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Abstract

SQUID-Detected MRI in the Limit of Zero Static Field

by

Nathan Dean Kelso

Doctor of Philosophy in Physics

University of California, Berkeley

Professor John Clarke, Chair

The magnetic gradient fields used in magnetic resonance imaging (MRI) have a component
which is parallel to the uniform field B0 = B0ẑ, as well as a component perpendicular to B0. The
component parallel to B0 is used in spatial encoding. The component perpendicular to B0, called
the “concomitant gradient,” causes image distortions (by altering the magnitude and direction
of the total field) if its magnitude approaches B0 at any point in the field of view (FOV). In a
conventional imaging sequence, the presence of the concomitant gradients limits the maximum
gradient that can be used with a given B0 field or, conversely, limits the minimum B0 field that
can be used with a given gradient field.

This thesis describes an implementation of the so-called “zero-field MRI” (ZFMRI) pulse
sequence, which allows for imaging in an arbitrarily low B0 field. The ZFMRI sequence created an
effective unidirectional gradient field by using a train of π pulses to average out the concomitant
gradient components during encoding. The signals were acquired using a low-transition tempera-
ture dc Superconducting QUantum Interference Device (low-Tc dc SQUID) coupled to a first-order
axial gradiometer. The experiments were carried out in a liquid helium dewar which was mag-
netically shielded with a single-layer mu-metal can around the outside and a superconducting Pb
can contained within the helium space. We increased the filling factor of the custom-made, double-
walled Pyrex insert by placing the liquid alcohol sample, at a temperature of approximately −50◦C,
at the center of one loop of the superconducting gradiometer, which was immersed in the helium
bath.

Using the aforementioned sequence and apparatus, images were acquired in the limit of
zero static field, using gradients of up to 100 µT/m over a 23 mm FOV. The change in field
magnitude over the FOV due to gradients was up to 10 times larger than the magnitude of any
static field present in the dewar (static fields arose from residual magnetic fields and were 1 µT
or less). These images were free of concomitant gradient distortions. Images encoded using a
conventional imaging sequence under similar conditions were also acquired; the conventional images
were irreparably distorted.

The limitations of the present ZFMRI sequence implementation are considered, as well as
how the procedure could be made more practical with regard to imaging time. The extension of
the technique to unshielded operation in a uniform ambient field is discussed, as are other methods
of mitigating or eliminating concomitant gradient distortions.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) in ever higher fields has obvious advantages in in-
creased signal-to-noise ratio (SNR) and resolution [1]. However, there has been recent interest in
the opposite limit: that of MRI in field magnitudes on the order of microtesla [2–6]. Although we
do not expect it to supplant modern high-field MRI, imaging in very low fields does have signifi-
cant advantages: the potential exists for cheaper, more open systems in which field homogeneity
requirements are relaxed [2], T1-weighted contrast is enhanced (where T1 is the longitudinal re-
laxation time) [3], chemical shift artifacts are eliminated [4], and that can acquire images in the
presence of metal such as titanium implants [5]. One could also imagine combining low-field MRI
with existing magnetoencephalography (MEG) systems in order to combine the two functions into
a single device [6].

Performing MRI in microtesla magnetic fields does pose some important challenges, how-
ever. First of all, the thermal polarization of nuclei in microtesla fields, and therefore the signal,
are several order of magnitudes lower than in typical high-field systems. Low magnetic fields also
imply low precession frequencies; if signal acquisition is done using tuned detectors, Faraday’s Law
implies that the received signal will also be low compared to typical systems. Combining these two
effects, we find that for Faraday-detected signals, the received signal scales as the square of the
magnetic field [1]. The signal loss involved in using microtesla fields can be compensated in part by
the use of a prepolarization pulse and signal acquisition with a detector such as a SQUID, which
is sensitive to the magnetic flux rather than its time rate of change.

Another challenge arising in low-field MRI is that of concomitant gradient distortions.
The encoding fields contain components that are parallel to B0 as well as components that are
perpendicular to B0. In conventional imaging, when the uniform field is much larger than the
maximum field produced by gradients, the “concomitant gradient” fields perpendicular to B0 can
be ignored, and the gradients treated as linear and unidirectional variations in the field magnitude.
As B0 is reduced, the concomitant gradient field magnitudes become a significant fraction of B0

and lead to distortions in the image [7]. This sets an upper limit on the gradients that can be used
for a given value of B0, or sets a lower limit on the uniform field B0 that can be used for a given
gradient.

Several techniques have been developed to correct the distortions due to concomitant
gradients in low-field imaging [8–11]. In this thesis, we will investigate imaging in the limit that
B0 → 0, using a pulse sequence that averages out the concomitant gradients during image encod-



2

ing [9, 10], and measuring the signal with a SQUID. It is not our intention to present SQUIDs or
MRI in exhaustive detail, but we will present sufficient background information on these topics to
describe our experiments. Additional information about SQUIDs, NMR, and MRI can be found in
the references of their respective chapters.

This thesis is organized as follows. In Chapter 2 we present an overview of the dc SQUID
and the associated electronics which we used in this experiment. We also discuss the concept of
the flux transformer and the use of series arrays of Josephson junctions to protect the SQUID
and input coil from the pulsed magnetic fields present in our experiment. Chapter 3 contains an
introduction to nuclear magnetic resonance (NMR) and the physical principles upon which MRI is
based. Chapter 4 covers the basics of MRI including spatial encoding, k -space, and common imaging
techniques. In Chapter 5 we describe the origin and effect of concomitant gradient components,
as well as the “zero-field MRI” pulse sequence that we used to acquire images without the use of
a B0 field. Details on our experimental implementation of the sequence and the apparatus are
presented in Chapter 6, along with the results of our imaging experiments. Finally, Chapter 7
presents a discussion of the experiment and results, including the imaging time, the effect of a
uniform ambient field, and a comparison to other methods of mitigating or eliminating concomitant
gradient distortions.
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Chapter 2

Introduction to SQUIDs

Superconducting QUantum Interference Devices (SQUIDs) are extraordinarily sensitive
detectors of magnetic flux; modern devices can have a flux sensitivity of approximately 1 µΦ0/Hz1/2

where Φ0 is the magnetic flux quantum (Φ0 = 2.07× 10−15 T/m) [12]. As they are superconduct-
ing devices, they must be operated at cryogenic temperatures. Despite this difficulty, because
of their exquisite sensitivity SQUIDs are used in many fields of research and industry, including
medicine [13], geophysics [14], non-destructive evaluation [15], materials characterization [16], and
even investigations of Einstein’s theory of general relativity carried out in Earth orbit [17]. In this
chapter we will focus on a qualitative understanding of SQUIDs and their operation. Detailed and
quantitative information on SQUID design, fabrication, and operation in a variety of circumstances
are readily available, for example in [18,19] and the references therein.

2.1 SQUID basics

2.1.1 Flux quantization in a superconducting ring

The coherence length ξ of a superconductor is the distance over which the Cooper pairs can
maintain phase coherence; it is commonly thought of as the effective size of a Cooper pair [20]. The
coherence lengths of low-Tc superconductors typically range from tens to hundreds of nanometers
(or more) [20]. Cooper pairs within ξ will overlap with one another, and a sphere of radius ξ will
contain approximately 106 pairs. The phases of the overlapping Cooper pairs lock together, resulting
in long-range quantum coherence characterized by an ensemble-average wave function [20,21]

ψ(r) = [n(r)]1/2eiθ(r), (2.1)

where n(r) is the density of Cooper pairs and θ(r) is the phase. Typically n(r) is independent of
position, or nearly so, inside the superconductor; we will therefore drop the r dependence and write
it simply as n. One consequence of the macroscopic quantum coherence is flux quantization in a
superconducting loop.

Consider a ring of superconducting material placed in a magnetic field B, as illustrated
in Fig. 2.1A. The thickness of the ring is taken to be much larger than the penetration depth.
Although the field inside the superconductor is zero due to the Meissner effect, the magnetic vector
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Fig. 2.1: (A) Superconducting loop placed in a magnetic field. A flux Φ threads the center of the
loop. (B) Schematic diagram of a Josephson junction. Gray color is superconductor; the black bar
represents an insulating layer. (C) Schematic of a dc SQUID. Gray color is superconductor; the
black bars are Josephson junctions. A flux Φ threads the center of the loop.

potential A may be nonzero. The momentum of a charged particle in a vector potential is given
by

p = mv + qA, (2.2)

where m is the particle’s mass, v is its velocity, and q is its charge. The momentum can be found
using the momentum operator −i~∇ which yields

~∇θ = mv + qA. (2.3)

The particle’s velocity v is proportional to the current density J. However, because the magnetic
field is zero inside the superconductor, we find

µ0J = ∇×B = 0, (2.4)

so Eq. 2.3 reduces to
~∇θ = qA. (2.5)

We now integrate each side of this equation around the path C shown in Fig. 2.1A. The phase must
be 2π-periodic, so ∮

C

~∇θ · dl = 2π~n. (2.6)

Using Stokes’ theorem, the right-hand side of Eq. 2.6 becomes∮
C

qA · dl = q

∫
S

(∇×A) · dS = q

∫
S

B · dS = qΦ, (2.7)

where dS is an element of the surface S bounded by the curve C, and Φ is the flux through C.
Because we are dealing with Cooper pairs, we have q = −2e where e is the (positive) electron
charge. We therefore find, for the flux through C,

Φ =
2π~n
q

=
h

2e
n = Φ0n. (2.8)
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2.1.2 Josephson effect and Josephson junctions

Another consequence of the macroscopic wave function is the tunneling of Cooper pairs
between weakly coupled superconductors, such as two superconductors separated by a thin insulat-
ing barrier (Fig. 2.1B); this phenomenon, first described by B. D. Josephson [22], is known as the
Josephson effect and the barrier is known as a Josephson junction. The Josephson junction is the
active component in superconducting electronics [20]. In practice, there are many kinds of “weak
links” that could be used [20,23]. The most common are insulating tunnel junctions, which are the
type we will consider in this thesis.

We will give here a simple derivation of the Josephson relations, following [20]. Consider
two superconductors with macroscopic wave functions

ψ1 = n
1/2
1 exp[iθ1]

ψ2 = n
1/2
2 exp[iθ2].

(2.9)

If the two superconductors interact with one another, we can write the time evolution of their wave
functions as

i~
∂ψ1

∂t
= U1ψ1 +Kψ2

i~
∂ψ2

∂t
= U2ψ2 +Kψ1,

(2.10)

where U1 and U2 are the energies of the wavefunctions and K represents the interaction between
the superconductors. In general there will be some voltage difference between the superconductors;
we will call this voltage difference V , so the energy difference can be written as U2 − U1 = qV ,
where q is the charge of a Cooper pair. We are free to write the energies as U1 = −qV/2 and
U2 = +qV/2. With these values for U1 and U2, the real parts of Eq. 2.10 yield:

∂n1

∂t
= −∂n2

∂t
=

2

~
K(n1n2)1/2 sin δ, (2.11)

where δ = θ2 − θ1 is the phase difference between the two superconductors. Equation 2.11 implies
a current flowing from 2 to 1 which depends on the sine of the phase difference δ,

I = Ic sin δ. (2.12)

The value Ic is the critical current of the junction. This is the DC Josephson effect. It depends
only on the phase difference between the superconductors, so it indicates that a DC current can
flow across the junction in the absence of a voltage difference between the superconductors.

The energy difference qV emerges if we look at the imaginary parts of Eq. 2.10. In this
case, it can be shown that

∂δ

∂t
=

2e

~
V. (2.13)

This equation describes how a voltage applied across the weak link changes the phase difference δ.
The consequences of the Josephson effects are as follows: When a current I < Ic is applied

across the junction, Cooper pairs can tunnel across the barrier. This constitutes a supercurrent
(often called the Josephson current), so the voltage across the junction is zero. If the current
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Fig. 2.2: (A) Critical current vs. flux for a dc SQUID. (B) Current through SQUID vs. voltage
across SQUID, with curve shown at two values of flux. Dotted line indicates the bias current.
(C) Voltage across SQUID vs. flux.

across the junction exceeds the critical current, a voltage appears across the junction and the phase
difference between the superconductors follows the AC Josephson relation (Eq. 2.13). It should be
noted that high-quality junctions are often hysteretic (due to their self-capacitance) [23], so that
once they have switched into the voltage state the current must be reduced well below Ic before the
junction switches back to the superconducting state. This behavior is often undesirable [12] and
can be eliminated with the addition of a suitable shunt resistor across the junction. The criteria
for this resistor, and its effects on the behavior of the junction, are discussed in [12,23].

2.1.3 The dc SQUID

The dc SQUID comprises two Josephson junctions in parallel on a superconducting ring,
as shown in Fig. 2.1C. This device has a critical current Ic due to the Josephson junctions. A
magnetic flux through the ring modulates the critical current with a period of one flux quantum
(see Fig. 2.2A), due to quantum interference effects between the wave functions in each arm [21].
The value of the flux through the loop can then be found by determining the critical current Ic of
the SQUID, for example by applying a bias current and increasing this current until Ic is reached,
at which time a nonzero voltage appears across the SQUID. However, this method is effective only
for a magnetic flux which remains a fixed value.

For SQUIDs with nonhysteretic (i.e. resistively-shunted) junctions, there is a better way
to measure the magnetic flux through the loop [23]. In this method, a bias current Ib which is
larger than the critical current Ic is applied across the SQUID, which leads to the creation of a
voltage V across the SQUID. The magnitude of the voltage depends on the difference between bias
current and critical current. As the flux through the SQUID changes, the critical current Ic is
modulated with a period of Φ0, as we discussed in the previous paragraph; the voltage V across
the SQUID will also therefore be a periodic function with a period of Φ0. This effect is illustrated
in Fig. 2.2B-C. When operated in this way, the SQUID acts as a flux-to-voltage transducer. For
measurement of small changes in magnetic flux, the SQUID can be biased with a DC magnetic
flux to a point where the transfer function (the V -Φ curve) is steepest, and the voltage change
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read out directly (Fig. 2.3A). However, this direct readout scheme has a limited dynamic range;
the measured voltage is only an accurate measurement of magnetic flux when the it remains on
the linear part of the IV curve. For a sinusoidal V -Φ relation, this linear flux range is about
Φ0/π [24]. Figure 2.3B shows the result of a direct readout when the applied flux is larger than
Φ0/2. For measuring changes in magnetic flux outside the linear region, some technique to increase
the dynamic range is required. One such technique, the flux-locked loop, will be considered in the
next section.

2.2 The flux-locked loop

The aim of the flux-locked loop (FLL) [24] is to keep the flux through the SQUID loop
constant, by the use of negative feedback to cancel applied flux. The FLL linearizes the SQUID
response and allows for the measurement of very large and very small changes in flux, greatly
increasing the dynamic range. The basic operation is as follows: the voltage across the SQUID is
amplified, integrated, and then fed back into the SQUID as a flux (through a feedback resistor and
feedback coil coupled to the SQUID). The output of the loop is the voltage across the feedback
resistor. We will examine a basic FLL in order to better understand the basic operation. For
simplicity we will neglect the effects of a time delay in the feedback.

