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Abstract

Four conventional damage plasticity models for concrete, the Karagozian and Case model (K&C),
the Riedel-Hiermaier-Thoma model (RHT), the Brannon-Fossum model (BF1), and the Contin-
uous Surface Cap Model (CSCM) are compared. The K&C and RHT models have been used in
commercial finite element programs many years, whereas the BF1 and CSCM models are relatively
new. All four models are essentially isotropic plasticity models for which “plasticity” is regarded
as any form of inelasticity. All of the models support nonlinear elasticity, but with different for-
mulations. All four models employ three shear strength surfaces. The “yield surface” bounds an
evolving set of elastically obtainable stress states. The “limit surface” bounds stress states that
can be reached by any means (elastic or plastic). To model softening, it is recognized that some
stress states might be reached once, but, because of irreversible damage, might not be achievable
again. In other words, softening is the process of collapse of the limit surface, ultimately down
to a final “residual surface” for fully failed material. The four models being compared differ in
their softening evolution equations, as well as in their equations used to degrade the elastic stiff-
ness. For all four models, the strength surfaces are cast in stress space. For all four models, it is
recognized that scale effects are important for softening, but the models differ significantly in their
approaches. The K&C documentation, for example, mentions that a particular material parameter
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affecting the damage evolution rate must be set by the user according to the mesh size to preserve
energy to failure. Similarly, the BF1 model presumes that all material parameters are set to values
appropriate to the scale of the element, and automated assignment of scale-appropriate values is
available only through an enhanced implementation of BF1 (called BFS) that regards scale effects
to be coupled to statistical variability of material properties. The RHT model appears to similarly
support optional uncertainty and automated settings for scale-dependent material parameters. The
K&C, RHT, and CSCM models support rate dependence by allowing the strength to be a function
of strain rate, whereas the BF1 model uses Duvaut-Lion viscoplasticity theory to give a smoother
prediction of transient effects. During softening, all four models require a certain amount of strain
to develop before allowing significant damage accumulation. For the K&C, RHT, and CSCM
models, the strain-to-failure is tied to fracture energy release, whereas a similar effect is achieved
indirectly in the BF1 model by a time-based criterion that is tied to crack propagation speed.
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Chapter 1

Introduction

A persistent challenge in simulating damage of concrete structures is the development of efficient
and accurate constitutive models. The desired models need to produce a smooth transition from a
linear or nonlinear elastic range to a non-linear hardening regime and ultimately a weak post-peak
state. This report compares four concrete material models: (1) the Karagozian and Case model
(K&C), (2) the Riedel-Hiermaier-Thoma model (RHT), (3) the Brannon-Fossum model (BF1),
and (4) the Continuous Surface Cap Model (CSCM). To facilitate discussion of these models, a
common terminology will be adopted for concepts common to all four models. The performance
of each model is assessed by making comparison between some simulations.

Unconfined concrete tensile strength ( ft) can be as much as 92% lower than the compressive
strength ( f ′c) [11]. The ultimate strength of concrete depends on the pressure and shear stresses. At
low pressure, the inelastic behavior of concrete material is not related to the motion of dislocations
as for metallic materials. In uniaxial loading, deformation is approximately linear in the elastic
regime. As the deformation increases, the cracks increase in size and number, and then eventually
propagate through the material to culminate in ultimate failure.

In extension, the active crack planes are orthogonal to the load direction. In compression, they
are parallel to the load direction (i.e., misaligned cracks will kink in this direction). In either case,
crack planes tend to form orthogonal to the direction of the least compressive (or most tensile)
principal stress. A peak stress is reached at a point where microcracking has caused sufficient
degradation of stiffness such that the material would become unstable if loaded in stress control. If
hydrostatic pressure is present, a fully damaged material in compression retains a residual strength
such as that of a granular medium.

A distinctive behavior of concrete and other quasibrittle materials is the phenomenon of dilata-
tion (i.e., volume increase) under inelastic compressive loading. Although compressive stresses
initially induce a volume reduction, continued compression induces material damage in the form
of shear cracking. Subsequent dilatation is typically attributed to geometrically necessary intro-
duction of void space associated with crack kinking. Standard concrete exhibits volume expansion
under compressive loading at low confining pressure, but does not dilatate at high confining pres-
sure greater than 100MPa [11].

