Advanced Characterization of Slags and Refractory Bricks Using Electron Backscatter Diffraction

PDF Version Also Available for Download.

Description

Numerous studies have been conducted to determine changes that occur in slag that cause a rapid change in viscosity, but these studies have been limited by the inability to characterize/identify the phases present in the slag. Rapid freezing of slag in entrained gasifiers and slagging combustion systems can cause a shutdown of the system. The reactions occurring in slag that result in rapid freezing of slags are not well understood. It is believed that electron backscatter diffraction (EBSD) can be used to analyze slags and aid in their characterization although its use has not been found in literature. The EBSD ... continued below

Creation Information

Kay, John & Eylands, Kurt September 30, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Numerous studies have been conducted to determine changes that occur in slag that cause a rapid change in viscosity, but these studies have been limited by the inability to characterize/identify the phases present in the slag. Rapid freezing of slag in entrained gasifiers and slagging combustion systems can cause a shutdown of the system. The reactions occurring in slag that result in rapid freezing of slags are not well understood. It is believed that electron backscatter diffraction (EBSD) can be used to analyze slags and aid in their characterization although its use has not been found in literature. The EBSD technique allows particle-by-particle mineralogy based on diffraction patterns generated by the electron beam when the sample is tilted to a high angle. The diffraction pattern (Kikuchi bands) can only come from crystalline phases, which makes this technique ideally suited to study crystal formation in slags where oftentimes the crystals are very small and a reasonable chemical analysis cannot be made by conventional energy-dispersive spectrometry (EDS) methods in the scanning electron microscope. The ability to have mineralogical data based on the crystalline structure of a phase rather than a chemical analysis by EDS allows much better interpretation of the temperature regimes in which specific phases tend to form. Knowing the type and relative amounts of a phase crystallizing in a slag is critical in predicting the viscosity of a slag at a given temperature. Six slag samples were selected based on the parent coal. Unfortunately, none of the slags appeared to have any crystalline material associated with them. The funding for this project was not adequate for generating more slags from the various coal types. For this reason, sample archives were searched for those containing slags that were not rapidly quenched. A slag from a bituminous coal was found to contain several dendritic crystals (10 {mu}m to 50 {mu}m in size) that formed near the edges of the slag. Analysis of these crystals identified the crystalline phase epidote - Ca{sub 2}Al{sub 2}O(Al, Fe{sup 3+})OH(Si{sub 2}O{sub 7})(SiO{sub 4}). The identification could not have been performed from EDS alone because of Ca deficiency. However, looking at the crystal structure combined with EDS shows that the phase present is a Ca-deficient epidote. From this information, a temperature range of formation was determined. This gives a good example of the additional clarity that can be derived from utilizing EBSD. Evaluation of corrosion products by EBSD at the refractory brick and slag interface did reveal penetration and corrosion of slag into the brick through examination of crystalline phases alone. The degree of corrosion was dependent on the type of refractory and chemical makeup of the slag. This technique has not been used before to analyze slags and slag/refractory interactions. More work needs to be performed to better utilize EBSD for this type of analysis. This project demonstrates that the method is a valid technique that can be used to characterize slags and their interactions with refractory materials.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: FC26-98FT40320
  • DOI: 10.2172/984654 | External Link
  • Office of Scientific & Technical Information Report Number: 984654
  • Archival Resource Key: ark:/67531/metadc1013386

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 30, 2007

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Dec. 18, 2017, 6:11 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kay, John & Eylands, Kurt. Advanced Characterization of Slags and Refractory Bricks Using Electron Backscatter Diffraction, report, September 30, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc1013386/: accessed June 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.