A basic FLL is shown in Fig. 2.4A. The SQUID is biased with current Ib (which is greater
than the critical current) and the applied flux through the loop is Φa. The voltage VSQ across
the SQUID is input to an amplifier of gain A. The output of the amplifier next goes through an
integrator with gain −1/iωRICI where ω is the angular frequency. The output voltage is then

Vout = −VSQA
1

iωτI
, (2.14)

where τI = RICI and the voltage across the SQUID is given by

VSQ = Φa
∂V

∂Φ

∣∣∣∣
I

= ΦaVΦ. (2.15)

The voltage Vout across the feedback resistor RF and the feedback coil generates a feedback flux
ΦF which is given by

ΦF = −ΦaVΦA
1

iωτI

MF

RF
= G(ω)Φa, (2.16)

where G(ω) is the open-loop gain of the FLL.
When the feedback is taken into account, we can find the closed-loop gain from:

ΦF = G(ω)[Φa + ΦF ] (2.17)

ΦF [1−G(ω)] = G(ω)Φa (2.18)

ΦF

Φa
=

G(ω)

1−G(ω)
=

1

1− 1
G(ω)

. (2.19)

We can make the substitution

ΦF =
Vout
RF

MF (2.20)
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Fig. 2.3: Direct voltage readout of SQUID. (A) Small changes in flux, remaining in the linear region
of the V -Φ curve. (B) Large changes in flux, which do not remain in the linear region of the V -Φ
curve.
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Fig. 2.4: Flux-locked loops. Components inside dotted lines are at cryogenic temperature. (A) Basic
FLL. (B) FLL with modulation.
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to find
Vout
Φa

=
RF
MF
· 1

1 + (iωτIRF /VΦAMF
)
. (2.21)

The second term on the right-hand side of Eq. 2.21 is the transfer function for a single-pole low-pass
filter,

H(if) =
1

1 + (if/f1)
, (2.22)

where the cutoff frequency f1 is given by

f1 =
VΦAMF

RF

1

2πRICI
. (2.23)

It is often the case that the noise of the preamplifier is a significant source of system noise
when it is used directly across the SQUID, especially at low frequencies where 1/f noise of the
preamplifier may be considerable. This problem can be alleviated by the addition of a step-up
transformer between the SQUID and the preamplifier, and adding an AC flux modulation (which
is applied via the feedback coil) [24]. The transformer serves to increase the voltage input to the
preamplifier, and the turns ratio can be chosen to achieve the best impedance matching between
the SQUID and the preamplifier. The modulation frequency is chosen to be well above the 1/f
knee of the preamplifier. In this case, the modulated signal is amplified and then passed through
a lock-in detector (such as a mixer) to recover the demodulated signal. The demodulated signal is
then integrated and fed back to the SQUID to cancel applied flux. A FLL with flux modulation is
illustrated in Fig. 2.4B.

2.3 Flux transformer

In conventional operation, the voltage across the SQUID is proportional to the magnetic
flux through the SQUID loop. However, modern SQUIDs such as those used in this thesis are
very small; our SQUIDs were squares approximately one millimeter on a side. A device of this size
obviously cannot look at a large area. Directly measuring with the SQUID has other disadvantages
as well, among which are: random signals in the environment can degrade their performance (or
even damage the SQUID); the SQUID cannot discriminate between fields due to desired nearby
sources and those due to distant undesired sources; a large or rapidly changing flux can create high
currents which would drive the loop out of the superconducting state and may cause significant
heating and damage; and the input cannot be tuned to detect at a particular frequency. Fortunately,
all of these issues can be addressed by use of a separate pickup coil which is coupled inductively to
the SQUID. This separate coil is called a flux transformer.

The flux transformer [25] can take many different forms. The simplest of these has a single
superconducting pickup loop and a superconducting multiturn input coil which is tightly coupled
to the SQUID (usually patterned directly on the SQUID chip), as shown schematically in Fig. 2.5A.
When a field is applied to the pickup coil, a current flows in the flux transformer; this occurs even
for static fields because the flux transformer is superconducting. The effect of the flux transformer
is to increase the field sensitivity of the SQUID by increasing the effective sensing area of the loop.
If the pickup loop has area Ap and inductance Lp, and the mutual inductance between the input
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Fig. 2.5: Flux transformers with RC shunts in parallel with input coil. Dotted lines indicate
superconducting shield. (A) Pickup coil configured as untuned magnetometer. (B) Pickup coil
configured as untuned first-order axial gradiometer. (C) Pickup coil configured as tuned first-order
axial gradiometer.



2.4. CURRENT-LIMITING JOSEPHSON JUNCTION ARRAY 12

coil and the SQUID is Mi = α
√
LiLSQ (where Li and LSQ are the inductances of the input coil

and SQUID, respectively, and α is the coupling constant), then the effective area of the SQUID
magnetometer is

Aeff = Ap
α
√
LiLSQ

Li + Lp
. (2.24)

Using a flux transformer, it is possible to obtain an increase in effective area of several orders
of magnitude. An additional advantage of using a flux transformer, also shown in Fig. 2.5, is
that the SQUID and input coil can be placed into a superconducting shield to protect them from
environmental interference.

If the flux transformer instead has two coaxial loops of equal area, wound in opposite
directions and separated by a baseline (Fig. 2.5B), it will be sensitive only to the first derivative
of the field along the direction of its axis. This arrangement is a first-derivative axial gradiometer.
The purpose of such an arrangement is to reject uniform (or nearly uniform) fields from distant
sources, while remaining sensitive to fields from nearby sources, such as the sample being measured.

The use of a separate coil also allows one to insert components into it to condition the
signal before it is coupled into the SQUID. For example, it is a common practice to insert an
RC network in parallel with the input coil (shown in Fig. 2.5). This network acts as a shunt for
undesired radiofrequency signals. In addition, the flux transformer can be tuned to a particular
frequency through the addition of a capacitor in series with the pickup coil, as in Fig. 2.5C. One
can also add protective components to prevent the formation of dangerously high currents; we will
consider one type of protective component in the next section.

2.4 Current-limiting Josephson junction array

In some experiments, such as the NMR and MRI experiments described in this thesis, the
pickup gradiometer is placed as close as possible to the sample to maximize the received signal.
The nuclear spins in the sample are manipulated via magnetic field pulses; in some cases the
amplitude of the pulses approach 100 mT at the pickup coil, and they are oriented along the axis
of the gradiometer [26]. An untuned gradiometer subjected to such large fields would develop very
large currents and lead to very large fields at the SQUID; if the flux transformer were to remain
superconducting, Lee [27] estimates the current in the gradiometer would exceed 800 A and the
magnetic field at the SQUID would be approximately 35 T. In reality, the flux transformer (and
possibly the SQUID) would be driven normal, likely resulting in damage to the system.

A series array of Josephson junctions added to the flux transformer (shown in Fig. 2.6) is
an effective means of protecting the gradiometer, input coil, and SQUID from excessive current due
to large field pulses [27]. The junction array works as follows: consider a series array of Josephson
junctions, each with critical current Ic which is lower than that of the flux transformer. As long as
the current in the flux transformer is below Ic, such as during signal acquisition, the junctions are
in the superconducting, zero-voltage state and do not interfere with the measurement. When the
current increases above Ic, such as during a strong field pulse, the junctions switch into the voltage
state, where each junction has a resistance R. The resistance limits and damps the current; when
the current drops sufficiently, the junctions switch back to the superconducting state. Thus the
junction array acts as a self-resetting fuse.



2.4. CURRENT-LIMITING JOSEPHSON JUNCTION ARRAY 13

Fig. 2.6: Flux transformer with Josephson junction array in series with input coil. For simplicity,
only three junctions are shown.



14

Chapter 3

Introduction to Nuclear Magnetic
Resonance

Nuclear magnetic resonance (NMR), the interaction between an external magnetic field
and a nucleus with a magnetic moment, is the phenomenon on which magnetic resonance imaging
is built. Nearly all of the elements in the periodic table have at least one isotope in which the
nucleus possesses a magnetic moment, and hence can be used in NMR. However, it is the hydrogen
nucleus, composed of a single proton, which is most often studied; the hydrogen nucleus is the only
one we will be concerned with in this thesis. This chapter is intended as a brief introduction to the
NMR concepts which will be used in the zero-field MRI experiment; as such, we will omit some
topics which are important in conventional NMR, but which are irrelevant for our purposes. Some
of the topics we will omit are excitation pulses, chemical shift, and spin echoes; information on
these topics can be found in the references [1, 28–30].

3.1 Polarization of sample in magnetic field

According to the Zeeman effect, a particle with a magnetic moment µ placed in an external
magnetic field B = Bẑ has a Hamiltonian given by

H = −µ ·B = −γ~I ·B = −γ~IzB, (3.1)

where γ is the magnetogyric ratio and ~I is the angular momentum of the nucleus [28]. The
eigenvalues of this Hamiltonian are

Em = −mγ~B, (3.2)

where m is the spin quantum number with allowed values m = −I,−I + 1, ..., I − 1, I [28]. In
particular, for a nucleus of spin I = 1/2 (such as that of hydrogen), the available values of the spin
quantum number are m = ±1/2 and the energy levels are

E = ±γ~B
2

, (3.3)

as shown in Fig. 3.1. The lower-energy state corresponds to the situation in which the magnetic
moment is aligned parallel with the external field; the higher-energy state corresponds to a magnetic
moment aligned antiparallel with the field.
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Fig. 3.1: Energy level splitting for a spin-1/2 nucleus in a magnetic field.

Because the parallel arrangement has lower energy, at thermal equilibrium the probability
will be higher that the nucleus will be in this state. At a temperature T , the probability of finding
the nucleus in a given state with energy Em is given by [31]

P (Em) =
exp(−Em/kBT )∑
m

exp(−Em/kBT )
(3.4)

where kB is Boltzmann’s constant. For a large collection of such nuclei, some fraction will be in
the spin-up state and some will be in the spin-down state. The ratio between the number of nuclei
in each state is

N+1/2

N−1/2
=

exp(γ~B/2kBT )

exp(−γ~B/2kBT )
= exp(γ~B/kBT ). (3.5)

For a sample at T = 300 K in a field of B = 1 T, and with the magnetogyric ratio of hydrogen
γ/2π = 42.58 MHz/T, this ratio is approximately 1.000007 — that is, the population difference is
a few parts in 106. Although the difference in the number of spin-up nuclei versus spin-down nuclei
is small, due to the large number of nuclei present it results in a macroscopic magnetization, which
can be found using

M0 ≈
ρ0γ

2~2B

4kBT
, (3.6)

where ρ0 is the spin density in the sample [1].

3.2 Bloch equation

Although the interaction of nuclear spins with magnetic fields is inherently a quantum
phenomenon, the semiclassical Bloch equation [29] provides an intuitive and easy-to-understand
picture of the behavior of a magnetic moment in a magnetic field.

The Bloch equation is

dM

dt
= γM×B− (Mz −M0)ẑ

T1
− Mxx̂ +Myŷ

T2
, (3.7)
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where Mx, My, and Mz are the components of the bulk magnetization vector, M0 is the equilibrium
value of magnetization due to the external field (Eq. 3.6), and T1 and T2 are the so-called longi-
tudinal and transverse relaxation times, respectively. The first term arises from the torque on the
magnetic moment due to the external magnetic field; the second and third terms describe relaxation
processes due to interactions between the spin and its environment, as well as interactions between
spins. Each of these terms will be discussed in further detail below.

3.2.1 Torque on magnetic moment due to external field

A magnetic moment µ placed in an external magnetic field B will experience a net torque
which is given by [1]

N = µ×B. (3.8)

Torque is the time rate of change of angular momentum, so it follows that

dJ

dt
= µ×B. (3.9)

The magnetic moment of the nucleus is given by µ = γ~I = γJ, which yields

dµ

dt
= γµ×B. (3.10)

For a large collection of magnetic moments, bulk magnetization is found by summing all of the
magnetic moments in a unit volume [28], so we find

dM

dt
= γM×B. (3.11)

We will examine the implications of this term using a simple example — that of a sample
in a uniform, static magnetic field B0 = B0ẑ. If M and B0 are not parallel, the solution to Eq. 3.11
is

Mx(t) = Mx(0) cosω0t+My(0) sinω0t

My(t) = My(0) cosω0t−Mx(0) sinω0t

Mz(t) = Mz(0),

(3.12)

where ω0 = γB0. The result is that M precesses about B0 at the Larmor frequency ω0. This is
illustrated in Fig. 3.2.

3.2.2 Longitudinal Relaxation

Our sample of spins in a magnetic field will be in thermal equilibrium — the state with
the lowest energy — when the magnetization is aligned with the external field and of the magnitude
given by Eq. 3.6. In any other state, the spins will give up energy to the environment in order to
return to equilibrium. While the actual mechanisms for this energy transfer to the environment
are due to random processes on individual nuclei and may be complicated, Bloch [29] found that
a nonequilibrium magnetization Mz returns to the equilibrium value M0 exponentially with a
characteristic time constant which he called T1:

dMz

dt
= −(Mz −M0)

T1
. (3.13)
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Fig. 3.2: Precession of M around B0.

The solution to Eq. 3.13 is given by

Mz(t) = M0 + (Mz(0)−M0) e−t/T1 . (3.14)

Figure 3.3 shows a plot of Mz(t) for Mz(0) = 0.

3.2.3 Transverse relaxation

The individual magnetic moments interact with the local fields created by other magnetic
moments. This so-called spin-spin coupling creates field inhomogeneities, with the result that
each magnetic moment sees a slightly different field and therefore precesses at a slightly different
frequency. Over time this leads to a loss of coherence which reduces the apparent magnetization
in the transverse plane (the plane of precession), but does not affect the longitudinal component of
the magnetization (and therefore does not affect the energy of the system).

The loss of transverse magnetization manifests as an exponential decay with time constant
T2:

dMx,y

dt
= −Mx,y

T2
. (3.15)

Fig. 3.3: Plot of Mz(t) versus t.
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Fig. 3.4: Receiving coil in transverse plane.

This differential equation has solution

Mx,y(t) = Mx,y(0)e−t/T2 . (3.16)

It is important to note that longitudinal relaxation also affects the transverse magnetization. Mag-
netization that has returned to the longitudinal direction is no longer available in the transverse
plane, so T2 ≤ T1.

It is apparent that inhomogeneities in the external field will also cause a spread in pre-
cession frequencies and a corresponding loss of phase coherence. This leads to a decrease in the
time constant T2. In practice, the dephasing due to external factors is described by a separate time
constant T ′2. The total effective time constant T ∗2 is then given by

1

T ∗2
=

1

T2
+

1

T ′2
, (3.17)

where T2 is the intrinsic spin-spin relaxation time constant.

3.3 Signal acquisition

The magnitude of the transverse magnetization can be measured by placing a coil per-
pendicular to the transverse plane as shown in Fig. 3.4. As the magnetization vector precesses,
the changing magnetic field in the coil induces a voltage across the loop which is measured versus
time. In conventional NMR systems, the receiving coil is a copper coil which is part of a tank
circuit tuned to the precession frequency. One can also use a superconducting magnetometer or
gradiometer which is coupled to the input coil of a SQUID (see Ch. 2).

When the sample is in a uniform static field, the received time-domain signal has the
form of an exponentially decaying sinusoid as shown in Fig. 3.5A. The time constant of the ex-
ponential decay is T ∗2 . The time-domain signal is known as a free induction decay (FID). The
FID is subsequently inverse-Fourier-transformed to find the frequency spectrum. In the case of a
uniform static field, the frequency spectrum will consist of a single Lorentzian peak at the Larmor
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Fig. 3.5: (A) Free induction decay showing sinusoid at ω0 which decays exponentially with time
constant T ∗2 . (B) Fourier transform of the FID, showing Lorentzian peak at ω0 with peak width
proportional to 1/T ∗2 .

frequency with a width proportional to 1/T ∗2 (see Fig. 3.5B). (It should be noted that the time-
domain signal is usually acquired discretely. A discussion of discrete time sampling and its effect
on the frequency-domain signal will be deferred to Ch. 4.)

3.4 How to get magnetization in the transverse plane

After a sample has been polarized in a field along ẑ the magnetization must be tipped
away from the z-axis in order to observe the Larmor precession. The conventional way to tip the
magnetization is to apply a resonant pulse — that is, a short-lived rotating magnetic field in the
transverse plane which is tuned to the Larmor frequency [1, 28]. However, this technique was not
used in the present experiments.

Another technique for tipping the magnetization into the transverse plane is simply to
create it there by applying a polarizing field in the plane, rather than along the z-axis. This
polarizing field is applied until a suitable magnetization develops. If the direction of the applied
field changes nonadiabatically to the ẑ direction, the magnetization will precess around it. In
practice this is most commonly achieved by using a polarizing field which is much larger than the
precession field; when both fields are applied, the polarizing field will dominate.

The change in field must be nonadiabatic; that is, it must satisfy the requirement

dB

dt
� γB2, (3.18)

where B is the instantaneous magnitude of the magnetic field [30].
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3.5 Quantum-mechanical operators

The semiclassical picture we have discussed provides a convenient and intuitive way of
thinking about the dynamics of magnetic resonance. Magnetic resonance remains, however, an
inherently quantum phenomenon as it deals with the mechanics of nuclear spins. It is instructive,
therefore, to briefly examine it from a quantum-mechanical point of view. This is helpful when
analyzing more complicated experiments, such as the “zero-field MRI” experiment discussed in
Ch. 5.

As mentioned in Sec. 3.1, the Hamiltonian of a particle which has a magnetic moment
and is in an external field is given by Eq. 3.1:

H = −µ ·B = −γ~I ·B.

