Probing the evolution of antiferromagnetism in multiferroics

PDF Version Also Available for Download.

Description

This study delineates the evolution of magnetic order in epitaxial films of the room-temperature multiferroic BiFeO3 system. Using angle- and temperature-dependent dichroic measurements and spectromicroscopy, we have observed that the antiferromagnetic order in the model multiferroic BiFeO3 evolves systematically as a function of thickness and strain. Lattice-mismatch-induced strain is found to break the easy-plane magnetic symmetry of the bulk and leads to an easy axis of magnetization which can be controlled through strain. Understanding the evolution of magnetic structure and how to manipulate the magnetism in this model multiferroic has significant implications for utilization of such magnetoelectric materials in future ... continued below

Physical Description

134406

Creation Information

Holcomb, M.; Martin, L.; Scholl, A.; He, Q.; Yu, P.; Yang, C.-H. et al. June 9, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This study delineates the evolution of magnetic order in epitaxial films of the room-temperature multiferroic BiFeO3 system. Using angle- and temperature-dependent dichroic measurements and spectromicroscopy, we have observed that the antiferromagnetic order in the model multiferroic BiFeO3 evolves systematically as a function of thickness and strain. Lattice-mismatch-induced strain is found to break the easy-plane magnetic symmetry of the bulk and leads to an easy axis of magnetization which can be controlled through strain. Understanding the evolution of magnetic structure and how to manipulate the magnetism in this model multiferroic has significant implications for utilization of such magnetoelectric materials in future applications.

Physical Description

134406

Subjects

Source

  • Journal Name: PHYSICAL REVIEW B; Journal Volume: 81; Journal Issue: 13

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-3486E
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.1103/PhysRevB.81.134406 | External Link
  • Office of Scientific & Technical Information Report Number: 983328
  • Archival Resource Key: ark:/67531/metadc1012430

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 9, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 17, 2017, 6:57 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Holcomb, M.; Martin, L.; Scholl, A.; He, Q.; Yu, P.; Yang, C.-H. et al. Probing the evolution of antiferromagnetism in multiferroics, article, June 9, 2010; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1012430/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.