Structural Behavior of Monolithic Fuel Plates During Hot Isostatic Pressing and Annealing

PDF Version Also Available for Download.

Description

This paper presents results of the stress analysis in the monolithic fuel plates during thermal transients performed using COMSOL finite element analysis software. Large difference in the thermal expansion between the U-Mo foil and Al cladding is the main load origin during heating and cooling of the fuel plates. In addition, the mechanical behavior of the plate is affected by the difference in yield points between the foil and the cladding. This is manifested by the plastic deformation and permanent strains in the cladding, and elastic deformation of the foil. The results show existence of the critical temperature points at ... continued below

Creation Information

Medvedev, Pavel G. & Ozaltun, Hakan March 1, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 27 times , with 4 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper presents results of the stress analysis in the monolithic fuel plates during thermal transients performed using COMSOL finite element analysis software. Large difference in the thermal expansion between the U-Mo foil and Al cladding is the main load origin during heating and cooling of the fuel plates. In addition, the mechanical behavior of the plate is affected by the difference in yield points between the foil and the cladding. This is manifested by the plastic deformation and permanent strains in the cladding, and elastic deformation of the foil. The results show existence of the critical temperature points at which the stresses change from compressive to tensile. The paper highlights principal differences in mechanical behavior between monolithic and dispersion fuel plates, underlines the need for mechanical property data, especially for the U-Mo alloys, and discusses the methodology for mechanical analysis of the monolithic plates.

Source

  • 14th International Topical Meeting on Research Reactor Fuel Management 2010,Marrakech, Morocco,03/21/2010,03/25/2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-09-17428
  • Grant Number: DE-AC07-05ID14517
  • Office of Scientific & Technical Information Report Number: 986965
  • Archival Resource Key: ark:/67531/metadc1012717

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 3, 2017, 5:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 27

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Medvedev, Pavel G. & Ozaltun, Hakan. Structural Behavior of Monolithic Fuel Plates During Hot Isostatic Pressing and Annealing, article, March 1, 2010; Idaho. (digital.library.unt.edu/ark:/67531/metadc1012717/: accessed November 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.