For a static field, this Hamiltonian is not time-dependent, so the exponential operator is simply [28]

U = exp(iγtI ·B). (3.19)
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Chapter 4

Introduction to Magnetic Resonance
Imaging

A spin in a magnetic field will precess, with a frequency which is proportional to the field
at that point. If a spatial variation is applied to the magnetic field, the frequency and phase of
the precession can be made into functions of position. The relative signal amplitudes at different
frequencies and phases can then be used to form an image of the real-space spin distribution. This
is the basis of MRI.

In this chapter we will give a basic introduction to MRI, including the Fourier-transform
relationship between the time-domain signal and the real-space image, the concept of k -space, and
common imaging techniques. We will also briefly examine the concept of the rotating reference
frame.

4.1 Spatial encoding

The magnetic field is made spatially dependent by the application of magnetic field gra-
dients. In this chapter, we will consider only static gradients which can be switched on and off, but
which do not vary in time while they are on. Ideally these gradients are linear and unidirectional,
so that the total field can be written as

B(x, y, z) = B0 + BG(x, y, z) = (B0 +Gxx+Gyy +Gzz) ẑ, (4.1)

where Gx, Gy, and Gz are defined as

Gx =
∂Bz
∂x

= const, (4.2)

Gy =
∂Bz
∂y

= const, (4.3)

Gz =
∂Bz
∂z

= const. (4.4)

Note that the ideal applied gradients change the magnitude of the field, but do not change the
direction. The ideal Gz gradient is illustrated in Fig. 4.1.
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Fig. 4.1: Ideal imaging gradient Gz. Length of vectors indicate magnitude of magnetic field.

It is clear then that while the gradients are applied, the precession frequencies of the spins
in the sample will be dependent on their position, so that

ω0(x, y, z) = γ (B0 +Gxx+Gyy +Gzz) . (4.5)

Because of the spatial dependence of precession frequency, information about the spin distribution
in the sample is encoded in the frequency distribution of the acquired signal. An example of this for
a single gradient Gz is shown schematically in Fig. 4.2. This is referred to as frequency encoding. If
the gradient is applied only for some finite time and then removed, the spins at all points will again
precess at the same frequency ω0, but the phase of the precession will now depend on position. For
example, if a static gradient Gz is applied for a time τ , the phase of precession is given by

φ(z, τ) =

τ∫
0

γGzz dt = γGzzτ. (4.6)

The different kinds of magnetic field gradients are created by different kinds of coils. Al-
though there are many possible gradient coil geometries, the Gz gradients are commonly generated
by a Maxwell pair while the Gx and Gy gradients are provided by Golay (“saddle”) coils [32]. It
must be noted, though, that Maxwell’s equations prohibit the creation of unidirectional magnetic
field gradients. A field with a gradient in one direction must be accompanied by field components
of comparable magnitude in at least one other direction. The actual magnetic field created by a
Maxwell pair is

BMaxwell(x, y, z) =
G

2
(−xx̂− yŷ + 2zẑ), (4.7)

while the fields of the Golay pairs, which create gradients along x and y respectively, are

BGolay(x, z) = G(zx̂ + xẑ) (4.8)
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Fig. 4.2: Effect of magnetic field gradients on NMR signal. (A) In a uniform magnetic field, all
spins in an object will precess at the same frequency, so the frequency spectrum is a single peak.
(B) When the field amplitude depends on position, the frequency spectrum yields a projection of
the object along the direction of the field gradient.

and
BGolay(y, z) = G(zŷ + yẑ), (4.9)

where G is a constant. The fields along the x- and y-axes are referred to as “concomitant gradients.”
The concomitant gradients affect both the magnitude and direction of the field. The concomitant
gradients can, in general, be safely ignored if the field change due to the gradients is small compared
to the B0 field; the gradient fields are “truncated” by the B0 field. We will assume this is the case
throughout this chapter. The concomitant gradients and their effects will be explored in more
detail in Ch. 5.

4.2 Signal equation and k-space

The spatial information about the sample is encoded in the frequency and phase of the
precessing magnetization. However, we detect and record the signal from the precessing magnetiza-
tion in the time domain. In order to convert between the two, we will use a simple physical model
to look at how the received signal is constructed [33]. For simplicity, we will limit our discussion
to a one-dimensional case; the extension to three dimensions is straightforward.

Consider a one-dimensional distribution of spins, which we call m(z). The signal received
from a single point z in this distribution can be written as

sr(z, t) = m(z)e−iφ(z,t), (4.10)
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where the phase φ(z, t) is given by the integral of the frequency:

φ(z, t) =

t∫
0

ω(z, t′) dt′ = ω0t+ γz

t∫
0

Gz(t
′) dt′. (4.11)

Assuming a uniform detector sensitivity over the sample, the total received signal is the sum of the
signals received from all points, so

sr(t) =

∫
z

m(z)e−iφ(z,t) dz

=

∫
z

m(z) exp [−iω0t] exp

−iγz t∫
0

Gz(t
′) dt′

 dz. (4.12)

The exp[−iω0t] term represents a carrier frequency, which can be removed by demodulation to
leave

sr(t) =

∫
z

m(z) exp

−iγz t∫
0

Gz(t
′) dt′

 dz. (4.13)

The signal equation now has the form of a Fourier transform

sr(t) =

∫
z

m(z) exp [−i2πkzz] dz, (4.14)

where the Fourier coefficient kz is

kz(t) =
γ

2π

t∫
0

Gz(t
′) dt′. (4.15)

The extension of this analysis to higher dimensions is straightforward. In three dimensions, Eq. 4.14
is

sr(t) =

∫
x

∫
y

∫
z

m(x, y, z) exp [−i2π(kxx+ kyy + kzz)] dx dy dz, (4.16)

with

kα(t) =
γ

2π

t∫
0

Gα(t′) dt′. (4.17)

for α = x, y, or z. Spatial information is recovered from the time-domain signal by means of the
Fourier transform with time-dependent k values. The demodulated time domain signal is referred
to as “k -space.”

In modern MRI, the k -space data is invariably digitized and fed into a computer for storage
and processing. As a result, the k -space data is a collection of discrete points and the recovery of
the spin distribution m(x, y, z) is done via discrete Fourier transforms (DFTs). Due to the DFT,
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if the k -space sampling period along the direction α (where α = x, y, or z as in Eq. 4.17) is ∆kα,
then the resulting image will have a field of view (FOV) along α given by

FOVα =
1

∆kα
=

1
γ
2πGα∆t

, (4.18)

where Gα is the gradient along α and ∆t is the sampling period. If the extent of the spin distribution
is larger than the FOV, the image will be aliased [1,33]. To avoid aliasing, the ∆kα must be adjusted
(by setting Gα and/or ∆t) so that the FOV is larger than the extent of the spin distribution; this
is simply a statement of the Nyquist sampling criterion.

The resolution of the reconstructed image along the direction α depends on the maximum
acquired value of k -space, which we call kα,max. The quantity

∆α =
1

kα,max
(4.19)

is the spatial step size along the α direction in the image, which represents the smallest feature that
can be resolved [1]. In reality, the smallest feature that can actually be resolved is likely to be larger
due to one or more of the many effects which can blur the image, thus reducing the resolution.
These includes intrinsic effects which broaden the NMR line, such as diffusion and T ∗2 decay, as well
as effects from processing such as signal filtering. For example, the actual resolution of an image is
not improved by extending acquisition to k -space values well beyond the point at which the signal
has decayed away, even though the spatial step size ∆α will be smaller. Though it does not increase
actual resolution, a similar technique known as “zero-filling” or “zero-padding” is commonly used
to interpolate and smooth images. In this technique, the k -space is extended to values much larger
than those actually acquired, and the extra k -space is filled with zeros. This reduces the spatial
step size, but does not increase the resolution. The effect is to smooth or interpolate the image
data [1].

4.3 Frequency and phase encoding: k-space perspective

Figure 4.3 shows a pulse sequence for a one-dimensional frequency-encoding experiment
utilizing a prepolarizing pulse which is switched off non-adiabatically (see Sec. 3.4). After the
polarizing pulse, a uniform static field B0 is applied along with a gradient field BG = −Gzz.
The gradient is applied in the negative direction to form a so-called “gradient echo” [33], which
is used to begin signal acquisition in negative k -space. After a time t1, the gradient is reversed
so that BG = Gzz and the data acquisition is started; at some future time t2 the acquisition is
stopped. The first data point will be at kz(t1) = −(γ/2π)Gzt1 and the final point will be at
kz(t2) = (γ/2π)Gz(t2 − t1). The number of intermediate points, and therefore the value of ∆kz
between points will depend on the sampling rate of the detector.

A one-dimensional phase encoding pulse sequence is displayed in Fig. 4.4. In this case,
acquisition occurs in B0 after the gradient pulses have ended. The inverse Fourier transform of
the acquired signal will yield the data for the single k -space point kz(t1) = (γ/2π)Gzt1. Multiple
points in k -space can be obtained by running the sequence multiple times, changing the value of t1
each time. The ∆kz between points is determined by the timing selected in each sequence.
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Fig. 4.3: Pulse sequence for prepolarized frequency encoding. After the prepolarizing field Bp is
shut off nonadiabatically, a gradient field BG is applied until time t1, when it is flipped. Acquisition
occurs from t1 to t2. The uniform field B0 is assumed to be on during the entire sequence.

Fig. 4.4: Pulse sequence for prepolarized phase encoding. After the prepolarizing field Bp is shut
off nonadiabatically, a gradient field BG is applied until time t1. Acquisition occurs from t1 to t2.
The uniform field B0 is assumed to be on during the entire sequence.
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Fig. 4.5: Unidirectional gradient at an angle θ with respect to the z-axis, for use in projection
reconstruction imaging.

4.4 Common imaging methods: Projection reconstruction and 2D
Fourier Transform

Here we will briefly introduce and discuss two common imaging schemes: projection re-
construction and 2D Fourier Transform methods.

In projection reconstruction imaging, a linear magnetic field gradient is produced along
some direction. In the y-z plane, for example, a gradient Gθ in an arbitrary direction θ with respect
to the z-axis is produced by using a Maxwell pair to create a gradient with magnitude Gθ cos θ along
the z-axis, and a Golay pair to create a gradient with magnitude Gθ sin θ along the y-axis. This
arrangement is illustrated in Fig. 4.5. This gradient is used to obtain a one-dimensional projection
(usually via frequency encoding, but phase encoding can be used as we shall see in Ch. 6). After
acquiring projections at multiple values of θ, the image is reconstructed by the process of filtered
back-projection [1]; in short, each projection is “smeared out” along its angle θ though the imaging
space. The intersections of multiple projections will have a higher value; the highest values, where
all of the projections intersect, will correspond with the object that was imaged (Fig. 4.6). The
resulting image is then filtered to smooth it.

Alternatively, one can perform 2D Fourier Transform imaging [1] by combining frequency
encoding along one direction in k -space with phase encoding along another direction in k -space. For
example, after polarization, one could apply a gradient Gy for a short time in order to phase encode
to a particular value of ky. A gradient Gz could then be applied to acquire the k -space data along
kz, as shown in Fig. 4.7. The process is repeated for as many different ky values as desired. The
result is a two-dimensional data set in the (ky, kz) domain; performing a two-dimensional inverse
Fourier transform on this k -space data yields the real-space image (Fig. 4.8).
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Fig. 4.6: Example of projection reconstruction using two projections. (A) White circles represent
object to be imaged. Two projections (for θ = 0◦ and 90◦) are shown. (B) Reconstruction by
“smearing out” the projections.
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Fig. 4.7: Example of 2DFT imaging. (A) Sequence showing encoding to a particular ky value and
applying a gradient echo to read out kz. Signal is acquired from t1 to t2. Uniform field B0 is applied
during entire sequence. (B) k -space trajectory for the sequence shown in A. Location in k -space at
t1 and t2 are indicated.

Fig. 4.8: Example of k -space. (A) White circles represent object to be imaged. (B) k -space data
for the real-space object shown in A.
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Fig. 4.9: Laboratory reference frame (x, y, z) and rotating reference frame (x′, y′, z).

4.5 The rotating reference frame picture

An important concept in NMR and MRI is that of the reference frame which rotates about
the z-axis with frequency Ω, as illustrated in Fig. 4.9. In this frame, there will be an effective field
in the z-direction given by

Bz,rot = Bz,lab −
Ω

γ
, (4.20)

where Bz,lab is the z component of the magnetic field in the lab frame (Fig. 4.10). This concept is
most useful when Ω = ω0 = γB0. When only the B0 field is present in the lab frame, Bz,rot = 0
so the spins are stationary in the rotating frame (Fig. 4.11). When a gradient is applied which
changes the magnitude of the total field (but does not change its direction), the effective field along
z varies with position, so the spins precess in the rotating frame with a frequency and direction
which depends on the magnitude and polarity of the effective field at that point. This is the effect
of demodulating the signal equation in Sec. 4.2. In the classical picture of MRI, the change into the
rotating frame is formally performed by multiplying vectors in the lab frame by a rotation matrix
about the z-axis [33]

Rz(Ωt) =

 cos Ωt sin Ωt 0
− sin Ωt cos Ωt 0

0 0 1

 . (4.21)

Quantum mechanically, the transition into the rotating frame is accomplished in the fol-
lowing way. Recall that the Hamiltonian of a spin in a magnetic field B is

H = −γI ·B. (4.22)

In MRI, the field is usually a uniform static field plus additional fields due to gradients. The addi-
tional fields may in general be time-dependent, so we can write the Hamiltonian in the laboratory
frame as

H = H0 +H1(t) = −ω0Iz +H1(t). (4.23)
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Fig. 4.10: Effective field in the rotating reference frame. (A) Effective field at a point where
Bz,lab > B0. (B) Effective field at a point where Bz,lab < B0.

Fig. 4.11: (A) A magnetization vector M in a uniform field B0 in the laboratory frame. M precesses
about B0 at angular frequency ω0 = γB0. (B) A magnetization vector M in a uniform field B0 in
the rotating frame. M is stationary, indicating zero effective field.
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The Hamiltonian of the system in the rotating frame is given by the transformation of the perturbing
Hamiltonian H1(t) into the interaction representation [11,34], so that

Hrot = exp

[
iH0t

~

]
H1(t) exp

[
−iH0t

~

]
. (4.24)

The evaluation of this equation is aided by the use of the Baker-Hausdorff lemma [34]

exp[iGλ]A exp[−iGλ] = A+ iλ[G,A] +

(
i2λ2

2!

)
[G, [G,A]]+

· · ·+
(
inλn

n!

)
[G, [G, [G, . . . [G,A]]] . . . ] + . . . (4.25)

where G and A are operators and λ is a real parameter.
By way of example, we will consider two simple cases in the quantum mechanical repre-

sentation of the rotating frame. First, we will examine a sample in a uniform static field. This
situation is trivial; the Hamiltonian in the lab and rotating frames are

Hlab = H0 = −ω0Iz, (4.26)

Hrot = 0 (4.27)

because H1(t) = 0.
The situation becomes only slightly more complicated with the addition of a static, linear,

unidirectional gradient (such as the “ideal” gradients used for imaging). If an imaging gradient
along z is applied (see Eq. 4.4), then the Hamiltonians become

Hlab = H0 − γzGzIz, (4.28)

Hrot = −γzGzIz. (4.29)

The rotating frame Hamiltonians are not as simple when B has components perpendicular to the
z-axis; we will consider cases like this in Ch. 5.



33

Chapter 5

Concomitant Gradients and the
Zero-Field MRI Sequence

We saw in Ch. 4 that for encoding we assume a simplified form of the gradient fields in
which we ignore the field components perpendicular to the uniform field B0. This simplification
was justified by the assumption that the magnitude of the uniform field was much larger than
the maximum magnitude of the transverse components of the gradient fields. But as the uniform
field magnitude is reduced, as for microtesla MRI, this assumption may not hold. In this case, the
so-called concomitant gradients will affect the image. These concomitant gradients set an upper
limit on the maximum gradient that can be used for a given uniform field magnitude; conversely,
they can also be considered as setting a lower limit on the uniform field magnitude which can be
used for a given gradient.

In this chapter we will examine the origin and effect of the concomitant gradients as well
as their effect on the imaging field, and on the images. We will then discuss a pulse sequence which
removes the concomitant gradients by averaging them out, allowing for undistorted images even in
the limit that B0 approaches zero.