For triaxial tests conducted under sufficiently high confining pressure, crack growth tends to
be negligible in comparison to porosity changes. For purely hydrostatic loading, a porous equation
of state is usually employed to model three different phases: elastic deformation, compaction, and
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solidification. During the compaction phase, pores in the material collapse. In the final solidifica-
tion phase, the material is approximately homogeneous (because pore space has been fully crushed
out), and the volumetric response is once again elastic.

All four models in this report fall loosely in the category of generalized isotropic plasticity the-
ory. Specifically, they all presume existence of an elastic domain. The boundary of this domain in
stress space is called the “yield surface” even though mechanisms of inelasticity are not necessar-
ily associated with dislocations. Because all four models are isotropic, the yield surface in stress
space has a certain degree of symmetry about the hydrostat. The radial distance from the hydrostat
is a measure of equivalent shear stress. The detail of the surfaces used in these models is discussed
in upcoming chapters.

General formulation

The implementation of the concrete models under investigation can be broken into (1) elastic and
plastic updates, (2) strength surface formulations, (3) rate and scale effects, and (4) damage ac-
cumulation. The models differ in their approaches to these areas. This report does not cover the
details of elastic and plastic updates used in each model because all of them follow the typical
elasticity and plasticity theories. All of the models under investigation currently presume that the
concrete is initially isotropic. The BF1 and CSCM models support developed anisotropy in the
rudimentary form of kinematic hardening. Neither the K&C nor RHT models support intrinsic
(i.e. pre-existing) elastic anisotropy, but the BF1 model includes support for joints in the concrete
and the CSCM model includes support for rebar. All models support nonlinear elasticity, imple-
mented in incremental form such that stress increments are linear and isotropic in strain increments
with the tangent bulk and shear moduli varying with deformation or stress.

Depending on the type of loads, the concrete will eventually yield or fail. The yield threshold
is defined by the yield surface that is described in the following chapter. During compaction, the
material is tentatively presumed to be elastic thus giving a trial elastic stress σ T . If σ T is found
to lie outside the yield surface, the tentative assumption is rejected, and the loading increment is
re-evaluated using plastic update equations. When damage occurs and begins to accumulate, the
strength of the concrete is reduced by appropriately collapsing the strength surface in stress space.

High loading rates are well known to lead to an apparent increase in strength. In the K&C
and RHT models, this behavior is accommodated by expanding the yield surface so that higher
stress levels are required to reach it. The BF1 and CSCM models account for rate dependence
through a viscoplastic approach that better matches stress transients prior to reaching the steady
state strength.
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Shear strength surface

To include the effects of material strength and resistance to shear distortion, one can work with
the stress deviator S, which is defined as the difference between the total stress, σ , and a uniform
hydrostatic pressure, p,

S = σ − pI or S = σ − 1
3

tr(σ)I. (1.1)

where the hydrostatic pressure (or mean stress) can be represented by one third of the first invariant,
I1, of the total stress.

p =
1
3(σ1 +σ2 +σ3) =

1
3trσ =

I1
3 .

The second and the third invariants are given by

J2 =
1
2

tr(S2), and J3 =
1
3

tr(S3). (1.2)

All four concrete models investigated in this report rely heavily on axisymmetric compressive
stress data. The mechanics invariants for axisymmetric loading having an axial stress σA and two
equal lateral stresses σL are

I1 = σA +2σL, J2 =
1
3
(σA −σL)

2, J3 =
2

27
(σA−σL)

3. (1.3)

For elastic distortion, after loading and unloading, all the distortion energy is recovered and the
material returns to its initial configuration. However, when the distortion is large enough that the
material reaches its elastic limit, only elastic distortion energy is recovered. The material suffers
permanent plastic strain and can therefore no longer return to its initial configuration. Hence, a
yield function is used to describe the material elastic limit and the subsequent transition to plastic
flow.

The yield criterion for all four concrete models in this report can be written in the form

√
J2 = Ff (I1,θ ,κ), (1.4)

where
√

J2, I1, and θ are stress invariants, and κ stands for one or more internal variables. The
stress invariant I1 is proportional to pressure (specifically, I1 = 3p) and also proportional to the
axial coordinate of the stress state along the hydrostat in principal stress space. The stress invariant
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Figure 1.1. Left: yield surface without cap. Right: yield surface
with cap.

