) | 1% (6.14) | 2% (5.63) | 1% (5.78) 107 (6.24) | 16%y (6.73) | 10% (6.86) | 10"y (6.45) |1oty (6.35)
162.86 168.02 171.10 173.29 176.18 178.87 182.66 186.08 193.68
10MYy (5.24) 10%y (6.21)
159.97 163.21 165.57 168.81 171.20 17h.3h 177.11 181.07 184.66 189.10 192.60
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Table 7.
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Table 8.
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Production of Superheavy Nuclei by

Table 9,

86

365050

Projectile

]
r'* : !
. : Longest-lived
; nuclei reached
After ! . L. .
Target Compound emitting ; after competition After p-decay
Nucleus bn i between s.f. and
; successive
: a~decay !
A Z XN 7z X z w . z § |edor gz oy Jldor
: Decay Decay
Po 208 82 126 | 118 176 | 118 172 (s.1) §
i
Po 210 84 126 120 176 120 172 (s.T) g
Rn § .
Lo &
Ra 226 88 138 124 188 12k 18k ¢ 118 178 a(lO_Bs) 112 184 (10 y) § A
Th 232 90 1bL2 126 192 126 188 % 116 178 a(lo’ls) 112 182 a(logy) §
U 238 92 1L6 128 196 128 192 : 11k 178 a(lo5s) 110 182 a(lO%y) i
Pu 24Lh 9L 150 130 200 % 130 196 % 11k 180 a(lbhs) 112 182 a(logy) i
Cm 2L8 96 152 132 202 132 198 § 114 180 a(lohs) 112 182 a(logy)'
!
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Fig. 2.
Fig. 3.
Fig. ha.
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Figure Captions
Single particle energies for a Hill-Wheeler box as a function
of the deférmation co~ordinate «. The other deformation
co—ordinate Y has been set to zero. A large gap in the
energy levels is indicated by a number which gives the number
of levels below the gaﬁ.
The configuration in momentum space for the Hill-Wheeler box.
Only the (kx, ky) plane is shown. The positions of the dots
in units of k= n/a = 2w, k =3x/b= 2w, and
kz = ﬂ/C = 2w3 give the quantumnumberg of the levels. The
fermi momentum kF is the momentum of the highest level that
is filled. The effective Fermi momentum q 1s defined such’
that the volumes of the bumps and dips cancel.
A bump and a dip on the effective Fermi surface after averaging
with respect to orientation.
The energy of particles in a cubic Hill-Wheeler box as a
function of particle number calculated in four different ways:
(1) Using the approximate expression E' with only the N-term,
E'(N); (2) B' with the N-term and the NE/B—term, E' (NQ/B);
(3) B' up to the N7 term, E'(WY/3); (1) The exact
calculation E. The volume of the box is assumed proportional
to N. The unit of the ordinate is in ﬂghg/EMB2 where P
is given by V = BBN.

Came 2s Fig. 4a for an oblate Hill-Wheeler box.
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Same as Fig. la for a prolate Hill-Wheeler box.

Same as Fig. ha for a Hill-Wheeler box with three

unecual sides.

The energy of N = 60 particles in a Hill-Wheeler box as a
function of the deformation parameter « (Y‘: O) calculated
in three different ways: (1) Using the approximate expression
E' up to Ng/Bnterm, E’(NE/B); (2) E' up to Nl/5 term,
E'(Nl/B); (3) The exact calculation, E. The results for B
with only the N-term is independent of « and is not shown.
The ordinate has a different unit from that of Figs. L. 1t
is converted to the latter by multiplying by N_Q/B.

Same as Fig. 5a for the case of N = 68.

The energy differences between E and E'(NE/B) and between
E  and E'(Nl/B) as a function of the particle number N

for a cubic Hill-Wheeler box. See Figures .

Same as Fig. 6a for an oblate Hill-Wheeler box.

Same as Fig. 6ba for a prolate Hill-Wheeler box.

Same as Fig. 6a for a Hill-Wheeler box with three

unequal sides.

The energy differences between E and E’(Nl/B) and betwéen
E and E'(N2/5) as a function of the deformation parameter

o, (v =0) for the case of N = 60 particles in a Hill-

~Wheeler box.  See Figures 5.

Same as Fig. 7a for the case of N = 68.
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Energy excess £ over a spherical drop as a function of
deformation.

Energy excess " & over a spherical drop as a function of
deformation for different values of the fissility parameter x.
The energy change in the division of a volume-charged drop
into n egual parts, as a function of the fissility parameter
%x. The ordinate is just ER' Taken from Ref. 19.

The maximum and minimum radii of saddle point shapes of a

volume~charged drop as a function of the fissility parameter  x.

The results for the symmetrical saddle point shapes are given
by the solid curves, and the results for the asymmetric saddle
point shapes by the dashed curve. Adapted from Ref. 20.

The energy change  1in the division of a volume-charged drop
into two spheres as a function of thebfractional volume of one
of the spheres for various values of x. Taken from Ref. 2k.

Same as Fig. 12 for the case of a conducting drop.

Shapes in the symmetry N = 2 family of eguipotential surfaces.

Shapes in the symmetry N

il

The maximum and minimum radii of the symmetric saddle point
shapes of a conducting drop as a function of the fissility
parameter x. Different curves corregpond to the restriction
to different families of shapes indicated by the values of N.
Saddle point shapes within the symmetric N = 6 family for

various values of x. The RMS values are also indicated.

% family of equipotential surfaces.




