QM02 Strength Measurement

PDF Version Also Available for Download.

Description

In late April, Paul Emma reported that his orbit fitting program could find a reasonably good fit only if the strength of QM02 was changed from design value of -5.83 kG to -6.25 kG - a strength change of 7.3%. In late May, we made a focal length measurement of QM02 by turning off all focusing optics between YC07 and BPMS1 (in the spectrometer line) except for QM02 and adjusted the strength of QM02 so that vertical kicks by YC07 did not produce any displacements at BPMS1 (see Figure 1). The result was quoted in the LCLS elog was that ... continued below

Physical Description

2 pages

Creation Information

Welch, J; Wu, J.; /SLAC & , November 24, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In late April, Paul Emma reported that his orbit fitting program could find a reasonably good fit only if the strength of QM02 was changed from design value of -5.83 kG to -6.25 kG - a strength change of 7.3%. In late May, we made a focal length measurement of QM02 by turning off all focusing optics between YC07 and BPMS1 (in the spectrometer line) except for QM02 and adjusted the strength of QM02 so that vertical kicks by YC07 did not produce any displacements at BPMS1 (see Figure 1). The result was quoted in the LCLS elog was that QM02 appeared to 6% too weak, and approximately agreed with Paul's observation. The analysis used for the entry in the log book was based on the thin lens approximation and used the following numbers: Distance YC07 to QM02 - 5.128 m; Distance QM02 to BPMS1 - 1.778 m; and Energy - 135 MeV. These distances were computed from the X,Z coordinates given the on the large plot of the Injector on the wall of the control room. On review of the MAD output file coordinates, it seems that the distance used for QM02 to BPMS1 is not 1.778 m. The correct value is Distance, center of QM02 to BPMS1 - 1.845 m. There may be a typo on the wall chart values for the coordinates of BPMS1, or perhaps there was a misinterpretation of edge versus center of QM02. In any case, the effect of this change is that the thin lens estimate changes from 6% too weak to 9% too weak. At John Galayda's suggestion, we looked into the thin lens versus thick lens approximation. A Mathematica program was written to solve for the K value of the QM02, in the thick lens approximation, that provides point to point focusing from YC07 to BPMS1, and to compare this number with the value obtained using the thin lens approximation. The length of QM02 used in the thick lens calculation is the effective length determined by magnetic measurements of 0.108 m. The result of the Mathematica calculation is that the thin lens approximation predicts less magnet strength is required to produce the same focusing by about 1.3%. When both the distance correction and the thick lens approximation are taken into account, the result is: K{sub thick} - K{sub mm}/K{sub thick} = -7.6% where K{sub mm} is the value obtained from magnetic measurements and K{sub thick} is the value of K obtained from the focal length measurement in the thick lens approximation. That is, QM02 acts weaker than it was measured by magnetic measurements by 7.6%. This is remarkably close to Paul's original estimate. The unexpected weakness could in principle be due to several things: shorted turns, a current calibration error, magnetic measurement error; it could even be due to the presence of an gradient from QM01, which is of opposite sign and right next to QM02, despite it being set to zero current (although it was not DAC-zeroed). Plans have been implemented to remove and replace QM02 at the earliest ROD.

Physical Description

2 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SLAC-TN-10-049
  • Grant Number: AC02-76SF00515
  • DOI: 10.2172/993413 | External Link
  • Office of Scientific & Technical Information Report Number: 993413
  • Archival Resource Key: ark:/67531/metadc1013099

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 24, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 3, 2017, 1:30 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Welch, J; Wu, J.; /SLAC & ,. QM02 Strength Measurement, report, November 24, 2010; [California]. (digital.library.unt.edu/ark:/67531/metadc1013099/: accessed April 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.