√
J2 is proportional to equivalent shear stress and also proportional to the radial distance of the

stress state from the hydrostat in stress space. The Lode angle stress invariant θ serves as an
alternative to the third invariant, J3, and it quantifies the angular coordinate of the stress state in
principal stress space.

The above yield criterion corresponds to the following yield function

f = J2 − [Ff (I1,θ ,κ)]2 = 0, (1.5)

Equation (1.4) and (1.5) are the basic forms employed by the K&C and RHT models. The
BF1 and CSCM models include extra terms that account for backstress, but can also be reduced
to the same expression as the other two models. The full expressions of the yield function used
in the BF1 and CSCM models are given later in Chapters 4 and 5, respectively. In addition to
the yield surface, all four concrete models use two additional surfaces to describe the peak stress
limit of the material. The “limit surface” bounds the set of stress states that are achievable at
least once. After a stress state at the limit surface has been reached, irreversible damage occurs
in the material causing the boundary of achievable stress states to shrink until ultimately reaching
a residual surface corresponding to a “fully damaged” state. These three strength surfaces are
sketched in Fig. 1.1. The limit and residual surfaces are stationary, while the current yield surface
evolves in response to evolution of internal variables that directly or indirectly account for porosity
and microcracks. The equations representing these surfaces are given in more detail in Chapters 2,
3, and 4.

Figure 1.1(right) shows the capped yield surface shape that is typical of models that account
for porosity. Not only does the cap introduce an elastic limit in pure hydrostatic compression, it
also allows porosity to affect the shear strength. This approach is adopted in the RHT, BF1, and
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CSCM models. However, the K&C model allows for a hydrostatic elastic limit only through an
equation of state, which does not include the effect of porosity on shear strength.

Octahedral profile

Cylindrical Lode coordinates (r,θ ,z) represent an alternative invariant triplet that can be obtained
from the conventional invariant triplet (I1, J2, and J3) as follows [12]:

r =
√

2J2 , sin3θ =
J3
2

(

3
J2

)3/2
, z =

I1√
3
. (1.6)

With this definition of the Lode angle, triaxial compression corresponds to a Lode angle of 30◦.
The Lode angle dependence in Eqs. (1.4) and (1.5) is accomplished by multiplying the compressive
meridian, Ff (I1,30◦,κ) in Fig. 1.1, by a scale function Γ(θ , I1). This Lode angle scale function is
a ratio of the radius of the octahedral cross section at an angle θ to the radius of the compressive
meridional profile at angle 30◦. Various formulations for the scale function have been used in the
literature. Of these, the following are common choices:

1. Willam-Warnke function [38]:

Γ(θ) =
4
(

1−ψ2)cos2 α∗ +(1−2ψ)2

2(1−ψ2)cosα∗ +(2ψ −1)
√

4(1−ψ2)cos2 α∗ +5ψ2 −4ψ
, (1.7)

where α∗ = π/6+θ ,(0.5 ≤ ψ ≤ 2),

2. Mohr-Coulomb [33]:

Γ(θ) =
2
√

3
3−3

(

1−ψ
1+ψ

)



cosθ −
3
(

1−ψ
1+ψ

)

sinθ
√

3



 (0.5 ≤ ψ ≤ 2), (1.8)

3. Gudehus [15]:

Γ(θ) =
1
2

[

1+ sin3θ +
1
ψ

(1− sin3θ )

]

(7/9 ≤ ψ ≤ 9/7). (1.9)

Here, ψ is the ratio of the radius, rt , at the tensile meridian (where θ = −30◦) to the radius, rc, of
the compressive meridian. The octahedral cross-sections corresponding to these Lode angle scale
functions are illustrated in Fig. 1.2 for various values of the strength ratio parameter ψ . Note that
the functions are normalized to coincide at the compressive meridian. All four models investigated
in this report support Willam-Warnke Lode angle function. The BF1 model also allows the options
of Mohr-Coulomb and Gudehus.
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Figure 1.2. Deviatoric section: (left) Willam-Warnke, (center)
Mohr-Coulomb, and (right) Gudehus.
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Chapter 2

