Simplified Approach to Evaluation of Beam-Beam Tune Spread Compression by Electron Lens

PDF Version Also Available for Download.

Description

One of the possible ways to increase luminosity of hadron colliders is the compensation of beam-beam tunespread with an electron lens (EL). At the same time, EL as an additional nonlinear element in the lattice can increase strength of nonlinear resonances so that its overall effect on the beam lifetime will be negative. Time-consuming numerical simulations are often used to study the effects of the EL. In this report we present a simplified model, which uses analytical formulae derived for certain electron beam profiles. Based on these equations the idealized shapes of the compressed tune spread can be rapidly calculated. ... continued below

Physical Description

3 pages

Creation Information

Romanov, A.L.; /Novosibirsk, IYF; Valishev, A.A.; Shiltsev, V. & /Fermilab May 19, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

One of the possible ways to increase luminosity of hadron colliders is the compensation of beam-beam tunespread with an electron lens (EL). At the same time, EL as an additional nonlinear element in the lattice can increase strength of nonlinear resonances so that its overall effect on the beam lifetime will be negative. Time-consuming numerical simulations are often used to study the effects of the EL. In this report we present a simplified model, which uses analytical formulae derived for certain electron beam profiles. Based on these equations the idealized shapes of the compressed tune spread can be rapidly calculated. Obtained footprints were benchmarked against several reference numerical simulations for the Tevatron in order to evaluate the selected configurations. One of the tested criteria was the so-called 'folding' of the compensated footprint, which occurs when particles with different betatron amplitudes have the same tune shift. Also studied were the effects of imperfections, including misalignment of the electron and proton beams, and mismatch of their shapes.

Physical Description

3 pages

Source

  • Journal Name: Conf.Proc.C100523:thpe015,2010; Conference: Presented at 1st International Particle Accelerator Conference: IPAC'10, Kyoto, Japan, 23-28 May 2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-CONF-10-138-AD-APC
  • Grant Number: AC02-07CH11359
  • Office of Scientific & Technical Information Report Number: 983990
  • Archival Resource Key: ark:/67531/metadc1012606

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 19, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 23, 2017, 8:42 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Romanov, A.L.; /Novosibirsk, IYF; Valishev, A.A.; Shiltsev, V. & /Fermilab. Simplified Approach to Evaluation of Beam-Beam Tune Spread Compression by Electron Lens, article, May 19, 2010; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc1012606/: accessed June 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.