Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California

PDF Version Also Available for Download.

Description

This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30percent using an ... continued below

Creation Information

Yin, Rongxin; Kiliccote, Sila; Piette, Mary Ann & Parrish, Kristen May 14, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30percent using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

Source

  • 2010 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, August 15-20, 2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-3636E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 985239
  • Archival Resource Key: ark:/67531/metadc1013286

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 14, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 18, 2017, 10:10 a.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Yin, Rongxin; Kiliccote, Sila; Piette, Mary Ann & Parrish, Kristen. Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California, article, May 14, 2010; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1013286/: accessed June 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.