Fig. 18.
Fig. 19.
Tig. 20.
Fig. 21
Fig. 22.
Fig. 23.
Fig. 2k,
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The energy excess & (in units of ES(O)) over a sphere of

the symmetric saddle point shapes as a function of the fissility
parameter x is shown in solid curves. Tt is calculated on the
N = 6 vparameterization. The broken curve indicates the results
for a volume-charged drop taken frbm Ref'. 27.

Shapes described by the plane of the deformation parameters

e and €), A gsphere corresponds to e = O and ), = 0.
Spheroids have their € = 0.

Relation between deformation co-ordinates ¢, €} and «

2}

Q), - Note that the spheroid contalns some Q), (as well as o
etc. not shown in the figure).

Single-proton level diagram for spherical potential. Parameters
are fitted5) to reproduce observed deformed single-particle
level order at A ~ 165 and 242, and are extrapolated linearly
to the other regions. E. Rost's predicted level ordeer) for
A = 298 is exhibited for comparison |

Analogous to Fig. 21, valid for neutrons.
Single-proton levels A ~ 298; k = 0.053L; p = 0.686,
€), = 0. »

Effect of various terms in total energy as a functien of defor-
mation. Long-dashed curve marks simple sum of single-particle
energies, for dotted curve Coulomb energy is added, for dot-
dashed curve also pairing (G ¢ S) is included, for short-

dashed curve the Strutinsky normalisation is applied. In all

these cases it 1s assumed that Eh = 0. In the last case
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Fig.

Fig.

Fig.

Fig.

Fig.

27,

28.

29.

30.

31,

32,
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(solid curve) also the effect of the eu-degree of freedom
is included.
Sum of single-particle, pairing and Coulomb energies without

Strutingki normalization as function of e, €), At large

distortions the energy ultimately rises beyond + 1% MeV

(1imit for the plot).

A sketch of the errors }Est and l& in the Strutinski

1
Prescription as a function of the smearing width v, for
various order m of the correction factor Fm.
Shell corrections evaluated by the Strutinski method as a
function of the shell-smearing parameter 71 for case of
l

neutrons of 242Pu. Energies corresponding to three different
distortions are considered.

. 208
Same as Fig. 27, but for neutrons of Pb.
Experimental and theoretical mass values for 150 < A < 340

plotted relative to the spherical liquid drop value as of

Ref. L1,

Theoretical deformations, (e, eu), of ground state nuclei in

the rare earth region.

Theoretical deformations, (e, eh), of ground state nuclei
in the actinide region.

Empirical rare earth ) -values (filled circles) obtained
through the analysis of Ref. 46 compared to the present

calculations before the inclusion of the Strutinski normalisa-

tion. The effect of the latter is less than 0.01 in magnitude.
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Fig.

33a.

33b.
33c.
33d.
33e.

33f.
538 .
33h.
351.
533+

534 .

5h;
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Total energy minimized w.r.t. €), for each € as function
of € for isotopes of 92U; Dashed curve corresponds tq
G set constant while the solid line is based on assumption
that G 1s proportional to the nuclear surface area.

Same as Fig. %3a for isotopes of 9uPu.

Same ag Fig. %3a for isotopes of 6Cm.

9
Same as Fig. %3%a for isotopes of 98Cf.
Same as Fig. %3%a for isotopes of lOOFm' The extra dot-

dashed curve added for 2)6Fm represents the new total energy

for the case G o S when the nuclear potential parameters

.are modified from those relevant for A = 242 +to those for

A = 265. As can be seen the barrier change is very small.

Same as Fig. 33a for isotopes of No.

102
Same .as Fig. 3%a for isotopes of Z = 10k,

Same as Fig. 33a for isotopes of Z = 106.
Same as Fig. %3%a for isotopes of Z = 108.
Same as Fig. 33%a. for isotopes of Z = 110.
Same as Fig. 33%a for isotopes of Z = 112.

Same as Fig. 3%a for isotopes of Z = 11h.

Potential energy minimized with respect to €h~ és a function
of .e¢ for various ﬂuclei to illustrate the effect of shell
structure of a liquid drop background. The broken curves
correspond to liquid drop fission barriers. The solid curves

are the barrier after inclusion of shell and pairing effects.
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Fig. 35. The two-peak barrier as a function of mass number for
7, = 92-100.
Fig. 36a. Same as Fig. 33%a for isotopes of goFP-
36b . Same as Fig. 3%a for isotopes of 8MPO'
36c. Same as Fig. 3%a for isotopes of 86Rn.
36d. Same as Fig. 3%a for isotopes of gaRa-
36e. Same as Fig. 3%3%a for isotopes of 9OTh'
Fig. 575. Total-energy surface in (e, eu) plane for ESQFm after
application of the Strutinski normalisation. This figure
corresponds to a somewhat earlier calculation and employs

G = const and a different pairing cut-off than described in

the present paper. More recent calculations are exhibited in

Fig. 33.
- . . 290
37b. Same as Fig. 37a valid for 11k,
. R 252
Fig. 38a. Liquid-drop energy surface for Fm.
R - 290
38b., Licuid-drop energy surface for 11k,
Fig. %39a. Shell and pairing energy contributions for 252Fm. For

further details see Fig. 37a.

2901111-.

%9b. Same as TFig. 3%9%a for
Fig. ho. Sponténeous fission half lives of Z = 11k and 110 isotopes
as functions of the inertial parameter B for barrier
penetration. Three estimates of B are given. TFor further
explanations, see text.

Fig. 41. Contours of theoretical half-lives for 106 < Z < 128 and

170 < N < 20k. The thick dark lines dre contours of
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spontaneous fission half-lives. The broken lines are
contours of alpha half-lives. Beta stable nuclei are shaded.

Fig. k42, Periodic Table exhibiting predicted locations of new elements.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "'person acting on behalf of the Commission’
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.






