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Engineered microorganisms are currently used fer ghoduction of food products, pharmaceuticals,
ethanol fuel and more. Even so, the enormous pataritthis technology has yet to be fully explaité he need for
sustainable sources of transportation fuels hasreged a tremendous interest in technologiesethable biofuel
production. Decades of work have produced a cordidie knowledge-base for the physiology and pathway
engineering of microbes, making microbial enginegran ideal strategy for producing biofuel. Althbugthanol
currently dominates the biofuel mar-ket, some sfitherent physical properties make it a less ttaal product.

To highlight additional options, we review advanagsnicrobial engineering for the production of ettpotential
fuel molecules, using a variety of biosynthetichpeys.

INTRODUCTION

Conversion of biomass to biofuels has been theesutlujf intense research efforts since the 1970& Th
work has recently gained significant political asalentific momen-tum owing to concerns about clienebhange,
global energy security and petroleum supply. Glodr@rgy usage is projected to nearly double inninet two
decades[1-3], and biological fuel production might serve asistainable, carbon-neutral energy source compatible
with current engine technology. In an effort toseff increases in con-sumption and to limit theifdasl-related
negative impacts on the environment, the US Departrof Energy has established the goal of supplgrgdd% of
gasoline consumption with cellulosic ethanol by @0R]. Similarly, a European Union Directive (2003) aitos
replace 5.75% of all gasoline and diesel transjpets with biofuels by 201Q4].

Owing to physical and political limitations on alaldand, it is believed that future biofuels willy
necessity, originate from abundantly available diggllulosic bio-mass[5]. The liberation of monomeric sugars
from this biomass is the subject of intensive regeafforts that might be the key to the sustailitsmf any biofuel
process. This extremely important area of research has been reviewed elsewhere [6,7]. Here, we concentrate
on another important factor for the cost-effective production of biofuels from lignocellulosic feedstocks — namely
the conversion of biomass hydrolysates (monosaccharides) to target molecules. We present some recent
developments in microbial pathway modifications as a means of producing both currently used and prospective
biofuels from agricul-turally prevalent sugars.

The use of microbial systems for the production of industrially relevant compounds has seen
substantial gains in the past decade as a direct result of the genomics revolution. Further advances in gene
regulation, protein engineering, pathway portability, synthetic biology and metabolic engineering will propel the
development of cost-efficient systems for biofuel production. The current range of biofuels consists primarily of
microbially derived ethanol and plant-based biodiesel ( Box 1). Although bio-diesel is favored in several
European countries, ethanol dominates the majority of the world biofuel market, in-cluding that of the United
States. The pros and cons associated with any potential biofuel present challenges and opportunities that are
best addressed on a case-by-case basis, and these issues are therefore beyond the scope of this review.
Instead, we cover advances in metabolic engineering to produce biomolecules that are currently being explored
for the development as transportation fuels ( Figure 1).

Box 1. Current motor fuels and their biokaji counterparts

Gasoline is a complex mixture of hydrocarbons casepagprimarily of branched-chain alkanes and ar@satinging from 4 to 12
carbons in length[78]. Similarly, petroleum diesel (No. 2) is a mixtwghydrocarbons ranging from 9 to 23 carbons irglenwith an
average length of 16 carbons. The types of hydbarer in gasoline and diesel have a strong impadherproperties of the fuel. For
example, branching and unsaturation leads to greatane numbers in gasolirf&9] and lower cetane numbers in dieg8D]. Conversely,



n-alkanes have higher cetane numbers and loatane values. These differences highlight the fieethultiple alternative fuels to supplant
petroleum-based counterparts.

To date, research into gasoline substitutes hasséatlargely on ethanol. However, biosynthesisvpays in microbial systems,
both natural and engineered, yield molecules thatsanilar or identical to those currently foundgasoline. These include straight- and
branched-chain alkanes and alkenes from fatty aaid isoprenoid pathways, in addition to severabladts and esters Figure J.
Establishing high titer-production of these molesuthrough the use of microbial cultures could es¢ovreplace some or all of the stock
currently coming from petroleum.

