Construction and testing of the scintillating fibre trackers for MICE

PDF Version Also Available for Download.

Description

The discovery of neutrino mass through experimental evidence of neutrino oscillations at the end of the last century has provided the first proof that the Standard Model of particle physics is incomplete. To be able to extend the Standard Model to incorporate massive neutrinos first requires many theoretical uncertainties surrounding the particle and its interactions to be understood. Therefore, a dedicated experimental programme is needed over the coming decades to provide precision measurements of the neutrino oscillation parameters and also a possible measurement of CP violation in the lepton sector, which could have astrophysical consequences. An intense source of neutrinos ... continued below

Physical Description

155 p.

Creation Information

Fish, Aron September 1, 2009.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Author

  • Fish, Aron Imperial College, London (United Kingdom). Blackett Lab.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

The discovery of neutrino mass through experimental evidence of neutrino oscillations at the end of the last century has provided the first proof that the Standard Model of particle physics is incomplete. To be able to extend the Standard Model to incorporate massive neutrinos first requires many theoretical uncertainties surrounding the particle and its interactions to be understood. Therefore, a dedicated experimental programme is needed over the coming decades to provide precision measurements of the neutrino oscillation parameters and also a possible measurement of CP violation in the lepton sector, which could have astrophysical consequences. An intense source of neutrinos is required to achieve these precision measurements and the leading contender proposed to provide this neutrino beam, is the Neutrino Factory. Before a Neutrino Factory facility can be realised, a number of technological challenges need to be evaluated and understood first. One of which, is reduce the large phase space volume (emittance) of the initial muon beam, which is eventually stored and through decay provides the neutrino beam. Ionisation cooling is the chosen method to achieve this and the Muon Ionisation Cooling Experiment (MICE) at Rutherford Laboratory in the UK, is required to demonstrate ionisation cooling and its feasibility for a Neutrino Factory. To demonstrate ionisation cooling, a section of a cooling channel will be constructed and single-particle measurements of emittance of a muon beam before and after the cooling channel from particle spectrometers will be compared. To measure emittance accurately requires precision measurements of the momenta and spatial coordinates at the spectrometers by tracking devices in a uniform magnetic field. The focus of this thesis is based around the construction and testing of the MICE tracker(s), including a study of its simulated performance and also construction and testing of a prototype.

Physical Description

155 p.

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: FERMILAB-THESIS--2009-62
  • Grant Number: AC02-07CH11359
  • DOI: 10.2172/983634 | External Link
  • Office of Scientific & Technical Information Report Number: 983634
  • Archival Resource Key: ark:/67531/metadc1013388

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • September 1, 2009

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 19, 2017, 1:20 p.m.

Usage Statistics

When was this document last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Fish, Aron. Construction and testing of the scintillating fibre trackers for MICE, thesis or dissertation, September 1, 2009; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc1013388/: accessed June 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.