5.1 Origin of concomitant gradients

The total magnetic field is made spatially dependent by the addition of one or more
gradient fields to the uniform field B0 = B0ẑ. The ideal gradient fields are

Bx,ideal
G =

(
∂Bz
∂x

)
xẑ = Gxxẑ, (5.1)

By,ideal
G =

(
∂Bz
∂y

)
yẑ = Gyyẑ, (5.2)

Bz,ideal
G =

(
∂Bz
∂z

)
zẑ = Gzzẑ, (5.3)

where the G’s are constants. Note that these fields are all unidirectional along z, so they are parallel
to the uniform field B0. The effect of these ideal gradient fields is to change only the magnitude
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Fig. 5.1: Approximate gradient used for imaging in the experiments described in this thesis.

of the field (not its direction), and therefore the precession frequency, in a linear way along one
direction.

Unfortunately, the fields described by Eqs. 5.1–5.3 cannot be realized. A magnetic field
B in free space must have the properties

∇ ·B = 0, (5.4)

∇×B = 0. (5.5)

It is easy to see that the ideal imaging gradients of Eqs. 5.1–5.3 satisfy one or the other of these
criteria but do not satisfy both. In order to meet the requirements on the divergence and curl, any
spatially-varying magnetic field in free space must have concomitant components in at least two
directions, and of comparable magnitudes. For example, common gradient fields used in MRI are
those generated by coils of the Golay and Maxwell geometries (see Ch. 4):

BGolay(x, z) = G(zx̂ + xẑ), (5.6)

BGolay(y, z) = G(zŷ + yẑ), (5.7)

BMaxwell(x, y, z) =
G

2
(−xx̂− yŷ + 2zẑ). (5.8)

Other geometries are possible as well. For example, in the experiments described in Ch. 6, we use
a gradient coil which creates a field (Fig. 5.1) approximately given by

BG(y, z) = G(−yŷ + zẑ). (5.9)

The components of field along x and y are known as “concomitant gradients.” These concomitant
gradients alter the field magnitude and direction from the ideal case.
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Fig. 5.2: Curves of constant frequency in the y-z plane from different gradient coils in the absence of
a uniform static field. (A) Ideal gradient coil (no concomitant gradients). (B) Coil which provides
field shown in Fig. 5.1. (C) Maxwell coil.

5.2 Effect of concomitant gradients on the imaging field

5.2.1 Concomitant gradients in the laboratory frame

In the absence of concomitant gradients, the application of a gradient field results in planes
of constant field, and therefore constant precession frequency. For example, with an ideal gradient
along z the precession frequency is

ω(x, y, z) = γ (B0 +Gz) ; (5.10)

because the frequency does not vary with x or y, each plane of constant z is also a plane of constant
precession frequency. This is shown in Fig. 5.2A. When concomitant gradients are considered, the
planes of constant frequency bend into closed surfaces; depending on the gradient, these surfaces
can be either cylinders or ellipsoids [7]. To demonstrate this, we will consider several specific
examples.

We consider first the case of a gradient along the z-direction, applied by the coil which
produces the field in Eq. 5.9. When added to the uniform B0 field, the total field becomes

B(y, z) = −Gyŷ + (B0 +Gz) ẑ, (5.11)

where G is the gradient. The precession frequency is then given by

ω(x, y, z) = γ
[
(Gy)2 + (B0 +Gz)2

]1/2

= γG

[
y2 +

(
B0

G
+ z

)2
]1/2

.

(5.12)
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From this equation, it is easy to see that the surfaces of constant frequency are no longer given by
parallel planes, but rather by concentric cylinders which are centered on the z-axis at the point
(y, z) = (0, zc), where zc is given by

zc = −B0

G
. (5.13)

For two-dimensional imaging in the y-z plane, these cylinders appear as circles of constant precession
frequency (Fig. 5.2B).

The situation is slightly different when using a gradient field with components in all three
directions, such as that of the Maxwell coil (Eq. 5.8). The sum of the Maxwell coil field and the
uniform field is

B(x, y, z) = −Gx
2

x̂− Gy

2
ŷ + (B0 +Gz) ẑ, (5.14)

where G is the gradient. The precession frequencies are then

ω(x, y, z) = γ

[(
Gx

2

)2

+

(
Gy

2

)2

+ (B0 +Gz)2

]1/2

= γG

[(x
2

)2
+
(y

2

)2
+

(
B0

G
+ z

)2
]1/2

.

(5.15)

The surfaces of constant frequency are ellipsoids (in this particular case, prolate spheroids) which
are centered at (x, y, z) = (0, 0, zc) where

zc = −B0

G
. (5.16)

For two-dimensional imaging in the y-z plane, these cylinders appear as ellipses of constant preces-
sion frequency (Fig. 5.2C).

We can define a convenient parameter [7]

ε =
GL

B0
, (5.17)

where L is the width of the FOV. This parameter is the ratio of the change in field magnitude
due to gradients over the FOV to the uniform field magnitude. This can also be written as, in
comparison with Eq. 5.13 (for example),

ε =

∣∣∣∣Lzc
∣∣∣∣ , (5.18)

which compares the width of the FOV to the position of the center of the curves of constant
frequency. In the case that B0 � GL (so that ε � 1), shown in Fig. 5.3A, we see that the
concomitant gradients have very little effect on the lines of constant frequency within the FOV;
because the circles of constant frequency are centered far outside the FOV, the circles of constant
frequency within the FOV appear as straight, parallel lines (as they would be in the absence of
concomitant gradients).
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Fig. 5.3: Curves of constant frequency for increasing ε values. Dotted lines represent locations of
planes of constant frequency in the absence of concomitant gradients. (A) ε � 1. This situation
approximates an ideal gradient. (B) ε = 0.4. In this moderate concomitant gradient regime,
bending of the lines of constant frequency is readily apparent. (C) ε = 4. Center of the circles of
constant frequency is located within the FOV.

It is clear that as ε increases, however, the curvature of the constant frequency lines gets
stronger because the center of curvature gets closer to the FOV (see Fig. 5.3B). At the edges of the
FOV, the deviation of the curves from straight lines is given approximately by [7]

(δz)max ≈
εL

8
(5.19)

for the field given by Eq. 5.9. As ε grows larger, eventually zc will be smaller than L/2. In this
case, there will be closed circles of constant frequency within the FOV (Fig. 5.3C).

5.2.2 Concomitant gradients in the rotating frame

In the laboratory frame, the concomitant gradients are static components in a direction
perpendicular to B0; in the rotating frame picture, this translates into a component of field in the
x′-y′ plane which rotates at a frequency −ω0. This adds to the effective field along z′, so that the
total effective field in the rotating frame makes some angle with the z′-axis (see Fig. 5.4). The
magnetization precesses about this effective field; in general the motion is complicated, because the
effective field is not static in the frame.

Fortunately, a simplification can be made when the uniform field magnitude is much larger
than the maximum gradient field magnitude. In this case, the magnitude of the effective field will
be quite small. Therefore, in the rotating frame the transverse component of the effective field
will precess at frequency −ω0, while the sample’s magnetization will precess much more slowly
because ω0 � γGL. In this case, from the point of view of the slowly-precessing magnetization,
the transverse component of the effective field will simply average to zero, and the concomitant
gradients will have very little effect. However, if ω0 ∼ γGL the rotation of the transverse field
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Fig. 5.4: Effective field in rotating frame. In the presence of concomitant gradients, the effective
field has a transverse component in the x′-y′ plane. The transverse component of field rotates at
frequency ω0.

component will occur on a similar time scale as the precession of the magnetization; in this case,
the transverse field component will no longer average away.

The same effect can be seen quantum-mechanically. For example, we will consider the use
of a field of the form in Eq. 5.9 on top of the uniform static field. Including concomitant gradients,
the total field in the laboratory frame is

Btot(y, z) = −Gyŷ + (B0 +Gz) ẑ. (5.20)

The lab-frame Hamiltonian is therefore

Hlab = −γ [−IyGy + Iz (B0 +Gz)] . (5.21)

We apply the rotating frame transformation from Sec. 4.5 to find for the rotating frame Hamiltonian

Hrot = γGy (Iy cosω0t+ Ix sinω0t)− γGzIz. (5.22)

This Hamiltonian describes two precessions of the sample magnetization: precession about z′ with
frequency γGz, and precession at frequency γGy about a vector which itself rotates at frequency
ω0 in the x′-y′ plane. As in the classical case, if ω0 is much higher than γGL, the transverse field
component will simply average away on the time scale of the magnetization’s precession.

5.3 Effect of concomitant gradients on images

The concomitant gradients cause the magnitude and direction of the magnetic field to
differ from the ideal case. If the differences are large, the result will be distortions in the image.
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The ε parameter introduced in Sec. 5.2.1 can be used as a convenient measurement of the degree
of distortion due to the concomitant gradients. In this section we will give a brief overview of these
distortions for moderate and severe concomitant gradients; more detail can be found in [8, 35].

For small to moderate concomitant gradients, such that ε ∼ 0.1 to 1, the lines of constant
frequency in the FOV have a noticeable curve, which will be replicated in the frequency encoding
direction in the image. This is visible in Fig. 5.5B and C.

In the phase-encoding direction for moderate concomitant gradients, there will also be
curving due to the curvature of the lines of constant frequency. In addition to the variations in
frequency, the fact that the field direction varies due to concomitant gradients introduces additional
phase errors. The additional phase errors lead to blurring of the image, as can be seen in Fig. 5.5C.
For modest concomitant gradients (approximately ε < 0.5), these artifacts can be corrected in
post-processing [8].

When the concomitant gradients are large enough that the lines of constant frequency form
closed curves inside the FOV, the distortions in both the frequency and phase encoding directions
are severe. An example for ε > 6 is shown in Fig. 5.6. Distortions of this magnitude cannot be
corrected in post-processing. However, it is possible to acquire undistorted images even in the limit
of ε→∞ (that is, B0 → 0). In the next section we will discuss how this is achieved.

5.4 Elimination of concomitant gradient artifacts by averaging:
the ZFMRI sequence

In the experiments reported in this thesis, we acquired images in severe concomitant gra-
dients (ε > 1) using a pulse sequence which was designed to average out the concomitant gradients
by means of a train of π pulses, with gradient field pulses applied between the π pulses [9, 10]. The
sequence is based on the fact that, for small angles, the precession of a spin about an arbitrary B
field can be represented by the sum of the precessions about each component of B. The magnetiza-
tion components which have evolved in the concomitant fields can be reversed to leave an effective
unidirectional gradient. This is an example of an average Hamiltonian [36]. Because this sequence
is used for imaging in the limit of zero static, uniform magnetic field, we have come to refer to it
as the “zero-field MRI,” or ZFMRI, sequence. We will consider here two-dimensional imaging in
the y-z plane.

5.4.1 Classical picture of the ZFMRI sequence

In this analysis, we will assume a gradient field like that given in Eq. 5.9 and Fig. 5.1,
as this gradient field approximates the one we used in our experiments. We further assume that
all fields are switched nonadiabatically. Figure 5.7A shows the basic ZFMRI pulse sequence, while
Fig. 5.7B and C show schematically the classical evolution of a proton spin at a point (y′, z′)
subjected to this sequence.

The proton spin is first polarized along the x-axis by a large prepolarizing field Bp which
is turned off at time t = 0. This corresponds with point a in Fig. 5.7. The gradient field is turned
on for a time τ . During this time the spin precesses about the gradient field BG(y, z). The time
τ is chosen such that τ � 1/γGL, so that the angle of precession will be small and we can treat
the precession as the sum of separate precessions about the y- and z-components of the field. The
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Fig. 5.5: Simulated images with concomitant gradient distortions. Frequency encoding is along y;
phase encoding is along z. (A) No concomitant gradient distortions. (B) εfreq = 0.16, εphase = 0.11.
(C) εfreq = 0.16, εphase = 0.76. (Reprinted with permission from [8].)
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Fig. 5.6: Example of severe concomitant gradient distortions. (A) High-field image showing geom-
etry of phantom. (B) Projection-reconstruction image with ε > 6.

Fig. 5.7: Protocol for MRI in zero static field. (A) Basic ZFMRI pulse sequence vs. time. Arrows
indicate stroboscopic data acquisition. (B) Evolution of a spin vector around the z-component of
field. (C) Evolution of a spin vector around the y-component of field (the concomitant gradient
component).
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precession about the z-component of BG is shown in Fig. 5.7B while the precession about the
y-component is shown in Fig. 5.7C.

After the gradient pulse, we are at point b in Fig. 5.7. At this time a π pulse is applied
along the z-axis; this is a dc pulse of uniform field, with the amplitude Bπ and duration tπ chosen
to satisfy γBπtπ = π. That is, the effect of the π pulse is to cause the spin to precess 180◦ around
the z-axis. Ideally the π pulses are short, such that tπ � τ . The end of the π pulse brings us to
point c in Fig. 5.7. A second gradient pulse, identical to the first, is applied (ending at point d),
followed by another π pulse (ending at point e). From Fig. 5.7B and C, we can see that if data
are acquired (stroboscopically) after every second π pulse, we will observe a net precession around
the z-component of BG, but no net precession about the y-component. Therefore the two π pulses
average out the concomitant gradients and leave an effectively unidirectional gradient field

BG,eff (y, z) = Gzẑ. (5.23)

It is convenient to describe a “pulse unit” consisting of two gradient pulses and two π pulses.
Clearly the addition of more pulse units increases the angle of precession about BG,eff . In this way
we traverse k -space in steps of ∆k = 2γGτ .

The data can be acquired immediately after the last π pulse in the pulse unit, or it can
be acquired after a small delay. It is advantageous to wait a time of τ/2 before acquisition, for
reasons that we will explain at the end of the next section.

5.4.2 Quantum-mechanical picture of the ZFMRI pulse sequence

If we assume that the π pulses are short enough that they can be treated as instantaneous
transformations, then the time evolution operator after n pulse units is [9, 10]

U(2nτ) = [U(2τ)]n , (5.24)

where
U(2τ) = e−iHτe−iπIze−iHτe−iπIz . (5.25)

The Hamiltonian H is given by

H = γI ·B = γ (IyBy + IzBz) (5.26)

in our situation. Inserting Eq. 5.26 into Eq. 5.25 and rearranging yields

U(2τ) = exp [−iγτ (IyBy + IzBz)] exp [−iγτ (−IyBy + IzBz)]

= exp
[
−i2γτIzBz +O

(
τ2
)]

= exp
[
−i2γτIzGz +O

(
τ2
)]
,

(5.27)

where O(τ2) indicates terms of second order and higher in τ . These higher-order terms are due
to the fact that the operators in the two exponentials in Eq. 5.27 do not commute; the higher-
order terms can be calculated by means of the Baker-Campbell-Hausdorff formula or the Magnus
expansion [37]. So we see here that, at least to first order, the π pulses serve to average out the
field components perpendicular to it. (The reason for the delay of τ/2 before signal acquisition,
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mentioned at the end of Sec. 5.4.1, is that it cancels out some of the higher-order components of
the O(τ2) term in the exponential [9, 10,37].)

In the above analysis, we assumed that the π pulses were along the z-axis. It should be
noted, however, that the π pulses could theoretically be applied along an arbitrary direction in the
imaging plane. Changing the direction of the π pulse changes the direction of the effective gradient
in a predictable way (which is different for each form of gradient field). This feature could be used
to perform projection reconstruction, by changing the direction of the π pulse in order to acquire
projections along different angles. We did not use this technique in this thesis, because we did not
have the ability to apply π pulses along an arbitrary direction (see Sec. 6.1.1), and therefore we
will not work this out in detail here. A more detailed analysis, for imaging in the x-z plane using
a Golay coil and with π pulses along an arbitrary direction x′, is given in [9, 10].

5.5 Discussion of the ZFMRI pulse sequence

There are several pertinent facts about the ZFMRI sequence which we would like to
emphasize.

In a conventional sequence, the largest gradient which can be successfully used for imaging
depends on the magnitude of the B0 field. In contrast, the maximum gradient which can be
successfully used in the ZFMRI sequence depends on the hardware of the system. Larger gradients
require shorter pulses to keep the precession during the gradient pulses in the small-angle regime.
The duration of the gradient pulses affects the duration and amplitude of the π pulses (because
one desires tπ � τ). Also, since signal acquisition is performed during the gradient pulses, the
detector dead time becomes an issue: if the dead time is longer than τ , stroboscopic acquisition
cannot be performed after each pulse unit. In this case, a phase-encoding sequence can be used,
at the expense of a longer acquisition time. See Sec. 6.1.3 for an example of such as sequence, and
see Sec. 7.1 for a discussion of the imaging time when using such a sequence.