Currently, plant oils constitute the major biolagisource for diesel fuel alternatives (biodiesdhwever, even the most efficient
plant-based production is insufficient to meet entrdiesel usage levels without a dramatic incr@asaltivation [81-83] Research into the
production of compounds from fatty acid pathwayggasts that straight-chain alkanes, identical éseffound in petroleum diesel, and fatty
alcohols can also be derived from microbial sourédthough currently far from industrial applicai, the production of biodiesel by an
engineered strain of E. co]B9] exemplifiesan alternative means of producing fatty estershhatbeen enabled by microbial engineering.

In addition to the hydrocarbons that constitute ihék of transportation fuels, additives are usedprove the performance and
stability of both gasoline and diesel fuel. Gasliadditives include anti-knock agents, anti-oxidaéad scavengers, lubricants and
detergents. Diesel fuel additives are generallyduseeliminate the gelling of the fuel in cold wieat. Two classes of commonly used
additives or oxygenates are alcohols and etheth,dfavhich reduce emissions and replace the puoslyoused toxic octane enhancers, such
as benzene, and anti-knock agents such as lead.

In addition to ethanol, other biologically derivaltohols, such as butanol and isopentenol, capaserthe octane rating of gasoline
without significantly decreasing the energy dens[#2]. In the past, butanol was commercially produceduph the use of microbial
cultures, and isopentenol is currently accessibthealaboratory scale. Advances in bioengineetr&ttinologies might eventually provide an
economically competitive means of producing thess &dditives.

Pathway engineering

Sugar catabolism and the fer mentation pathway

Agriculturally derived lignocellulosic hydrolysatesntain predominantly glucose and xylose and small
amounts of arabinose, galacturonic acid and rhaeyiosddition to a large percentage of lignindass (not
addressed here). For the economical bioconvergithese feedstocks to commodity chemicals, efficiese of a
high percentage of available monosaccharides @saruAlthough glucose metabolism is a nearly ursaétrait of
living organisms, the ability to metabolize othagars varies widely within microbes. Thereforeabalism of
monosaccharides has been an important target ietrelopment of an optimized microbial platformtiReays for
xylose and arabinose use have recently bergineered into Saccharomyces cerevidgelO]and
Zymomonas mobilig11]. Although developments in sugar catabolism waegle in the context of homo-ethanol
production, the advances are applicable to theyatazh of a variety of fuel molecules through npiki
biosynthetic pathways (discussed below).

Microbial production of ethanol has been reviewgtesively [12—14] S. cerevisiae, the most commonly
used organism for ethanol production, and Z. mekilie known to be homo-ethanol fermenters, and-tyd
Escherichia coli ferments sugars to a mixture baebl and organic acidsHijgure 9. A vast amount of work has
been done to engineer E. coli strains capable wiohethanol pro-ductiorf14]. By chromosomal integration of the
pro-duction-of-ethanol (PET) operon from Z. mobilisgram and coworkerg15] were able to engineer E. coli
straincompression ignition engines and have coresgtyu been developed for use as biodiesel. HoweWer,
biodiesel is to replace a significant portion ofremt petro-diesel needs, microbes might serverdwige a more
consistent and scalable source for this commodity.

