Understanding Spatial and Spectral Morphologies of Ultracompact H II Regions

PDF Version Also Available for Download.

Description

The spatial morphology, spectral characteristics, and time variability of ultracompact H II regions provide strong constraints on the process of massive star formation. We have performed simulations of the gravitational collapse of rotating molecular cloud cores, including treatments of the propagation of ionizing and non-ionizing radiation. We here present synthetic radio continuum observations of H II regions from our collapse simulations, to investigate how well they agree with observation, and what we can learn about how massive star formation proceeds. We find that intermittent shielding by dense filaments in the gravitationally unstable accretion flow around the massive star leads to ... continued below

Physical Description

15 pages

Creation Information

Peters, Thomas; /ZAH, Heidelberg; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist. /Heidelberg, Max Planck Inst. Astron.; Banerjee, Robi; /ZAH, Heidelberg et al. August 25, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The spatial morphology, spectral characteristics, and time variability of ultracompact H II regions provide strong constraints on the process of massive star formation. We have performed simulations of the gravitational collapse of rotating molecular cloud cores, including treatments of the propagation of ionizing and non-ionizing radiation. We here present synthetic radio continuum observations of H II regions from our collapse simulations, to investigate how well they agree with observation, and what we can learn about how massive star formation proceeds. We find that intermittent shielding by dense filaments in the gravitationally unstable accretion flow around the massive star leads to highly variable H II regions that do not grow monotonically, but rather flicker, growing and shrinking repeatedly. This behavior appears able to resolve the well-known lifetime problem. We find that multiple ionizing sources generally form, resulting in groups of ultracompact H II regions, consistent with observations. We confirm that our model reproduces the qualitative H II region morphologies found in surveys, with generally consistent relative frequencies. We also find that simulated spectral energy distributions (SEDs) from our model are consistent with the range of observed H II region SEDs, including both regions showing a normal transition from optically thick to optically thin emission, and those with intermediate spectral slopes. In our models, anomalous slopes are solely produced by inhomogeneities in the H II region, with no contribution from dust emission at millimeter or submillimeter wavelengths. We conclude that many observed characteristics of ultracompact H II regions appear consistent with massive star formation in fast, gravitationally unstable, accretion flows.

Physical Description

15 pages

Source

  • Journal Name: Astrophys.J.719:831-843,2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-14217
  • Grant Number: AC02-76SF00515
  • DOI: 10.1088/0004-637X/719/1/831 | External Link
  • Office of Scientific & Technical Information Report Number: 992911
  • Archival Resource Key: ark:/67531/metadc1012811

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 25, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 3, 2017, 1:52 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Peters, Thomas; /ZAH, Heidelberg; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist. /Heidelberg, Max Planck Inst. Astron.; Banerjee, Robi; /ZAH, Heidelberg et al. Understanding Spatial and Spectral Morphologies of Ultracompact H II Regions, article, August 25, 2010; [California]. (digital.library.unt.edu/ark:/67531/metadc1012811/: accessed June 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.