Though it was designed for imaging without a uniform static field, the ZFMRI sequence
can be adapted to the presence of an ambient uniform static field. The presence of a uniform field
imposes the same requirements on the hardware that are imposed by the use of strong gradients.
However, a potential benefit of an ambient uniform field is that it could be used to augment the
π pulses, which may reduce the requirements on the π pulse hardware. See Sec. 7.2 for a more
specific discussion of the use of the ZFMRI sequence in the presence of an ambient field.
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Chapter 6

The ZFMRI Experiment and Results

In this chapter we will present an experimental implementation of the ZFMRI imaging
sequence. In particular, we will discuss its use in projection reconstruction imaging, and modifica-
tions which had to be made to the basic sequence to adapt it to our apparatus. We will describe
our apparatus, including the difficulties we encountered when part of the original system suddenly
and catastrophically ruptured. Finally we will show images which were encoded in the limit of zero
static field. In this chapter, we will only be concerned with two-dimensional imaging in the y-z
plane.

6.1 Pulse sequence details

6.1.1 Projection reconstruction by phantom rotation

The effective gradient created by the ZFMRI sequence is linear and unidirectional, with
a direction determined by that of the π pulse; such a gradient lends itself well to projection re-
construction. Ideally one would rotate the direction of the π pulse in the y-z plane to acquire the
necessary projections [9]. However, we found in our apparatus that π pulses along y could not be
properly tuned due to spurious signals induced by the pulse; we were therefore limited to pulsing
along only the z-direction. We acquired different projections by rotating the phantom about its
axis. This approach to projection reconstruction is not ideal, as rotating the phantom may cause
the center of the sample to move relative to the center of the gradient; with a small number of
projections, it is often possible (and not too time-consuming) to correct the resultant frequency
shifts by eye.

6.1.2 Tuning the π pulses

One troublesome detail of our system was that our pulsing magnetic fields induced currents
or relaxations in other parts of our apparatus, due to imperfect shielding of the fields [27, 30]. In
addition to being an issue with signal acquisition (see Secs. 6.1.3 and 6.2.5), the fields from these
undesired signals may influence the spins in our sample. These fields had to be taken into account
when setting up the π pulse.
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Fig. 6.1: Pulse sequences for tuning the π pulse. The phase of precession from sequence A (without
a π pulse) is compared to that of sequence B (in which a π pulse is applied). The pulse is retuned
if the phase difference is not sufficiently close to 180◦.

In order to tune the π pulse, we applied a polarization pulse along the x-direction, which we
shut off nonadiabatically. After a small delay time (a few milliseconds), we applied a measurement
field Bm ≈ 3.75 µT (fm = γBm/2π ≈ 160 Hz) along the z-direction and acquired the FID. We then
repeated the experiment, but this time we applied a π pulse in the middle of the delay between
polarization and acquisition (see Fig. 6.1). In both experiments, the time between the shutoff of
the polarizing field and the application of the measurement field was the same. The amplitudes
and phases of the two FIDs were compared, and the amplitude of the π pulse was readjusted if the
resultant phase difference was not within about ±2% of π. We chose a limit of 2% because this
accuracy was easy to achieve and resulted in suitable images.

6.1.3 Practical experimental pulse sequence

For our ZFMRI experiment, we made some modifications to the basic pulse sequence
presented in Sec. 5.4.1. Those modifications are as follows.

In order to ensure that the k = 0 point was included in our projections, we created a
gradient echo by applying negative gradient pulses in several pulse units before the first data point
was acquired. This procedure guaranteed that the acquisition started in negative k -space. In our
first images we used five negative pulse units; later this was reduced to one negative pulse unit so
that we could reach higher points in k -space before T ∗2 decay eliminated the visible signal.

The pulse sequence of Fig. 5.7 calls for stroboscopic acquisition in which one data point
is acquired after every pulse unit after a delay of τ/2. Using stroboscopic acquisition, all of the
k -space points in the projection would be acquired after one polarizing pulse. Imaging in our
apparatus, however, required an adaptation of the basic ZFMRI sequence. In our modification, we
polarize the sample and apply the sequence until we have reached a desired point in k -space (after
a desired number of pulse units); at this point we stop the ZFMRI encoding, switch on a uniform
static measurement field Bm ≈ 3.75 µT, and acquire the FID in the static field. The inverse Fourier
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Fig. 6.2: Pulse sequence for ZFMRI with one-dimensional phase encoding and one negative pulse
unit. The inverse Fourier transform of the received signal yields the real and imaginary parts of
the ZFMRI signal at k(9τ/2) = (τ/2)γGz.

transform of this real-valued FID produces a complex-valued peak in frequency space, which yields
the real and imaginary parts of the ZFMRI signal at the point in k -space. In short, we perform one-
dimensional phase encoding with the ZFMRI sequence. An example of this sequence (including
the negative gradient pulses discussed above) is illustrated in Fig. 6.2. Although our particular
incarnation of the ZFMRI sequence does use a uniform static field for detection, we emphasize that
this field is not applied during image encoding.

The phase encoding procedure described above has two advantages. First, it yields the
real and imaginary part of the ZFMRI signal, so it enables quadrature detection with a single
detector. Quadrature detection was necessary in this experiment because all of the spins did not
precess in the same direction, in contrast to a conventional image. For a collection of precessing
spins, a single detector can give information about the frequencies of precession, but not about
the direction. In a conventional image in which there is a static field that is much larger than the
field change due to gradients (when ε � 1), the direction of the magnetic field will be the same
at all points, so all spins will precess in the same direction. The signal from a single detector can
be split into two channels, one of which is appropriately phase shifted, in order to acquire the real
and imaginary parts of the signal. When the field does not point in the same direction over the
entire sample, however, some spins will precess clockwise while others precess anticlockwise. In this
case, the signal from a single detector cannot simply be split and phase-shifted to find the real and
imaginary parts of the signal.

The second advantage of the phase-encoding procedure is that it allows us to delay the
acquisition of the signal, and also acquire the ZFMRI signal at an arbitrary frequency. These
features of phase encoding were essential in our experiment because the magnetic field pulses
generated relaxation signals in our apparatus which prevented locking of the FLL for approximately
10 ms after a field was turned on or off. Our gradient pulse duration was τ = 5 ms, so stroboscopic
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Fig. 6.3: Pulse sequence for a conventional gradient echo image modified for one-dimensional phase
encoding. The inverse Fourier transform of the received signal yields the real and imaginary parts
of the gradient echo signal at k(9τ/2) = (τ/2)γGz.

acquisition was not possible. Furthermore, the relaxation signals persisted for tens to hundreds of
milliseconds and were of sufficient amplitude to saturate the acquisition system as described in Sec.
6.2.5. By increasing the frequency of the acquired signal, we were able to high-pass filter the signal
to remove the relaxation and avoid saturating the electronics.

Unfortunately, the phase encoding technique has a very important disadvantage: it is slow.
Using phase encoding, acquiring each point in k -space requires its own polarization, encoding, and
detection steps. An image with 24 projections and 24 points per projection, for example, requires
576 repetitions of the polarization-encoding-detection cycle (versus only 24 repetitions of the cycle
for stroboscopic acquisition). A more detailed examination of imaging time appears in Sec. 7.1.

6.1.4 Phase-encoded conventional gradient echo

After we established that we could acquire images using the ZFMRI sequence described
in Sec. 6.1.3, we wanted to compare them to images taken with a conventional imaging sequence
under similar conditions. We constructed a gradient echo sequence which used a very small B0 and
was designed for one-dimensional phase encoding.

An example of this sequence is shown in Fig. 6.3. After a polarizing pulse, a negative
gradient field and a small uniform B0 field along the z-axis are applied. After a time 2τ (where
τ has the same value as in the ZFMRI sequence), the gradient is reversed. The B0 and gradient
fields are maintained until the desired point in k -space is reached, at which time a measurement
field Bm is applied along z. The time-domain data are acquired and processed as described in the
Sec. 6.1.3 for the zero-field experiment.

The same polarizing pulse, gradients, and encoding times are used in this sequence as in
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the ZFMRI sequence. Because of this, it was easy to acquire the conventional image concurrently
with the ZFMRI image by simply running both sequences for each projection.

Although both sequences use the same field gradients, the value of ε is somewhat lower in
the conventional sequence because the conventional sequence requires an applied B0 field during
encoding to establish a “preferred” gradient direction; components of the gradient perpendicular
to B0 are the unwanted concomitant terms. (Recall that in the zero-field sequence, the preferred
gradient direction is determined by that of the π pulses.)

6.2 Apparatus

6.2.1 SQUID package and gradiometer

The SQUID used for all of the results in this thesis was made by Michael Mück of the
University of Gießen, Germany. It is a Nb-AlOx-Nb device with an integrated 20-turn Nb input
coil. The maximum critical current of the SQUID was Ic = 8 µA with a shunt resistance Rn = 7 Ω.
The flux noise of this SQUID was approximately 19 µΦ0/Hz1/2 over the frequency range of 10 Hz
to at least 100 kHz. The SQUID was mounted on a circuit board as shown in Fig. 6.4. The circuit
board was inserted into a Nb tube (45 mm long, 13 mm in diameter) to shield it from external
magnetic fields.

We used a first-derivative axial gradiometer wound of 75-µm diameter Formvar-insulated
Nb wire on a G-10 fiberglass tube. The loops had a diameter of 38 mm and were separated by
a distance of 43 mm. The gradiometer leads were connected to the SQUID package by means of
screw terminals on Nb foil pads which had been glued to the circuit board. The Nb pads were
connected by a series RC (R = 13 Ω, C = 560 pF) shunt to prevent coupling of radiofrequency
fields to the SQUID. A series array of Josephson junctions was inserted between one Nb pad and one
input coil pad on the SQUID. This array consisted of 20 hysteretic junctions; the critical current
of one junction was 30 µA and the normal state resistance per junction was about 50 Ω (for a
total resistance of 1 kΩ). Superconducting connections between the Nb pads, junction array, and
SQUID input coil were made by wire-bonding annealed Nb wire.

The SQUID package and gradiometer were the same as those used in [27].

6.2.2 Liquid helium dewar and magnetic shielding

The ZFMRI experiments were conducted in the liquid helium (LHe) dewar with dimensions
shown in Fig. 6.5. The outer vessel of the dewar was aluminum; the inner vessel consisted of a G-10
fiberglass neck with a steel belly. To screen external magnetic fields, the dewar was suspended in
a single-layer, open-topped mu-metal can of approximate diameter 400 mm. (This dewar was also
used for measurements in [27,30].)

The belly of the dewar contained a cylindrical Pb shield to stabilize the residual magnetic
field. The original shield [27] was nearly the full diameter of the belly and was made from three
sheets of Pb soldered into a cylinder, with phenolic slats as supports. This cylinder rested on a
Pb plate which covered the bottom of the dewar. To be inserted into the dewar, this shield had
to be collapsed to a diameter of about 150 mm to fit down the dewar neck, then re-expanded once
in the dewar belly. Eventually, this shield was replaced by one with a diameter of approximately
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Fig. 6.4: Photograph of SQUID package. From right: The gradiometer leads are affixed to the
niobium foil pads by means of screw terminals. A series RC shunt is soldered across the pads to
divert undesired radiofrequency signals. The niobium pads are connected to the input coil of the
SQUID via superconducting niobium wire bonds; a Josephson junction array (center) is placed in
series with the input coil. The SQUID washer is connected to copper pads with aluminum wire
bonds. Copper leads soldered to the pad connect the SQUID to the room-temperature electronics.
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Fig. 6.5: Liquid helium dewar used for ZFMRI experiments. Gray color represents vacuum and
insulation space between inner and outer vessels. The dewar sits in a mu-metal can which is 1.22 m
(48”) tall. Lead shield inside belly of dewar is not shown.
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150 mm, which did not need to be collapsed to insert into the dewar. The new shield was made
from a single sheet of Pb (610 mm × 610 mm), which was formed into a cylinder and soldered. A
tail cap was also fabricated from Pb sheet and soldered into one end. Small holes were drilled in
the tail cap and wall of the cylinder to ensure that the LHe would fill the entire dewar belly.

6.2.3 Pyrex cryogenic insert

This project utilized a double-walled Pyrex glass vessel which was inserted into the dewar;
the insert had a bore with room temperature access for the phantom and also served to support
the magnetic field coils and SQUID package in the LHe bath around the sample. The outer surface
of the insert had eight glass hooks to aid in mounting the coils.

We began these experiments with the insert described in [27,30], which is shown schemat-
ically in Fig. 6.6A. A liquid nitrogen (LN2) space (with room temperature access) surrounded the
top 0.8 m of the bore; the coils were placed around the remaining 80 mm “tail.” The phantom
rested at the bottom of this tail. To allow for rotating the phantom during imaging, it was taped
to the end of a long G-10 rod which protruded from the top of the bore. A single continuous
vacuum jacket served to insulate the bore, LN2, and LHe spaces from one another; the glass walls
inside the vacuum space were strip-silvered to reflect radiation.

Despite the insulation against conductive and radiative heat exchange, the equilibrium
temperature at the bottom of the bore was approximately−120◦C (about 150 K). We used methanol
(melting point = −97.53◦C) or ethanol (melting point = −114.14◦C) [38] for our samples rather
than water, because the alcohols required less heating to remain in the liquid state. The samples
were kept liquid with a heater made of twisted-pair manganin wire and coated in Stycast 2850FT
epoxy. This heater was not built into the glass vessel; rather, the heater was placed around the
phantom before lowering it down the bore. Because of the low melting points of the alcohols, only
occasional heating was required to maintain the liquid state. Therefore during imaging the heater
was turned of so as to not inject noise into the measurements. We found that running the heater
with 100 mA of current for 5–10 minutes or so every 30–45 minutes was usually sufficient.

Most unfortunately, the original Pyrex insert was destroyed not long into the ZFMRI
project. While we did not definitively identify the cause, we speculate that fatigue at the glass-to-
metal seal caused the glass to crack, which led to the implosion of the insert. In order to expedite
the fabrication of a new insert, we revised the design to omit the LN2 jacket. (We also performed
the silvering of the vacuum space in our lab, following the techniques found in [39–41].) The second-
generation insert is shown schematically in Fig. 6.6B. We found that, due to the design changes, the
bore temperature was significantly lowered to around −220◦C (approximately 50 K). This posed
several challenges: we had to keep air out of the bore in order to prevent the formation of ice plugs,
and our alcohol samples required nearly constant heating to keep from freezing.

We isolated the bore from the atmosphere through the use of an “air lock” fashioned
from a ball valve topped by a quick-disconnect vacuum fitting (Fig. 6.7). Rather than taping the
phantom to the end of a G-10 rod, we sealed one end of a phenolic tube and inserted the phantom
in the other end. The tube would be placed in the vacuum fitting, then evacuated and flushed
with helium gas by means of a drain port on the ball valve. A boss on the inside surface of the
tube prevented the phantom from being pushed up into the evacuated tube when it was flushed
with helium. Once the air had been removed from the tube, we opened the ball valve and lowered
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Fig. 6.6: Schematics of Pyrex glass inserts (with sample) and superconducting Pb shields in LHe
dewar of Fig. 6.5. Dark gray represents vacuum space in the dewar and inserts. Light gray represents
LHe. (A) Original insert (with LN2 jacket) and original Pb shield. (B) Second-generation insert
(without LN2 jacket) and new Pb shield.
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Fig. 6.7: Photograph of dewar top plate showing ball valve with drain port, used to evacuate the
upper chamber to prevent air from entering the bore of the insert.
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the phantom to the bottom of the insert. We also filled the bore with a small quantity of helium
gas to reduce the pressure differential between the environment and the bore (to help reduce the
possibility of air leaks into the bore). In later experiments we used neon gas in the bore, because
neon diffuses through Pyrex at a much slower rate than helium [42].

We modified our pulse sequence and electronics in order to run the heater during the po-
larizing pulses, when magnetic fields from the heater would not interfere with encoding or detection.
This gave us a duty cycle of approximately 60% during imaging, which was suitable to keep the
sample liquid with heater currents of around 100 mA. The heater was applied continuously between
projections or during other “down time” in the experiments. Late in the experiment we added a
thermocouple (type T, consisting of copper and constantan wires) to monitor the temperature of
the sample; we found that ethanol samples worked best for NMR when they were at −50◦C or
higher, due to the temperature dependence of T2.