The variety of fatty acids available from microbgdurces can potentially provide the mixture oficha
lengths and branching required for an ideal fuekl(Box 1). Microbial fatty acid biosynthesis and the divgref
naturally occurring fatty acids are well understd@®]. One high-yield source is the oleaginous algaey®obccus
braunii [26,27] In this organism, up to 40% of dry cell weighnsists of fatty acids. Different microalgal species
have been shown to accumulate different amountipidf ranging from 40-70% of their biomass. Maraiing
growth conditions such as G®upplementation, and nitro-gen and light limitatan increase the lipid content of
these algae[28]. A more direct replacement of conventional didsel might come from n-alkane production in
bac-teria. This unusual trait has been reporteadour in Vibrio furnissii [29]. Available studies of alkane
biosynthesis in this bacterium indicate that theyematic mechanism is a novel sequential reductfomtrexadeca-
noic acid to n-hexadecane catalyzed by the enzyah&®H29]. This work reported that the yield of thegs@lkane
from the Gg fatty acid is greater than 70%. However, a recepbrt disputes these findingg30]. Alkane pro-
duction can also be facilitated by the decarboryfadf fatty aldehydes Figure ) [31,32] However, the rates of
conversion of decarbonylases described to datmarglow for commercial application.
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Figure 1. Central metabolic pathways and the pitefitel molecules derived from them. The blue hodicates isoprenoid pathways and
isoprenoid-derived molecules. The yellow box intksafatty acid pathways and fatty acid-derived mles. Short-chain alcohols are shown in
green text. Biomass-derived sugars are indicatddui@ text. Abbreviations: 6P,G, 6-phosphoglucon@té, citrate; DHAP, dihydroxyacetone
phosphate; DMAPP, dimethylallyl pyrophosphate; Edifgthrose-4-phosphate; F6P, fructose-6-phospk&e; fructose-1,6-bisphosphate; FPP,
farnesyl pyrophosphate; FUM, fumarate’ @, galactose-1-phosphate; G1P, glucose-1-phaspB&&P, glyceraldehyde-3-phosphate; G6P,
glucose-6-phosphate; GGPP, geranylgeranyl pyroftadepGPP, geranyl pyrophosphate; ICT, isociti&®; isopentenyl pyrophosphate; M6P,
mannose-6-phosphate; MAL, malate; OAA, oxaloacet@@A, 2-oxoglutarate; PEP, phosphoenolpyruvateP Ribose-5-phosphate; S7P,
sedoheptulose-7-phosphate; SUC, succinate; SUC-Sl@&jnyl coenzyme A; X5P, xylulose-5-phosphate.

Fatty acid biosynthesis draws from the pool of @de€bA produced by several central metabolic patsva
To improve the free fatty acid levels in microbigs main approaches adopted to date have focuied en divert-
ing the pool of acetyl-CoA towards fatty acid bio#hesis or on decreasing the cellular consumptfdatty acids.
An example of the former method includes an engatkd. coli co-expressing several enzymes: an bCatx
carboxy-lase, the first enzyme in the fatty acithpay; a truncated thioesterase; and the fatty spidhase. This
leads to an increased production of free fatty 1di83]. Alternatively, to minimize fatty acid catabolisrgenes
such as yfcYX-ydiD in E. coli[34], and faal, faa2 and faa3 in S. cerevisjag] havebeen targeted for deletion or
inactivation. Also,deletion of the four genes associated with nelipa synthesis in S. cerevisiae (i.e. arel, are2,
dgal and Irol) results in a 2.5-fold increase i pinoduction of neutral fatty acids during late exgntial and
stationary growth phasg36].

Although fatty acids are the direct products of thty acid biosynthesis pathway, reduced and nextif




fatty compounds have also been made in bacteri@xample of microbial production of fatty alcohalsd esters is
the production of Jojoba oil-like wax esters andybesters in an engineered E. cdB7]. A recently isolated
enzyme has also been shown to esterify fatty acidsoprenyl alcohols, further expanding the ranf§eossible
bio-esters[38]. These fatty alcohols and esters can be produdédhe appropriate chain length required to serve
as biodiesel candidate§igure J.

Biodiesel from microalgae-derived lipids has begplered extensively[26]. However, these studies still
rely on a chemical transesterification to produezfuel mol-ecules. Recently, Kalscheuer et[88] reported an E.
coli-based process for in vivo transesterificatibhis FAEE biosynthesis was accomplished in recoanti E. coli
by co-expression of the ethanol production genemfZ. mobilis in combination with the acyltransfezaWs/
DGAT (wax ester synthase/acyl-coenzyme A:diacylgipt acyltransferase) gene from Acinetobacter haylyP1
[39]. Although this is an exciting proof of concepte tyields from this system need to be significaintiproved for
viable industrial application.

Theisoprenoid pathway

The isoprenoids are a family of natural productat thre synthesized with the use of the activated
hydrocarbon monomers isoprenyl pyrophosphate (&P)its isomer dimethylallyl pyrophosphate (DMAPED].