The K&C Concrete Model

Strength surfaces

The K&C model uses stress differences to describe the yield surface (∆σy), the limit surface (∆σm),
and the residual surface (∆σr). In view of Eq.(1.3), where the stress difference is (σA −σL), the
stress difference can be written as

√
3J2, which allows generalization of the theory to general stress

states. During the initial loading or reloading, the stresses are elastic until an initial yield surface
is reached. The initial yield surface hardens to the limit surface or softens to the residual surface,
depending on the nature of loading or on the material state. Three fixed surfaces are used in the
K&C model and are defined as

Yy = ∆σy = a0y +
p

a1y +a2y p
(yield surface), (2.1)

Ym = ∆σm = a0m +
p

a1m +a2m p
(limit surface), (2.2)

Yr = ∆σr = a0 f +
p

a1 f +a2 f p
(residual surface), (2.3)

where the a-parameters are user inputs, and a0 f = 0 for concrete. The three surfaces are defined
by different values of the a-parameters. To facilitate comparing the K&C model to other models,
Eqs. (2.1) to (2.2) can be recast in terms of standard invariants as follows:

√
J2 = F(I1), (2.4)

where

F(I1) =
1√
3

(

a0m +
I1

3a1m +a2mI1

)

The K&C concrete model uses Willam-Warnke’s Lode-angle function Γ(θ) shown in Eq. (1.7)
to describe the octahedral cross section of the surfaces. If tensile data are available instead of
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Figure 2.1. K&C meridian profiles

compressive data, the compressive meridian can be approximated by dividing the tensile meridian
∆σ by the relative distance between the compression and tension meridian ψ(p) at each pressure
p. The above equations apply only for compressive pressures. For tensile pressure, these equations
are replaced by

∆σ =
3
2

(p+ ft) or F(I1) =

√
3

2

(

I1
3

+ ft

)

. (2.5)

Equation (2.5) ensures conditions given in [8, 25] are met (i.e., ∆σ passes through (p,∆σ) =
(− ft ,0) under triaxial test and (p,∆σ) = (− ft/3, ft) for uniaxial test). Illustrated below is a com-
plete linear piecewise definition of ψ(p) as given in [28] for this model:

ψ(p) =



































1
2 : p ≤ 0,

1
2 + 3

2

(

ft
f ′c

)

: p = f ′c/3,
α f ′c

a0+
2α f ′c/3

a1+2aaα f ′c/3

: p = 2α f ′c/3,

0.753 : p = 3 f ′c,
1 : p ≥ 8.45 f ′c,

(2.6)

where α is a scalar factor multiplying f ′c to denote the location where the failure occurs. The
function given in Eq. (2.6) is linear between the specified points. For example, Kupfer et al.[25]
showed in biaxial compression tests that the failure occurred at (σ1,σ2,σ3) = (0,α f ′c,α f ′c), with
α ≈ 1.15. Even though the K&C model allows ψ to be pressure-dependent, a slope discontinuity
is present due to the piecewise representation of ψ .
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Figure 2.2. Failure surfaces in 3D stress space

Rate and scale dependence

The K&C model uses rate effects to handle shear damage accumulation. A strain rate enhance-
ment factor r f is used to scale the strength surface when the material is subjected to a high load-
ing rate. This strength enhancement factor is called the dynamic increasing factor (DIF) in the
CEB-FIP model code 90 (Comité Euro-International du Béton and Fédération International de la
Précontrainte) [35], see Fig. 2.3

When pressure p is returned from the equation of state, an “unenhanced” pressure p/r f and
“unenhanced” (i.e., quasistatic) shear strength F(I1/r f ) are computed. Multiplying the strain rate
enhancement factor r f (or DIF) to F(I1/r f ), a new enhanced limit surface at the current pressure
p is obtained:

∆σe = r f ∆σ
(

p
r f

)

or Fe(I1) = r f F

(

I1
r f

)

. (2.7)

To include the strain rate enhancement factor r f (or DIF), a modified effective plastic strain is
defined as

λ = h

√

2
3ε p

i jε
p
i j, (2.8)
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Figure 2.3. Experimental data for DIF according to CEB-FIB
design model code [26].

where

h =



















1

r f

(

1+ p
r f ft

)b1 for p ≥ 0 (compression),

1

r f

(

1+ p
r f ft

)b2 for p < 0 (tension). (2.9)

Equation (2.9) allows the damage accumulation to be different in tension and compression. The
b1 and b2 parameters are fitted to experimental data. The input scalar parameter b2 governs the
softening part of the unconfined uniaxial tension stress-strain curve as the stress point moves from
the limit to the residual surface, while b1 governs the softening for compression.