An additional challenge was that, due to the low pressure environment, liquid alcohol
samples tended to evaporate quickly unless the phantom was well-sealed. Significant quantities of
the sample could be lost during imaging, or even during the evacuation of the sample tube. To
combat this, we designed and fabricated a sealed phantom, which will be discussed in further detail
in Sec. 6.3.3.

6.2.4 Coils

All of the field-generating coils used in our ZFMRI experiment were wound of 0.2-mm
diameter Cu-clad NbTi superconducting wire with Formvar insulation (note that the heater, which
was wound of manganin wire, is not considered a field-generating coil). A schematic diagram of
the coils and their relation to the Pyrex insert and the sample are shown in Fig. 6.8A. The coils
were bolted together into a single assembly and affixed to the Pyrex insert by tying loops of dental
floss between the coil assembly and glass hooks on the outer walls of the insert (Fig. 6.8B).

Current through each of the coils was controlled by relays activated by digital logic (TTL)
pulses from an Interface Technology RS-660 timing simulator. All of the coils besides the polarizing
coil were powered by batteries; current amplitude adjustments for the battery-powered coils were
performed with potentiometers in series with the batteries.

6.2.4.1 Polarizing coil

The polarizing coil was made of approximately 200 turns wound as a single-layer solenoid
directly on the tail of the Pyrex insert. The coil diameter was 35 mm and the inductance was about
0.4 mH. The polarizing coil was the only one not powered by batteries during imaging; power for
this coil was provided by a HP 6434B DC power supply. For all of the images shown in this thesis,
we used a polarization current of approximately 3 A to achieve a polarization field around 10 mT.
This field was switched off nonadiabatically with a L/R time of about 80 µs. A solid-state relay
was used to turn off the current, and then a mechanical relay ensured that the coil was open during
data acquisition to reduce noise.
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Fig. 6.8: (A) Schematic diagram of insert tail, showing double-walled glass vessel, sample, gra-
diometer, and field coils. Colors are used to visually separate the components. (B) Photograph of
coil assembly affixed to the tail of the second-generation insert. Note the glass hooks immediately
above top green coil. Another row of glass hooks is located higher, above the top of the photo.
The vertical brown boom on the left holds the SQUID package below the bottom of the insert to
maximize the time it is in LHe.
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Fig. 6.9: Calculated magnetic field in the imaging region in the y-z plane due to our planar gradient
coils.

6.2.4.2 Uniform field coils (for π, B0, and Bm pulses)

Our ZFMRI technique utilized two different uniform fields: Bz for the π pulses and Bm for
the measurement field pulses. The phase-encoded conventional gradient echo sequence described in
Sec. 6.1.4 required a B0 field during encoding, in addition to the Bm field for acquisition. The coils
to generate these fields were described in [27]. The Bz coils comprised a Helmholtz pair wound on
G-10 frames. The mean diameter of the coils was approximately 90 mm, and each coil contained
70 turns of wire. The inductance of this Helmholtz pair was measured to be 2.1 mH, and the coil
constant was 1.24 µT/mA. The Bm coils consisted of 10 turns wound on top of each of the Bz

coils. The inductance of the Bm pair was not measured. The coil constant of the Bm pair was
0.28 µT/mA.

The coil assembly contained an additional Helmholtz pair By perpendicular to Bz and
Bm; however, it was not used in these experiments (see Sec. 6.1.1).

6.2.4.3 Gradient coils

We applied the magnetic field gradients using a pair of rectangular, counterwound coils
which were designed to fit into the existing Helmholtz coil assembly (one of the gradient coils is
visible on the left-hand side of the coil assembly in Fig. 6.8B). The gradient coils were machined
from 5-mm thick sheets of grade LE phenolic. They were 100 mm tall and 43.5 mm wide, allowing
them to just fit between the By coils mentioned in the previous section. Separation between the
coils was 53 mm. Each coil contained 25 turns of wire. The inductance of the pair was measured
to be approximately 0.25 mH.

The field profile of this gradient pair in the y-z plane was approximated in MATLAB by
calculating the field from four infinite vertical wires. The calculated field is shown in Fig. 6.9. Be-
cause the width of the coils was not equal to the separation, there is a small anisotropy in the field
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gradients. The calculated gradient versus current along the y-direction is Gy ≈ −15.7 µT/m/mA,
whereas along the z-direction it is Gz ≈ 17.2 µT/m/mA. Subsequently, these estimates were con-
firmed experimentally (to within about 10%) by measuring the bandwidth of the signal from a vial
of alcohol.

6.2.4.4 Cancellation coils

We added a pair of coils along the axis of the insert (the x-direction in our system) in an
attempt to cancel the residual fields along this direction and reduce the field at the phantom as
close to zero as possible. Our system already has uniform field coils along y and z, which could be
used to cancel residual fields in those directions. The new cancellation pair was designed to fit on
the existing coil assembly, as can be seen in Fig. 6.8B, which constrained the design somewhat. In
particular, we could not use a Helmholtz pair because the separation of the cancellation pair was
dictated by the sizes of the other coils while the diameter of the cancellation coils was limited by the
neck of the dewar. The cancellation coils are 76 mm in diameter and separated by approximately
110 mm. Each coil has 100 turns and the coil constant is 0.35 to 0.4 µT/mA.

Because these coils were coaxial with the gradiometer, we were concerned about injecting
noise into the measurements; we attempted to switch the field off during acquisition but found that
this resulted in a strong ringing signal picked up by the gradiometer. Fortunately, we subsequently
learned that we could run the cancellation coils continuously from batteries during acquisition with
little or no increase in system noise.

6.2.5 Control and acquisition electronics

The voltage output of the FLL passed through a PAR-113 preamplifier (gain = 100)
and a Krohn-Hite 3320 filter configured for high-pass (cutoff frequency = 100 Hz), before being
acquired and digitized using a National Instruments DAQ card in conjunction with LabVIEW. The
filtering was required because magnetic field pulses in the dewar generated relaxation signals from
the nearby metal in the apparatus due to imperfect shielding; the relaxation signals lasted tens
of milliseconds or longer and were of sufficient amplitude to saturate the DAQ card. Putting the
signal through a high-pass filter effectively removed the relaxation from the acquired signal, but
also required that our NMR signal be above the filter’s cutoff frequency. This is one of the reasons
we used a one-dimensional phase encoding sequence in the ZFMRI experiment (as described in
Sec. 6.1.3).

For the early images the DAQ card was the PCI-MIO-16XE-10; this card ceased to function
during the time that the second-generation glass insert was being fabricated. We replaced the card
with a new card, the PCI-6036E, which had nearly identical specifications, so that no additional
changes to the acquisition system were necessary.

The triggering of magnetic field pulses, heater pulses, FLL integrator reset, and signal ac-
quisition were controlled with TTL pulses generated by a RS-660 word generator/timing simulator.
It was run in timing simulator mode, in which it featured eight TTL channels. Pulse sequences
could be programmed either by hand using the RS-660 front panel, or via the General Purpose
Instrument Bus (GPIB) interface. The LabVIEW acquisition software included a routine to add
pulse units to the sequence via GPIB; without this ability, each new sequence would have to be
programmed in by hand, making the ZFMRI experiment excessively slow.
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Fig. 6.10: (A) Top view diagram of Teflon phantom used for our first ZFMRI image. Darker
circles indicate holes which were filled with methanol. The phantom was 28 mm tall and the holes
were 25 mm deep. (B) First ZFMRI image. Image consists of 12 projections with 20 points per
projection; the projections were zero-filled to 128 points during processing.

6.3 Results

6.3.1 First image acquired in the zero-static-field limit

For our first image, we used a simple phantom which was made of four holes drilled in
a 17-mm diameter Teflon cylinder. The diameter of the cylinder was chosen to fit an existing
heater made of black Stycast-coated manganin twisted pair. A diagram of the phantom is shown
in Fig. 6.10A. Each column was 25 mm tall and filled with approximately 0.1 mL of methanol; the
open top of the phantom was sealed with masking tape and Play-Doh to hinder sample leakage and
evaporation. We used methanol due to its low freezing point, as the bottom of the warm bore was
significantly below 0◦C. Despite the low freezing point of the sample, it still required occasional
warming with the heater.

The Gz gradient for this image was approximately 40 µT/m and the gradient pulse du-
ration was τ = 5 ms. The π pulse duration was 1 ms, which corresponds to a field amplitude of
approximately Bπ = 12 µT and a duty cycle of 1/6. Five negative pulse units were applied to start
the acquisition in negative k -space. We acquired data at 20 points in k -space per projection (with
each point averaged 10 times to increase SNR), and 12 projections at 15◦ increments to cover the
angles from 0◦ to 165◦. Rotation of the sample was accomplished by taping it to the end of a long
G-10 rod which protruded from the bore and could be grasped.

The first image taken with the ZFMRI sequence is shown in Fig. 6.10B. We estimated a
residual field in the dewar of up to 1 µT, which yielded ε = GL/B0 ≈ 2.3 (although the residual
field is not an applied B0 field, it is still a nonzero static field which may truncate the concomitant
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Fig. 6.11: (A) New phantom, shown with a dime for scale. Phantom was filled with methanol for
imaging; red liquid in photo is for visibility. (B) ZFMRI image with Gz = 100 µT/m. Image is 24
projections with 24 data points per projection, zero-filled to 128 points in processing.

gradients, so we treat it as B0 when we calculate ε). However, because the FOV was much larger
than the phantom, our sample did not see that large of a field change. If we take ∆B to be the
change in field across the sample, then we find ∆B/B0 ≈ 0.68; clearly we needed to try again with
higher gradients.

6.3.2 Improved phantom and increased gradient

The first image served as a proof-of-principle that the ZFMRI sequence could work to
produce images. For subsequent experiments, we desired a phantom which would highlight distor-
tions due to concomitant gradients in a conventionally-encoded image. To these ends, we designed
a new phantom consisting of an acrylic cylinder with three parallel channels which were bisected
with a perpendicular cross channel. This phantom was made by the Chemistry Machine Shop and
is shown in Fig. 6.11A. We again used methanol for the sample and sealed the top of the phantom
with masking tape and Play-Doh.

We increased the amplitude of the gradient pulse to 100 µT/m for the same 5-ms pulse
duration. This resulted in a FOV of about 23 mm, which was much closer to the size of our phantom.
In this case we took projections every 7.5◦ from 0◦ to 172.5◦, for a total of 24 projections. We
reduced to one the number of negative pulse units in the sequence so that we could get to higher
k -space points before too much signal was lost to T ∗2 decay. A total of 24 points were acquired
for each projection, with each point averaged 10 times. The π pulse duration was 1 ms as in the
previous image.

Over the course of this imaging experiment, we observed that the SNR dropped to ap-
proximately 1/3 of its starting value. We discovered that the loss of SNR was due to evaporation of
about 2/3 of the initial sample (in later testing, we found that the methanol was able to “climb” the
walls of the phantom and pool on the top surface). In order to process the data, each projection was
normalized by dividing the data by the maximum amplitude in the projection; the reconstructed
image is shown in Fig. 6.11B. Assuming a residual field of up to 1 µT, we estimated for this image
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that ε ≈ 2.3. Thanks to the ZFMRI sequence, this image is free of concomitant gradient distortions
despite the large field change across the sample.

The loss of over half of the sample during several hours of imaging was obviously a serious
problem; we took steps to remedy this by boring out the top 5 mm or so of the phantom while the
Chemistry Machine Shop fabricated a tight-fitting Teflon cap to seal this hole. However, we did
not get the chance to image this phantom again, as we explain below.

6.3.3 Imaging with a new phantom in a new insert

Our original insert shattered approximately two weeks after we acquired the image de-
scribed in the preceding section. A description of the replacement insert and the issue of the very
cold bore were presented in Sec. 6.2.3. Although we added helium gas to the bore, the low tem-
peratures ensured that the bore was still under partial vacuum. Our methanol samples, heated to
approximately −50◦C, evaporated very quickly under these conditions despite the cap we had made
for the phantom. We attempted to modify our acrylic phantom so that it would seal more tightly,
but the modifications were ineffective; the phantom broke after increasingly aggressive methods to
seal it against the vacuum in the bore.

We designed and fabricated a new phantom, a diagram and photo of which are shown in
Fig. 6.12. The new phantom was made of nylon 6/6, which is chemically resistant to alcohols [43],
and hermetically sealed via solvent welding. We avoided the use of adhesives out of concerns for
differential thermal contraction between the nylon and the adhesive layer. We also switched the
sample material from methanol to ethanol, which has a lower vapor pressure [38]. Details of the
phantom construction are recounted below.

A nylon cylinder was mounted horizontally in a milling machine; material was cut away
to leave a half-cylinder. A pattern was machined into the flat side of the half-cylinder. This process
was repeated to make another half-cylinder. The flat sides of the half-cylinders were sanded until
smooth and solvent-welded together with 96% formic acid to form a cylinder. A piece of thin nylon
sheet was solvent-welded around the cylinder to strengthen the joints and add extra protection
against leaks and ruptures. A small hole was drilled and tapped through the top of the phantom
and into the sample space. Ethanol was injected into this hole using a syringe; a nylon screw was
then solvent-welded into the hole to seal the phantom.

Although the sample evaporation was much reduced with the new phantom, it could not
be completely eliminated. The ethanol had to be refilled after a few weeks due to evaporation
through the nylon. Refilling was easily accomplished by drilling and tapping a new hole through
the top of the phantom, injecting ethanol, and sealing the new hole with a solvent-welded nylon
screw. Although the nylon is opaque, it is translucent enough to allow the sample level to be seen
through the side if the phantom is held to the light; alternatively, the amount of ethanol could be
monitored by weighing the phantom.

With the new phantom in hand, and other issues with the second-generation insert dealt
with, we set out to resume imaging. Our imaging parameters were: gradient pulse duration of
τ = 5 ms, gradient amplitude of Gz = 86 µT/m (corresponding to a current in the gradient coil
of IG = 5 mA), and π pulse duration tπ = 1 ms. Before we began this image, we put the heater
control on a TTL line so that we could heat the sample during polarization pulses. We took 24
projections (7.5◦ to 180◦ in steps of 7.5◦), with 24 k -space points per projection and 10 averages
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Fig. 6.12: (A) Diagram of sealed nylon phantom. Dashed lines outlining the pattern indicate that
the material is opaque. Shaded area in figure is the pattern machined into the two halves, which
are joined along the dotted line. (B) Photograph of one such phantom. Sealing line is visible
horizontally between the screws.
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Fig. 6.13: (A) High-field image of the nylon phantom filled with water. This image was scaled and
rotated to facilitate visual comparison with the ZFMRI image. (B) First ZFMRI image of nylon
phantom. Image was 24 projections with 24 points per projection, and zero-filled to 128 points in
processing. For this image, ε ≈ 7.

per point.
Because the new nylon phantom was opaque, we could not see through it to determine

how accurately it was represented in our images. In order to observe the actual geometry of the
phantom, we drilled a hole in the phantom, drained the ethanol, refilled with water, and imaged the
phantom in a high-field system. (The high-field imaging actually was performed several weeks after
the ZFMRI image we report in this section.) To our mild chagrin, we found the machining work on
this phantom was not as pretty as we had hoped; however, we did find that our images accurately
reproduced the characteristics of the phantom. The high-field image is shown in Fig. 6.13A and
the first ZFMRI image of this phantom is shown in Fig. 6.13B.

As part of the troubleshooting of the second-generation insert, we replaced the 300-mm
diameter superconducting Pb shield in the dewar belly with a new shield with a diameter of 150 mm.
In later measurements we found that the residual field was now less than 0.33 µT, which yields
ε ≈ 7 for this image.