It is possible to produce several branched-chaiohalls, alkanes, alkenes and cyclic hydrocarbormsutin the
isoprenoid biosynthetic pathway. For decades,fnsly of com-pounds has been posited as a potestiarce of
biofuels [28,41] In addition to branched-chain hydrocarbons, fhéshway can be used to produce isopentanol
(isoamyl alcohol) and its acetate ester, compoymdposed as additives for spark ignition fu¢#2]. Sources of
isopre-noids previously suggested for fuel productiave included oil-producing algae such as ButiraThese
organisms produce large amounts of isoprenoids edlsas fatty acids[27]. Owing to the complex mixture of
hydro-carbons, the extract is more akin to a biderand there-fore would require hydrogenation amadking, in
much the same manner as fossil-derived counterppt8. Advances in the understanding and engineering of
isopre-noid biosynthesis pathways might facilitdte production of either a similar biocrude or fzgrh engine-
compatible molecules from microorganisms.

Isoprenoid monomers are produced either from acbl through the mevalonate pathway or from
pyruvate and glyceraldehyde-3-phosphate (G3P) tfivdbe deoxyxylulose phosphate (DXP) (also knowrhas
methy-lerythritol phosphate [MEP]) pathwayt0,44,45] These five-carbon monomers (i.e. IPP, DMAPP) loan
polymer-ized to chains ranging in length from ooentore than a dozen unitg4,45] Viable production of fuel
molecules relies on both increasing precursor bittesis as well as optimizing several downstreapsst

The majority of the research in this area has ctrora studies of pharmaceutically important compaind
such as lycopene, carotenoids, sterols, taxol ateinéinin [44,46—48] High-level production of IPP has been
achievedn both E. coli and S. cerevisiae, and many difieigo-prenoids have been produced with the uskeske
engin-eered host§49-53] In the engineering of E. coli hosts, the exiseeattwo separate biosynthetic routes has
been exploited by introducing the non-native mewnate path-way. In yeast, the native mevalonatewsthhas
been improved by several approaclig8,54—56]

These advances in monomer production can be usgaottuce isoprenoid biofuels in an industrially
tractable organism. Isoprenoids (e.g. phytoene [Cgérve as inter-mediates in the production ofdaisoprenoid
compounds, and they might be suitable as biocrigh E. coli and S. cerevisiae have been succégsful
engineered for the pro-duction of the phytoene-thasgotenoids[51,57-59] unfortunately, the current yields of
these compounds fall far short of what is requifethey are to produce viable fuel alternativg47,50,60]
However, if sufficient titers of phytoene are reaghit could be refined into motor and jet fuelotgh the
infrastructure currently used to process petroleum.

In addition to biocrude production, recent work gests the isoprenoid pathway can be used to pratiece
pro-posed gasoline additives isopentanol and isteuetate [42]. For example, researchers have demonstrated that
a pyrophosphatase isolated from Bacillus subtilis cpho-sphorylate IPP to form isopenteng6l]. The
acetylation of isopentanol by an engineered E. lcadi also been demon-strat¢é2,63] Additionally, saturated,
mono- or diunsa-turated monoterpenes and sesagiitespmight be useful as diesel and jet fuels. Hiktyato
modify terpene cyclases for the production of naeepenes will greatly expand the number of pottrtiels
molecules that can be synthesized microbifliy}—66]

Major challenges and future directions

Although known metabolic pathways offer severalgille avenues for the biosynthesis of fuel molegule
several other factors need to be addressed bédfeyecein be applied in an industrial setting. Farsd foremost are
the physical properties of the potential biofuellesale. These properties have an impact on everyttirom its



suitability as a fuel to the purification processes the mode of its transport to consumers. Alghodiscussion of
the properties for the biofuels mentioned hereifarsbeyond the scope of this review, this ideaitely exem-
plified by the brief comparison of ethanol and Imalgpresented above.

The primary challenge in biofuel production is @sting yields that make these fuels cost-competitiith
petroleum-based products. For any of the engingeajpproaches outlined in this review to be succéstie
development of efficient lignocellulosic breakdownmonosaccharides is crucial. The developmentisflinchpin
technology will enable the production of microbmbduced biofuels from crops that have higher gherates,
better yields, lower soil-impacts, and lower watfertilizer and pesticide requirements than cutyeosed crops
such as oil palms, corn or soybeaf&7]. These characteristics should serve to make H®fuwere com-petitive
with petroleum, while making them less competi-tivigh food production for arable land.

