BRCA1 loss pre-existing in small subpopulations of prostate cancer is associated with advanced disease and metastatic spread to lymph nodes and peripheral blood

PDF Version Also Available for Download.

Description

A recent study concluded that serum prostate specific antigen (PSA)-based screening is beneficial for reducing the lethality of PCa, but was also associated with a high risk of 'overdiagnosis'. Nevertheless, also PCa patients who suffered from organ confined tumors and had negative bone scans succumb to distant metastases after complete tumor resection. It is reasonable to assume that those tumors spread to other organs long before the overt manifestation of metastases. Our current results confirm that prostate tumors are highly heterogeneous. Even a small subpopulation of cells bearing BRCA1 losses can initiate PCa cell regional and distant dissemination indicating those ... continued below

Creation Information

Bednarz, Natalia; Eltze, Elke; Semjonow, Axel; Rink, Michael; Andreas, Antje; Mulder, Lennart et al. March 19, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A recent study concluded that serum prostate specific antigen (PSA)-based screening is beneficial for reducing the lethality of PCa, but was also associated with a high risk of 'overdiagnosis'. Nevertheless, also PCa patients who suffered from organ confined tumors and had negative bone scans succumb to distant metastases after complete tumor resection. It is reasonable to assume that those tumors spread to other organs long before the overt manifestation of metastases. Our current results confirm that prostate tumors are highly heterogeneous. Even a small subpopulation of cells bearing BRCA1 losses can initiate PCa cell regional and distant dissemination indicating those patients which might be at high risk of metastasis. A preliminary study performed on a small cohort of multifocal prostate cancer (PCa) detected BRCA1 allelic imbalances (AI) among circulating tumor cells (CTCs). The present analysis was aimed to elucidate the biological and clinical role of BRCA1 losses on metastatic spread and tumor progression in prostate cancer patients. Experimental Design: To map molecular progression in PCa outgrowth we used FISH analysis of tissue microarrays (TMA), lymph node sections and CTC from peripheral blood. We found that 14% of 133 tested patients carried monoallelic BRCA1 loss in at least one tumor focus. Extended molecular analysis of chr17q revealed that this aberration was often a part of larger cytogenetic rearrangement involving chr17q21 accompanied by AI of the tumor suppressor gene PTEN and lack of the BRCA1 promoter methylation. The BRCA1 losses correlated with advanced T stage (p < 0.05), invasion to pelvic lymph nodes (LN, p < 0.05) as well as BR (p < 0.01). Their prevalence was twice as high within 62 LN metastases (LNMs) as in primary tumors (27%, p < 0.01). The analysis of 11 matched primary PCa-LNM pairs confirmed the suspected transmission of genetic abnormalities between those two sites. In 4 of 7 patients with metastatic disease, BRCA1 losses appeared in a minute fraction of cytokeratin- and vimentin-positive CTCs. Small subpopulations of PCa cells bearing BRCA1 losses might be one confounding factor initiating tumor dissemination and might provide an early indicator of shortened disease-free survival.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL-3875E
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.2172/986921 | External Link
  • Office of Scientific & Technical Information Report Number: 986921
  • Archival Resource Key: ark:/67531/metadc1012317

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 19, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 17, 2017, 6:02 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bednarz, Natalia; Eltze, Elke; Semjonow, Axel; Rink, Michael; Andreas, Antje; Mulder, Lennart et al. BRCA1 loss pre-existing in small subpopulations of prostate cancer is associated with advanced disease and metastatic spread to lymph nodes and peripheral blood, report, March 19, 2010; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1012317/: accessed December 15, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.