6.3.4 Comparison to a conventionally-encoded image with ε > 1

By this point in the experiment, we had seen many examples of images encoded in the
zero-static-field limit using the ZFMRI sequence, but we had never compared the results of ZFMRI
to the results of a conventional sequence under similar conditions of gradient, field of view, and
very low static fields. We designed the phase-encoded gradient echo sequence of Sec. 6.1.4 so that
we could compare the two encoding methods. We furthermore decided that the comparison would
be most valid if the conventional-sequence images were taken concurrently with the ZFMRI images;
at each projection angle, we would take a conventional data set and a ZFMRI data set. In this
way, we would be sure that any distortions due to errors in the projection angle would affect both
images equally. However, this had the obvious disadvantage of making the imaging take about
twice as long. Because of this, we often decided to break up an image to be done over two or more
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Fig. 6.14: Comparison of ZFMRI sequence and a conventional sequence. (A) High-field image to
show phantom geometry (this is the same image as in Fig. 6.13A, but rotated and rescaled to match
the ZFMRI image). (B) Image taken with ZFMRI sequence, with ε ≈ 7. (C) Image taken with
phase-encoded gradient echo sequence (Sec. 6.1.4). In this case, ε ≈ 5 due to the B0 added to the
estimate of the residual field.

days.
The conventionally-encoded image sequence used the same gradients as the ZFMRI image,

as well as the same k -space intervals and the same Bm field. We applied a small B0 using the Bz

coil, which was used for applying π pulses in the zero-field sequence. The only changes that had to
be made to switch between conventional and ZFMRI encoding were to change the sequence loaded
into the RS-660 timing simulator, and to add a resistor in series with the Bz coil in order to reduce
the current for B0. We selected B0 ≈ 0.12 µT, which corresponds to a Larmor frequency of about
5 Hz.

The results of one such comparison are shown in Fig. 6.14. In Fig. 6.14A we show the
high-field image to establish the geometry of the phantom. Figure 6.14B shows the outcome of the
ZFMRI sequence, with parameters as follows: Gz = 100 µT/m; τ = 5 ms; tπ = 1 ms; 24 projections
with 24 points per projection and 10 averages per point. Figure 6.14C contains the phase-encoded
conventional image with Gz = 100 µT/m, 10 ms of encoding time between k -space points, and
B0 ≈ 0.12 µT. The conventional image had the same number of points, projections, and averages.

6.3.5 Cancellation of residual field along axis of insert

In an effort to reduce the residual magnetic field in the dewar as much as possible (and
therefore to maximize our ε values), we constructed the cancellation coils discussed in Sec. 6.2.4.4.
We needed only to construct coils along the axis of the insert, which was the x-direction, because
we already had uniform field coils along the y- and z-directions.

In order to cancel the residual field in the dewar, we first had to measure it. The stray field
along directions perpendicular to the gradiometer axis are rather easy to measure; for example,
it can be done by simply acquiring an NMR spectrum, then switching the direction (but not
the magnitude) of the current in the B0 coil and acquiring another spectrum. The difference in
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Fig. 6.15: (A) High-field image to show phantom geometry, rotated and scaled to match ZFMRI
image. (B) ZFMRI image with cancellation of stray fields (ε > 10). (C) Conventional sequence
with cancellation of stray fields (ε > 6.5).

Larmor frequencies between the two spectra will be double the frequency due to the stray field. We
found that the stray fields in the y-z plane of our apparatus were generally around 0.05 µT, which
corresponds to a Larmor frequency of about 2 Hz.

On the other hand, measuring stray fields along the axis of the gradiometer is not so
straightforward, because we cannot observe the precessing magnetization. Our typical method of
determining the residual flux along the axis of the insert was to apply a small field along either y or
z. The field along x will add in quadrature, so by applying a Bx we could observe a change in the
precession frequency; a minimum in the precession frequency indicated the best cancellation field.

For very precise cancellation, this procedure could become tedious in our apparatus. If the
residual field along x is small, then one wants to apply a small transverse field so as not to swamp
the Bx field. However, if the Larmor frequency is below the cutoff frequency of our high-pass filter,
the experiment has to be done using an indirect method similar to the phase-encoding techniques
we used for our low-frequency images. To acquire a point in the low-frequency FID, we had to
polarize the sample, let it evolve in the small field for some given time, then apply the Bm field to
acquire an indirect FID; the Fourier transform of the indirect FID yields the real and imaginary
values for one point of the low-frequency FID. This procedure had to be repeated for each point in
the low-field FID.

We found that the residual fields in our apparatus could vary day to day, sometimes by as
much as a factor of two. Careful cancellation of the residual field would therefore require measuring
the stray field every day, possibly more than once. It is clear that if precise cancellation is desired, a
new technique to measure the residual fields must be devised. Nevertheless, we did acquire images
with at least partial cancellation of the residual field; these images are shown in Fig. 6.15. The
sequence parameters were identical to those of the images shown in Sec. 6.3.4. Because of the
cancellation of residual fields, we estimate ε > 10 in the ZFMRI image of Fig. 6.15B and ε > 6.5
in the conventional-sequence image of Fig. 6.15C.
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Chapter 7

Discussion

We showed in Ch. 6 that it is possible to obtain undistorted magnetic resonance images
in the absence (or near-absence) of a uniform static magnetic field. This is in itself a significant
result, but the apparatus as it currently exists is unsuitable for many practical applications. In
this chapter we will discuss topics relevant to improving the utility of the system, including how to
reduce the imaging time, the effect of an ambient field, and power dissipated in the uniform field
pulses. We will also briefly introduce other techniques for the elimination of concomitant gradient
distortions.

7.1 Imaging time

Our implementation of ZFMRI, which was described in Sec. 6.1.3, involved the time-
consuming technique of phase encoding to acquire the one-dimensional k -space data, that is, ac-
quiring each point of k -space individually. The reasons to use such a technique were two-fold. First,
the indirect method can detect the real and imaginary parts of the signal (known as quadrature
detection) with a single sensor. Second, the magnetic field pulses used in the ZFMRI sequence gen-
erated relaxation signals from the Pyrex and metal of the experimental apparatus [27, 30], which
had to be filtered out (via a high-pass filter) to avoid saturating the NI DAQ card used to record
the data. The indirect detection technique permitted us to use an acquisition frequency above the
cutoff frequency of the filter.

For each of the 24 projections of the image we acquired 24 k -space points, each taking
3.5 seconds (2-s polarizing pulse followed by up to 0.5-s encoding time and 1-s data acquisition
time), and each point was averaged 10 times to increase the SNR, leading to a total imaging time
of about 5.6 hours. The time could be reduced substantially if the system were modified to allow
stroboscopic acquisition; that is, to allow the FIDs to be acquired during the gradient pulses, so
that all k -space points could be acquired after a single polarization. Such a system would require
two orthogonal detectors for quadrature detection and would require careful design to minimize
magnetic relaxation and detector dead time. With a suitable system, we predict that the imaging
time could be reduced to only a few minutes. In particular, stroboscopic acquisition would reduce
imaging time by a factor of 24 (as only one repetition of the polarization-encoding-detection cycle
would be needed), and eliminating signal averaging would save another factor of 10.
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We now outline our calculations of the statements above. In MRI, the SNR is commonly
defined as the signal amplitude divided by the standard deviation of the noise. For an acquisition
time tacq

SNR =

tacq∫
0

s(t) dt

√√√√√ tacq∫
0

σ2
n dt

=



tacq∫
0

s(t) dt

√
tacq


1

σn
, (7.1)

where σn is the standard deviation of the noise and s(t) is the integrated signal from the nuclear
magnetization detected by the sensor (assuming negligible noise) [1]. To compare the SNR of two
acquisition methods, we estimate the value of the bracketed term from the formula

s(t) ∝
∫
y

∫
z

m(y, z) exp[−t/T ∗2 ] exp[−iγtBG(y, z)]dy dz (7.2)

where T ∗2 is the transverse relaxation time, BG(y, z) is the field due to applied gradients, and m(y, z)
is a function representing the spin distribution in the sample. In this analysis we use a function
m(y, z) which is uniform over the imaging region and normalized such that∫

y

∫
z

m(y, z)dy dz = 1 (7.3)

The standard deviation of noise is time independent and assumed to originate from the sample,
detector, and electronics, which are the same in both acquisition methods; therefore, the σn term
has been omitted from the following comparison.

In the one-dimensional phase-encoding (pe) acquisition method described in Sec. 6.1.3,
the signal at each point in k -space is acquired as a free induction decay (FID) in the uniform field
Bm. The demodulated signal equation in this case is given by

spe(t) ∝
∫
y

∫
z

m(y, z) exp[−t/T ∗2 ]dy dz, (7.4)

where, in our experiments, the transverse relaxation time T ∗2 was measured to be 300 ms. Using
our acquisition time tacq = 1 second,

SNRpe ∝

tacq∫
0

spe(t) dt

√
tacq

≈ 0.289. (7.5)

In a stroboscopically-detected experiment using two orthogonal detectors, the signal could
be detected as precession about the gradient field BG during every second gradient pulse. The
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demodulated signal equation in this case is given by

ssrt(t) ∝
∫
y

∫
z

m(y, z) exp[−t/T ∗2 ] exp[−iγtBG]dy dz, (7.6)

where
BG =

√
(Gy)2 + (Gz)2 (7.7)

is the field magnitude at the point (y, z). For our value G = 100 µT/m and a 5-ms acquisition, we
find

SNRstr ∝

√
2

tacq∫
0

sstr(t) dt

√
tacq

≈ 0.0990. (7.8)

The factor of
√

2 arises from the use of two detectors in quadrature detection.
We now compare the difference in SNR between the two acquisition methods. If the noise

standard deviation σn is the same in both cases, we find

SNRstr
SNRpe

∝ 0.0990

0.289
≈ 0.34. (7.9)

The SNR in the stroboscopically-detected experiment is reduced by a factor of approximately three
compared that of the phase-encoded experiment, while the imaging time is reduced by a factor of
24.

Elimination of signal averaging reduces imaging time by an additional factor of 10, at
the cost of an additional factor of approximately three in SNR [1]. Thus, a 240-fold reduction in
imaging time would cause the SNR to drop by approximately a factor of nine. The loss in SNR
could be recovered by increasing the prepolarization field from 10 mT to 100 mT. If the full 240-fold
reduction were realized, the imaging time would be less than two minutes. It must be noted that
this estimate of minimum imaging time is specifically for the images shown in Ch. 6. Changes in
noise level, desired FOV, or desired resolution may result in different imaging times.

7.2 Effect of an ambient uniform magnetic field

The experimental apparatus described in Sec. 6.2.3 is contained inside a dewar with a
diameter of about 0.5 m, so it is fairly easily to achieve good shielding from ambient magnetic
fields (for example, by putting the dewar inside a mu-metal can). Such a system is suitable for
small samples such as that shown in Fig. 6.12. However, the required size of the apparatus increases
with the desired sample size. For a system suitable to image parts of the human body, magnetic
shielding rapidly becomes cumbersome. This may not be a problem for a stationary system, but it
is inconvenient if one desires a portable imager. As discussed in Sec. 5.5, the ZFMRI sequence can
be generalized to the case of unshielded imaging in the presence of a uniform ambient field Ba.

The presence of a uniform ambient field imposes conditions on the gradient and π pulses.
The maximum gradient pulse duration is limited by the need to keep the precession angle small
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Fig. 7.1: Effect of an ambient uniform field on π pulse amplitude and direction.

during a gradient pulse. In practice, though, we find that the ZFMRI sequence is quite robust—
in the image shown in Fig. 6.15B, the maximum precession angle during a gradient pulse was
approximately 65◦. For a total field of 50 µT (approximately the Earth’s field), an upper bound
of 65◦ limits the maximum duration of the gradient pulse to about 85 µs: the angle of precession
during a field pulse of amplitude B and duration τ is given by δ = γBτ . For δ = 65◦ and B = 50 µT
we find τ ≈ 85µs. Restrictions on the maximum gradient pulse duration place demands on the
imaging hardware; in particular, in order to acquire k -space points stroboscopically the detector’s
dead time must be less than the gradient pulse duration. Limiting the gradient pulse duration also
limits the time during which the signal may be acquired, which may have implications for the SNR
of the image.

The presence of Ba also sets conditions on the amplitude and duration of the π pulse.
Components of Ba perpendicular to the π pulse induce errors by modifying the pulse amplitude
and direction. To limit the error in the total π pulse amplitude to less than 1%, the applied pulse
amplitude must be approximately seven times the perpendicular component of Ba. We explain
this estimate as follows.

We define the z-axis to be along the direction of the applied π pulse. In the presence of
an ambient field the total field amplitude along z is given by Bπz +Baz, where Bπz is the applied
pulse (generated by our field coils) and Baz is the component of ambient field parallel to the z-axis
(see Fig. 7.1). For a component of ambient field perpendicular to the z-axis (in the x-y plane) Baxy,
the total field during the π pulse is given by

Bπ,tot =
√

(Bπz +Baz)2 + (Baxy)2. (7.10)

Thus Bπ,tot ≤ 1.01(Bπz +Baz) for Baxy ≤ Bπ,tot/7.
The presence of large perpendicular components Baxy would therefore require large applied

Bπz pulses — approximately 350 µT if Baz = 0. An obvious solution is to align the π pulse with
Ba. The total field during the π pulse is then

Bπ,tot = Bπz +Baz, (7.11)

where Bπz is the pulse applied by the field coils. Thus, if one aligns the system so that the ambient
field is aligned with the desired π pulse direction, one may be able to use the ambient field as the π
pulse — that is, Bπ,tot = Ba and Bπ,z = 0. As long as the Earth’s field is aligned with the desired
π pulse direction to within about 8◦, the Baxy ≤ Bπ,tot/7 condition will be satisfied and the error
in the amplitude of Bπ,tot will be less than 1%.
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7.3 Power dissipated in π pulses versus power dissipated in a
static field

Although the imaging sequence we have implemented does not include a uniform static
field, it does feature pulses of uniform field. These pulses are designed to cause the spins to precess
by π over their duration. The amplitude of the pulse is therefore dictated by the duration. If the
desired pulse time is very short, a large uniform field will be required; for example, a 100-µs pulse
requires Bπ ≈ 120 µT, which corresponds to a Larmor frequency of about 5 kHz. This field is
similar in magnitude to fields commonly used in SQUID-detected MRI and in which concomitant
gradients have not been a problem [2,3, 5, 26,44,45]. A common question is why, if such fields can
be achieved in the apparatus, do we not make them static and use them as B0 in a conventional
imaging sequence? The answer to this question depends on one’s reason for pursuing ZFMRI.
In the first place, one simply may not want such a large B0; advantages of small B0 fields were
discussed in Ch. 1. Another reason to not use a static B0 is power consumption; if one is examining
ZFMRI for its suitability in a portable or otherwise low-power-consumption system, one way to
reduce power is to eliminate the B0 field. Then the question we must ask is this: If we were to
use a static uniform field which consumes the same power as our uniform field pulses, what ε could
we achieve? This will tell us if the apparatus would require less power to use a static uniform field
suitable for imaging.

In order to consider this question, we will find an expression for εstatic, which is the ε
value we would have for the same gradient field, but with the power from the π pulses instead used
to maintain a static field. For simplicity we will assume that the π pulses are rectangular, with
constant amplitude over the entire duration (that is, we neglect the current rise and fall times).

The π pulse in our apparatus is powered by a 9-volt alkaline battery and the amplitude
is adjusted by means of a potentiometer in series with the coil (see Sec. 6.2.4). Because we use a
superconducting coil to provide the field, nearly all of the power in the circuit is dissipated in the
resistor. We will first find an expression for εstatic in this case, where the voltage is constant and
the current for the π pulses is adjusted by changing the resistance R of the circuit.

