Status of Graphite Oxidation Work

PDF Version Also Available for Download.

Description

Data were developed to compare the extent of structural damage associated with high temperature exposure to an air leak. Two materials, NBG-18 graphite and unpurified PCEA graphite have been tested as of this report. The scope was limited to isothermal oxidation at a single temperature, 750°C. Ambient post-oxidation compression strength testing was performed for three levels of burn off (1%, 5%, and 10% mass loss) for two leak scenarios: 100% air and 10% air in helium. Temperature, gas flow, and dynamic mass loss oxidation conditions were monitored and recorded for each sample. The oxidation period was controlled with flow of ... continued below

Creation Information

Smith, Rebecca May 1, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Data were developed to compare the extent of structural damage associated with high temperature exposure to an air leak. Two materials, NBG-18 graphite and unpurified PCEA graphite have been tested as of this report. The scope was limited to isothermal oxidation at a single temperature, 750°C. Ambient post-oxidation compression strength testing was performed for three levels of burn off (1%, 5%, and 10% mass loss) for two leak scenarios: 100% air and 10% air in helium. Temperature, gas flow, and dynamic mass loss oxidation conditions were monitored and recorded for each sample. The oxidation period was controlled with flow of inert gas during the thermal ramp and upon cool down with a constant 10 liter per minute flow maintained throughout furnace operation. Compressive strengths of parallel un-oxidized samples were tested to assess the relative mass loss effects. In addition to baseline samples matching the un-oxidized dimensions of the oxidized samples, two sets of mechanically reduced samples were prepared. One set was trimmed to achieve the desired mass loss by removing an effectively uniform depth from the geometric surface of the sample. The other set was cored to produce a full penetration axial hole down the center of each sample.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: INL/EXT-10-18880
  • Grant Number: DE-AC07-05ID14517
  • DOI: 10.2172/984551 | External Link
  • Office of Scientific & Technical Information Report Number: 984551
  • Archival Resource Key: ark:/67531/metadc1013206

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 3, 2017, 5:25 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Smith, Rebecca. Status of Graphite Oxidation Work, report, May 1, 2010; Idaho. (digital.library.unt.edu/ark:/67531/metadc1013206/: accessed June 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.