Damage due to isotropic tensile stressing is handled by adding a volumetric damage accumu-
lation that is computed by incrementing the effective plastic strain parameter by ∆λ according
to

4λ = b3 fdkd(εv − εv,yield), (2.10)

where b3 is an input parameter, εv is volumetric strain, εv,yield is the volumetric strain at yield. The
factor fd limits the effect of this change according to proximity of the stress state to the hydrostat.
Specifically,

fd =

{

1− |√3J2/p|
0.1 : 0 ≤ |

√
3J2/p| < 0.1,

0 : |
√

3J2/p| ≥ 0.1.
(2.11)

Determination of the input parameters b1,b2, and b3 is described in [28]. The parameter b2 is
computed iteratively using the data from the unconfined uniaxial tensile test until the area under
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the stress-strain curve coincides with GF/wu where GF is the fracture energy, and wu is crack
front width (which equals the element size). Therefore, different values of b2 must be used for
different element sizes; otherwise the computed energy release will be incorrect. Whether or not
this adjustment of b2 is automated is unclear.

Damage accumulation

Once the initial yield surface is reached, the stress state is evolved by interpolating between
Eq. (2.1) and Eq. (2.2) according to

∆σ = η (∆σm −∆σy)+∆σy or F(I1) = η [Fm(I1)−Fy(I1)]+Fy(I1), (2.12)

where a user defined damage function η indicates the location of the current yield surface relative
to limit surface and is a function of an effective plastic strain parameter,

λ =
∫ t

0

√

2
3

ε̇ p : ε̇ pdt (2.13)

The damage η is initially zero at λ = 0 and increases to unity at a user-specified value λm marking
the onset of softening. During softening, η , which now decreases as λ increases, is used to inter-
polate the current surface between limit and residual surfaces, Eq. (2.2) and Eq. (2.3), respectively
according to

∆σ = η (∆σm −∆σr)+∆σr or F(I1) = η [Fm(I1)−Fr(I1)]+Fr(I1), (2.14)

Typical η(λ ) used in the K&C model has behavior as illustrated in Fig. 2.4.

The experimental data presented in [8, 25] showed that the principal stress difference should be
approximately ft for biaxial compression and triaxial tension tests. To be able to reach this point,
the K&C model initially sets a value of pressure cutoff pc to − ft . This choice is consistent with
a maximum principal stress criterion at tensile pressures. If stresses reach the failure threshold in
the negative pressure range, the parameter η is then used to move the pressure cutoff from − ft to
zero in a smooth fashion. This is done by checking the pressure returned by the equation of state
(EOS), and resetting it to pc using the following conditions

pc =

{

− ft if the limit surface has not been reached (hardening),
−η ft if the limit surface has been reached (softening).
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Figure 2.4. Example of damage function η(λ ).

Plastic update

The cut-off pressure is reduced during the process of softening, and can cause a segment of the
meridian in the negative pressure portion to become very steep. To avoid a steep slope in this
region, the limit surface ηY (p,η) in Eq. (2.2) is modified according to

ηY1(p,η) = η
(

∆σm(p)− p f − p

p f − pc(η)
∆σm(pc)

)

= 3(p+η ft) , (2.15)

where ∆σm = 3(p+ ft) is the nominal limit surface in compression,
p f = 0 is the intersection of the residual surface with the pressure axis, and
pc = −η ft is the intersection of the limit surface with the pressure axis.

Hence, the current modified limit surface during the softening can be written as

Y (p,η) =

{

η∆σm(p)+(1−η)∆σ f (p) for p > 0,
3(p+η ft) for p ≤ 0,

(2.16)

where ∆σ f is the current unmodified failure surface. When the radial rate enhancement is used,
the surface is computed as a function of p/r f and then multiplied by r f as shown in Eq. (2.7).