For a constant voltage, the power dissipated in the resistor is given by the familiar

P = IV, (7.12)

where V is the voltage across the resistor and I is the current thorough the resistor. Assuming a
steady current I, the magnetic field can be found with the well-known Biot-Savart Law [46],

B =
µ0I

4π

∫
dl× r

|r|3
, (7.13)

where µ0 is the permeability of free space. Since the field amplitude is linear in I, we will write it
generally as

|B| = B = αI, (7.14)

where α is the proportionality constant. Note that P and B are both linear in I, so we can write

P =
V

α
B = βVB, (7.15)
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where βV is a proportionality constant (recall that V is constant). The power dissipated in a π
pulse is then Pπ = βVBπ. The duty cycle of the π pulse is given by

D =
tπ

tπ + τ
, (7.16)

where tπ is the duration of the π pulse and τ is the duration of a gradient pulse (see Fig. 6.2). The
average power Pavg during the pulse sequence is

Pavg = βVBπD. (7.17)

This gives the same power dissipation as we would get for the creation of a static field,

Bstatic = BπD = Bπ
tπ

tπ + τ
. (7.18)

The pulse amplitude Bπ is chosen to cause the magnetization to precess by π, so Bπ is related to
tπ by γBπtπ = π. If we write Bπ in terms of tπ we find

Bstatic =
π

γtπ

tπ
tπ + τ

=
π

γ

1

tπ + τ
. (7.19)

In order to calculate εstatic, we must compare this Bstatic to GL where G is the gradient
strength and L is the width of the FOV. The field of view L is defined as [1]

L =
1

γ
2πG∆t

, (7.20)

where ∆t is the time separation between data points; in our sequence this is ∆t = 2τ . Therefore

GL =
2π

γ

1

2τ
=

π

γτ
. (7.21)

We can now calculate εstatic:

εstatic =
GL

Bstatic
=
tπ + τ

τ
. (7.22)

This equation gives the value of εstatic based on parameters from our ZFMRI sequence. It is obvious
from Eq. 7.22 that εstatic ≥ 1. That is, when the current through the uniform field coil is provided
by a constant voltage and varied by adjusting a resistor in series with the coil, a static uniform
field which dissipates the same power as the π pulses will not be large enough to avoid severe
concomitant gradient distortions. A static uniform field which is appropriate for imaging at the
same gradient strengths will dissipate much more power than the ZFMRI sequence.

The preceding analysis assumed a constant supply voltage for the uniform field coils. We
consider here another method of controlling the current in these coils: the use of a variable voltage
supply with a fixed resistor in series with the field coils. In this case it is convenient to use the
power expression

P =
V 2

R
. (7.23)
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By replacing I with V/R in the Biot-Savart Law we find

B =
αV

R
, (7.24)

where V is the voltage and R is the resistance. It is obvious from these equations that

P =

(
R

α2

)
B2 = βRB

2, (7.25)

where βR is a proportionality constant. The average power dissipated is then

Pavg = βRB
2
πD, (7.26)

where D is the duty cycle of the π pulse. This is the same power dissipated in the creation of a
static field

Bstatic = Bπ
√
D =

π

γ

√
1

tπ(tπ + τ)
. (7.27)

Following Eqs. 7.21 and 7.22 we find

εstatic =
GL

Bstatic
=

√
tπ(tπ + τ)

τ
. (7.28)

If we assume that the π pulses are very short, so that tπ � τ , then Eq. 7.28 can be approximated
as

εstatic ≈
√
tπ
τ
. (7.29)

From Eq. 7.29, we can see that if one uses a high Bπ (and thus a short tπ) and a small duty cycle,
he may be better off (from a power consumption standpoint) applying a static field rather than
using the ZFMRI sequence. It should be noted, however, that a very small duty cycle (D ∼ 0.01)
is required for εstatic < 0.1.

The energy dissipated during a π pulse is given by

Eπ = Pπtπ, (7.30)

where tπ is the π pulse duration. Recall that this duration is related to Bπ by

tπ =
π

γBπ
. (7.31)

We find, then, that the energy dissipated during a π pulse is simply

Eπ =
π

αγ
V, (7.32)

where α is the proportionality constant between field magnitude Bπ and the current I in the coils
which generate the pulse. From this we see that, for a given set of uniform field coils, the energy
consumed during the π pulse is proportional to the voltage used to create the pulse.
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Equation 7.32 implies several tradeoffs in the design of a practical ZFMRI system. Using
a low voltage to power the π pulses reduces the energy used by the system, but applying large
fields requires a small R (to achieve large I), or coils of larger inductance; either of these increases
the L/R time constant of the coils and makes rapid pulsing more difficult. In addition, a system
with resistive coils will not have an infinitely adjustable R, which may set a lower bound on V . A
versatile system, capable of a large range of Bπ values (and therefore a large range of tπ times) will
necessarily require a large available range of R or V . Furthermore, while short tπ times are desirable
from an imaging standpoint, they may require more voltage to apply and negatively impact the
energy economy of the system.

7.4 Comparison of ZFMRI to other methods of dealing with con-
comitant gradients

With the increasing popularity of low-field MRI [2,3,5,26,44,45,47–49], there has been a
surge of interest in the effects of concomitant gradients [7,35] on imaging, and on the correction (or
avoidance) of concomitant gradient distortions [8–11]. In this section we will briefly examine some
other methods for mitigating the problem of concomitant gradients on imaging as B0 approaches
zero. We will examine these methods mostly on their ability to correct concomitant gradient
distortions, but we will take into account other pertinent factors such as computational complexity
and hardware requirements. We will also consider PatLoc, a high-field imaging scheme which is
not designed to correct concomitant gradient distortions but which uses an array of detectors to
perform imaging in nonlinear gradients [50–52].

7.4.1 Computational corrections in post-processing

The concomitant gradient correction technique of Myers et al. [8] begins with a Taylor-
series expansion of the magnetic field magnitude. For example, possible phase and frequency
encoding fields are

Bphase =

(
−1

2
xGz

)
x̂ +

(
zGy −

1

2
yGz

)
ŷ + (B0 + yGy + zGz) ẑ (7.33)

and
Bfreq = zGyŷ + (B0 + yGy) ẑ. (7.34)

The ẑ components of these fields are the “ideal” fields; the x̂ and ŷ components are the concomitant
gradient terms. The Larmor frequency of a spin at some point in each of these fields is given by
ω = γB where B is the magnitude of the field at that point. The field magnitudes can be expanded
in the y-z plane as follows:

Bphase = B0 +Gyy +Gzz +
G2
y

2B0
z2 +

G2
z

8B0
y2 − GyGz

2B0
yz +O

(
G3

B2
0

)
, (7.35)

Bfreq = B0 +Gyy +
G2
y

2B0
z2 +O

(
G3
y

B2
0

)
. (7.36)
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The terms which are second order and higher in the gradient are due to concomitant gradients.
The series field expansion is used to divide the frequency and phase each into two parts,

where ωideal and φideal are due to the ideal fields (i.e. without concomitant gradients), while ∆ωc

and ∆φc are due to the concomitant gradient terms. The terms due to concomitant gradients are
removed by defining a scaled time parameter

t′ =

(
ωideal

ωideal + ∆ωc

)(
t− ∆φc

ωideal

)
, (7.37)

which is used to replace the time parameter in image reconstruction. Because these terms are
position-dependent, the calculation is simplified by breaking the image into regions, and using the
position of the region’s center to evaluate t′ over the whole region. Using a larger number of regions
improves the concomitant gradient cancellation, but is more computationally intensive.

Equations 7.35 and 7.36 are based on the well-known binomial series

(1 + x)k = 1 + kx+
k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + . . . , (7.38)

which converges for |x| < 1 [53]. We therefore cannot expect this expansion to accurately represent
the field magnitude when ε > 1. Furthermore, simple numerical calculations indicate that the
convergence of the series for k = 1/2 slows down as x approaches 1, so we would expect that the
quality of the concomitant gradient correction will degrade as ε increases, unless higher-order terms
are included in the expansion (which increases the computational complexity). These predictions
have been borne out in simulations and experiments. The computational technique has been shown
to be successful in both simulations and experiments with values of ε up to about 0.5. However, a
simulation with ε ≈ 0.75 was reported to retain unacceptable levels of distortion after the correction
algorithm was applied [8].

An additional requirement for the correction in the phase-encode direction is that

γB0Tramp � 1, (7.39)

where Tramp is the time over which the gradient field is ramped. Clearly this criterion becomes
difficult to satisfy as B0 → 0.

7.4.2 Expanding spin density as a Fourier series

In addition to developing the sequence used in our ZFMRI image, Meriles et al. [10]
describe a second method of imaging which avoids concomitant gradient distortions. The second
method, identified in the paper as “Scheme 2,” uses a radically different approach to image encoding
and reconstruction. Consider an object in the FOV as shown in Fig. 7.2. The spin density along
a closed circular path centered at the origin must be a periodic function. More formally, in polar
coordinates the spin density is a periodic function of the angle and can therefore be expressed as a
Fourier series:

n(r, θ) =
1

2π

∞∑
m=−∞

cm(r)eimθ, (7.40)
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Fig. 7.2: Spin density as a function of angle. (A) Sample (light) in field of view (dark). (B) Spin
density vs. angle for the inner ring in A. (C) Spin density vs. angle for the outer ring in A.

where

cm(r) =

∫
rn(r, θ)e−imθ dθ (7.41)

(note that previously in this thesis m was used to represent spin density; in this section we will
follow the notation of [10]). The coefficients cm can be determined from the signal acquired as
the spins precess in the gradient field. To illustrate this, we will examine an example given in the
paper [10].

The apparatus we will use in this analysis consists of a detector along the y-axis, along
with coils that allow for prepolarization and π pulses to be applied along any axis. The apparatus
is surrounded by a Golay pair which applies a gradient field of

BGolay(x, z) = g (zx̂ + xẑ) (7.42)

in the x-z plane.
Assume the sample is polarized along the y-axis via a prepolarization pulse, then allowed

to evolve in the gradient field. The detected signal will be

Sy(kr) =

∞∫
0

cos(krr)sy(r) dr, (7.43)

where kr = gt (g is the gradient strength) and

sy(r) =

2π∫
0

rn(r, θ) dθ (7.44)

(recall that n(r, θ) is the spin density). It can be seen that the function sy(r) is related to the
m = 0 coefficient of the Fourier series in Eq. 7.41.
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If the prepolarization pulse is applied along x, then the signal received by the detector
will be

Sx(kr) =

∞∫
0

sin(krr)sx(r) dr, (7.45)

where

sx(r) =

2π∫
0

rn(r, θ) cos θ dθ. (7.46)

For the prepolarization pulse along the z-axis,

Sz(kr) =

∞∫
0

sin(krr)sz(r) dr, (7.47)

where

sz(r) =

2π∫
0

rn(r, θ) sin θ dθ. (7.48)

These functions are related to the m = ±1 coefficients of the Fourier series (Eq. 7.41).
Higher-order coefficients can be found by preparing the initial spin state before acquisition.

This can be done by applying a train of π pulses, of varying directions, after the prepolarization.
The imaging experiment, then, will consist of a series of polarization-encoding-acquisition steps, as
shown in Fig. 7.3. Each pulse in the train allows the determination of two higher-order coefficients
(two higher values of m) as long as all of the lower-order coefficients are known. Because the
spin density function n(r, θ) is real, cm and c−m are complex conjugates; therefore, a total of four
additional coefficients of Eq. 7.40 can be found for each π pulse.

This Fourier-series imaging procedure, while quite different in the processing of the data,
is similar in form to the procedure we used (as described in Sec. 6.1.3). Both techniques begin with
a prepolarization pulse, and then spatial information is encoded by a train of π pulses, followed by
detection of the precessing magnetization. As such, this Fourier-series imaging scheme shares some
of the same disadvantages of our ZFMRI experiment: for example, errors due to inaccuracies in the
π pulses will add, and the experiment will consist of a time-consuming repetition of the polarization-
encoding-acquisition process. The Fourier-series imaging has some additional disadvantages of its
own as well: as the number of coefficients increases, each new coefficient contributes less to the
detected signal.

7.4.3 Rotating magnetic field gradients

As pointed out in Ch. 5, concomitant gradients lead to nonzero field components which
point in some direction other than the z-axis. These field components are static in the lab frame,
so they will rotate in the rotating frame. The rotating components will average away if they are
sufficiently small.

A pair of orthogonal gradient coils, driven by currents 90◦ out of phase, can apply rotating
gradient fields. If the frequency of the gradient rotation is ω0, the field due to gradients will have
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Fig. 7.3: Pulse sequence for “Scheme 2.” (Reprinted with permission from [10].)
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some stationary components in the rotating frame. Bouchard [11] showed that the existence of the
stationary components improve the averaging, and therefore result in smaller phase errors and less
image distortion than traditional static gradients for the same ε.

Bouchard considers two types of rotating frame gradients. Rotating frame gradients of
the first kind are the sum of the fields created by two orthogonal sets of Golay coils, such as

Ba(t) = a(t) (zx̂ + xẑ) = g cos(ωt+ ϕ) (zx̂ + xẑ) (7.49)

and
Bb(t) = b(t) (zŷ + yẑ) = g sin(ωt+ ϕ) (zŷ + yẑ) , (7.50)

where g is the gradient strength, ω is the frequency of the rotating gradient, and ϕ is the phase
of the rotating gradient. Rotating frame gradients of the second kind are a linear superposition of
the fields

Ba(t) = a(t) (zx̂ + xẑ) (7.51)

and
Bb(t) = εb(t) (−xx̂− yŷ + 2zẑ) , (7.52)

where a(t) and b(t) are as in Eqs. 7.49 and 7.50 and ε is a proportionality constant.
With either type of rotating frame gradient, the result is a region of enhanced linearity

when compared with static gradients of the same strength g. The region of enhanced linearity is
a square, tilted 45◦ relative to the original FOV. The area of the region is 1/

√
2 of the area of

the original FOV. Figure 7.4 shows simulated images taken with rotating frame gradients where
ε ∼ 3.2.

In simulations, the technique of rotating frame gradients seems effective in reducing distor-
tions due to moderate-to-strong concomitant gradients (including ε > 1) at the cost of a reduction
in the FOV. As this technique was not designed for B0 = 0, it may be well-suited for use in the
Earth’s field. Because it is a phase-encoding technique, the entire image must be phase-encoded,
or some other method for dealing with concomitant gradients in the frequency-encoding field must
be used.

7.4.4 Signal acquisition with an array of detectors

In principle, if the field distribution over the sample is well-known it should be possible to
reconstruct the image if one has a way to remove ambiguities in the encoding. For example, in the
radially symmetric magnetic field shown in Fig. 5.1, measuring the precession frequency of a spin
yields information on the distance from the origin to the spin, but no information on the direction.
This ambiguity could be removed by the use of an array of detectors with well-known positions and
sensitivity profiles. An example of such a method in high-field imaging is known as PatLoc [50–52].
It should be noted PatLoc was not developed as a technique for imaging at arbitrarily low B0, nor
for correcting concomitant gradient distortions; we examine it here as an example of imaging in
nonlinear gradients using multiple detectors.

In PatLoc imaging, an array of coils is used to apply “spatial encoding fields,” or SEMs,
which in general are not linear. The SEMs are applied on top of a strong B0 field to spatially
modulate the total magnetic field; in the literature, the term “SEM” is preferred to “gradient” to
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Fig. 7.4: Simulated images with rotating frame gradients. (A) Proton density map. (B) Simulated
image in conventional MRI gradients (ε < 0.1). (C) Simulated image with conventional MRI
gradients (ε ≈ 3.2). (D) Simulated image using rotating frame gradients (ε ≈ 3.2). (Reprinted
figure with permission from: L-S. Bouchard, Phys. Rev. B 74, 054103 (2006).)
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distinguish the SEMs from conventional linear imaging gradients. The exact form of the SEMs
depends on the configuration of the coil array, but in general there is not a one-to-one mapping
between spin position and the frequency/phase of its precession (that is, they are “non-bijective”).
Some examples are the radial and multipolar fields shown in [51]. Imaging in these fields is possible
because they are bijective (or nearly so) over local subregions; the ambiguities in the encoding can
be addressed by using separate detectors in each subregion and applying parallel imaging techniques
such as SENSE or GRAPPA in the reconstruction [51].

The PatLoc technique illustrates some of the disadvantages that may arise in a multi-
detector method of concomitant gradient correction. First and foremost, the technique requires an
array of detectors with well-known sensitivity profiles. The imaging field must also be well-known,
which may not be the case in an unshielded ZFMRI system. Because of the nonlinear nature of
the SEMs and the use of multiple detectors, the reconstruction procedure may be complicated and
nonintuitive [51]. Finally, it has been observed in simulations that PatLoc images frequently have
“holes,” which are large regions where distortions and blurring render the image unusable. See Fig.
7.5 for example simulations of PatLoc imaging on a variety of phantoms; note the blurring at the
centers of the images.
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Fig. 7.5: Simulations of PatLoc imaging. (A,C,E) Simulations using conventional linear imaging
gradients. (B,D,F) Simulations using PatLoc gradients. (With kind permission from Springer
Science+Business Media: Magnetic Resonance Materials in Physics, Biology, and Medicine, Parallel
imaging in non-bijective, curvilinear magnetic field gradients: a concept study, vol. 21, 2008, pp.
5-14, J. Hennig et al., Fig. 7, c© ESMRMB 2008.)
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