CRADA Final Report: Materials Development For Pulp and Paper Mills, Task 9 Proof of Commercial Concept: Commodity Carbon Fibers From Weyerhaeuser Lignin Based Fibers

PDF Version Also Available for Download.

Description

Tasks were assigned to Oak Ridge National Laboratory (ORNL) researchers for the development of lignin-based carbon fiber from a specific precursor that was produced by the Participant (Weyerhaeuser Corporation). These tasks included characterization of precursor polymers and fibers; and the development of conversion parameters for the fibers. ORNL researchers provided recommendations for in-house characterization of the precursor at the participant's laboratory. During the early stage of the precursor fiber production trials of various spools of fibers with varied compositions were produced. Some of those samples were sent to ORNL (by the Participant) for the development of conversion protocol. The trial ... continued below

Creation Information

Paulauskas, Felix L; Naskar, Amit K; Ozcan, Soydan; Keiser, James R & Gorog, John Peter September 1, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Tasks were assigned to Oak Ridge National Laboratory (ORNL) researchers for the development of lignin-based carbon fiber from a specific precursor that was produced by the Participant (Weyerhaeuser Corporation). These tasks included characterization of precursor polymers and fibers; and the development of conversion parameters for the fibers. ORNL researchers provided recommendations for in-house characterization of the precursor at the participant's laboratory. During the early stage of the precursor fiber production trials of various spools of fibers with varied compositions were produced. Some of those samples were sent to ORNL (by the Participant) for the development of conversion protocol. The trial tow samples were oxidized at ORNL's precursor evaluation system (PES), a bench-scale facility consisting of an oven, filament winder, tension controller, and a let off creel. The PES is a modular tool useful for the development of precursor conversion protocol. It can handle a single filament to a large single tow (50k filaments). It can also offer precise tensioning for few-filament tows. In the PES, after oxidation, fibers are typically carbonized first at low temperature, {le} 600 C, and subsequently at a higher temperature, {le} 1200 C with controlled residence time. ORNL has recently installed a new carbonization furnace with 1700 C limit and a furnace with 2500 C capacity is under installation. A protocol for the oxidation and carbonization of the trial precursor fibers was developed. Oxidized fiber with a density of 1.46 g/cc (oxidation time: 90 min) shows qualitative flame retardancy via simple flame test (fibers do not catch fire or shrink when exposed to flame). Oxidized and carbonized filaments of the Weyerhaeuser precursor fibers show moderate mechanical properties and 47-51 % carbon yield (based on oxidized fiber mass) after carbonization between 1000-1400 C. The properties of fibers from nonoptimized composition and processing parameters indicate the potential of low-cost, low-end carbon fibers based on renewable resource materials. Further work is necessary to produce high quality precursor and the corresponding carbonized filaments of superior properties.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL/TM-2010/171
  • Grant Number: DE-AC05-00OR22725
  • DOI: 10.2172/988228 | External Link
  • Office of Scientific & Technical Information Report Number: 988228
  • Archival Resource Key: ark:/67531/metadc1013079

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 2, 2017, 6:24 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Paulauskas, Felix L; Naskar, Amit K; Ozcan, Soydan; Keiser, James R & Gorog, John Peter. CRADA Final Report: Materials Development For Pulp and Paper Mills, Task 9 Proof of Commercial Concept: Commodity Carbon Fibers From Weyerhaeuser Lignin Based Fibers, report, September 1, 2010; [Tennessee]. (digital.library.unt.edu/ark:/67531/metadc1013079/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.