To date, pathway manipulations have largely bemitdd to the use of existing genes and conventional
gene expression techniques. Although these appeedwve yielded increases in target molecule ptadya cell-
wide approach to metabolic engineering will be megfito maximize the rate of biosynthesis in additio the yield
of the desired compound. To this end, there nowtex large body of work on the alteration of tcaipgional and
translational rates in addition to the developnangévolved enzymes to maximize throughput. Thisvidedge is
poised for use in the systematic design of higfificient biofuel production pathways. This globglpmoach is
nicely illustrated by recent publications showihg effect of various transcription factors on etildnlerance and
production in E. coli and S. cerevisi§é8,69]

Another important challenge in metabolic enginegris satisfying cellular energetic concerns (i.e.
thermodyn-amic constraints). For the productiorbolk chemicals and biofuels such as ethanol, fetatiem is
ideal. However, commercial production of 1,3-progdiol has been accom-plished aerobically usingresgged E.
coli optimized for the redox demands of the coroesiing pathway [70]. An important parameter in strain
optimization is the balance of energy and cofactguirements for the metabolic pathways used tegda the
target molecule. One example of this is from thedpction of polyhydroxybu-tyrate (PHB) in E. colnder
fermentative conditions. In this study1], PHB yield was improved by the introduc-tion offi/d an NAD—-NADP
transhydrogenase, to bal-ance NADH and NADPH ley@ld. This work also illustrates the potential of eregired
microbes in produ-cing replacements for petrolewseldl consumer products other than fuel (Bex 2 for more
examples). Supplanting high-value petroleum pragustich as plastics, with renewable products igrgrortant
first step towards creating sustainable sourceshimpetroleum products upon which we have conrelioin our
daily life. With continued improvements in metaloolengineering, we expect microbial production ofkbu
commodities to become economically competitive ypittrochemicals.

Box 2. Microbial sources of other petrochemical codities

The petrochemical industry is a source of a varétgther commodities in addition to fuel, Induatgproduction using engineered microbes
also has the potential to replace other crudeailved products[14,84] Historically, Clostridium strains have been ugedthe production
of a variety of biosolvents, such as acetone, lmitaamd ethanol [21]. More recently, E. coli strains have been engideby
Dupont/Genencor for the industrial production d@-fropanediol from glycerol through an aerobic pssc[70]. Microbial production of
both biodegradable plastics (e.g. PHA (polyhydrdkgmaoate), polylactic acid85,86]) and non-biodegrad-able plastics (e.g. polytherast
[87]) provides a range of biobased polymers and reptesan emerging field. For example, Metabolix Ir€afbridge, MA) has
commercialized a cost-effective method to produdHa\-based plastic (Mir8l") through the fermentation of corn sugfa8]. Similarly,
adipic acid, which serves as a precursor in nylmapction, has been produced with the use of ameared strain of E. coli89].

To date, the optimization of bioethanol productibas involved considerable metabolic engineering,
including the use of efficient alternate routes andymes from multiple and often non-model orgasis®ne such
widely used strategy is the high-efficiency PETsedie derived from Z. mobili§l4]. For success in the production
of alternative biofuels, similar metabolic engiriagrstrategies will be necessary; for example,déeelopment of
targeted and efficient transport systems, the imgament of the resistance of biofuels producersi¢otoxic effects
of accumulating biomolecules, the optimization eftmon flux to the desired products, and the constm of
strains that are robust under industrial procesglitions [14,72—74] Some advances that might have enormous
potential in the field of microbial biofuel prodim include the engineer-ing of a reduced-genomeok strain that
can be used for the systematic design of desiretiqifipes[75], and the inter-microbial genome transplantation
demonstrated in Mycoplasma caprilocufii6]. These examples represent the first steps towandsieering an
entire biological system from the ground up. Masssequencing efforts exploring the biodiversitycafturable
organisms as well as metagenomes, such as thesSar§aa project[77], have generated a wealth of genetic
information. These endeavors are providing novekymthetic pathway infor-mation that can be usedldsign
optimized systems for every fuel category. Thedamlvances seen in the de-velopment of these tkxjies will
almost undoubtedly facilitate the efficient andakle production of systems for novel biofuels.itdktely, political



forces, process economics, engine technology, apdhs infrastructure will dictate the widespreadegatability
and use of these alternate fuel sources.
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