At any time step, the shear strength changes with both pressure p and damage η . The current
strength Y is initially updated only according to the current pressure. The fully updated surface
is then determined iteratively accounting for the updated damage η . Let Y ∗ be the strength corre-
sponding to the updated pressure but before the value of η is determined. Then the fully updated
strength Yn+1 is determined as a result of the change in η according to

Yn+1 −Y ∗ =
∂Y
∂η

dη =
∂Y
∂η

dη
dλ

dλ (2.17)
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Using Eq. (2.8),

Yn+1 −Y ∗ =
∂Y
∂η

dη
dλ

h(σ)

√

2
3dε p

i j : dε p
i j. (2.18)

As is typical in plasticity models, the strain increment is decomposed into elastic and plastic parts
(dε = dεe + dε p). A conventional regular associated flow rule is adopted, and the stress state is
updated in a conventional manner (see, e.g., [1]).

Shear and bulk moduli

Prior to yielding, Hooke’s law is used for the elastic stress-strain relationship. The K&C model
supports nonlinear elasticity by permitting the moduli to vary with pressure. The shear modulus is
computed from a user specified Poisson’s ratio and the bulk modulus. It was commented in [28]
that when the difference between the loading and unload/reload bulk moduli is large, a negative
effective Poisson’s ratio may occur. Therefore, the bulk modulus is entered as part of the EOS input
set and is scaled within the the K&C model using a factor ϕ depending on how far the pressure
is below the “virgin curve” [28] (loading portion of the user’s specified pressure vs. volumetric
curve).

ϕ =
−∆ε

−∆ε +(p− p f )/KU
, (2.19)

where ∆ε = εv,min − εv,
εv is volumetric strain, and
KU is the unload/reload bulk modulus from the EOS.

The shear modulus is then calculated from the scaled bulk modulus K ′ as

G =
(1.5−3ν)K ′

1+ν
, (2.20)

where K ′ = (KL−KU)e−5.55ϕ +KU , and KL is the loading modulus.

The constant 5.55 is chosen such that the K ′ increases half way to unload/reload value when
p dropped 1/8 of the way from the virgin curve to p = p f (p f = 0 for concrete). According to
Eq. (2.20), a user is required to input only a Poisson’s ratio for the K&C model to compute the
shear modulus.
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Chapter 3

The RHT Concrete Model

This chapter discusses a material model for concrete using the RHT concrete model that has the
following capability associated with brittle material

• Pressure hardening,

• Strain hardening,

• Strain rate hardening,

• Third invariant dependence for compressive and tensile meridians,

• Damage effects (strain softening), and

• Crack-Softening.

The above terminology was taken directly from ANSYS AUTODYN product features [6]. It is
unclear what is meant by pressure hardening, but we suspect that it merely refers to increased
shear strength with pressure. If so, the term hardening is used here in a nonstandard way.

Strength surfaces

Similar to the K&C model, three strength surfaces are used in the RHT material model (see
Fig. 3.1). The RHT concrete model expresses these surfaces in terms of the compressive meridian
YTXC(p), a rate factor r f = r f (ε̇) (denoted as Frate(ε̇) in [18]), and the ratio of compressive and
tensile radii Γ(θ). Willam-Warnke’s Lode-angle function Γ(θ) is used in this model.

The strength along the compressive meridian is expressed as a triaxial compression normalized
to the unconfined compression strength f ′c

Y ∗
TXC =

YTXC

f ′c
= a1

[

p
f ′c
− pspall

f ′c
r f

]a2

or F(I1) =
a1√

3

[

I1
3
− r f pspall

]a2

, (3.1)
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Figure 3.1. Failure surfaces

where

r f =







(

ε̇
ε̇0

)α
: p > f ′c, with ε̇0 = 30×10−6 s−1,

(

ε̇
ε̇0

)β
: p < f ′c, with ε̇0 = 3×10−6 s−1,

a1 = Initial slope of failure surface,
a2 = Pressure dependence of failure surface,

Pspall = Spall strength,

p = Pressure,
α = Material constant,
β = Material constant.

Unlike the K&C model, which apparently does not model porosity effects on strength, the RHT
model provides an option of an elliptical cap function Fc(p) that closes the yield surface at high
pressure, see Fig. 3.2.

Fc(p) =











1 : p ≤ κ,
√

1−
( p−κ

X−κ
)

: κ < p < X ,

0 : p ≥ X .

(3.2)

where κ is a pressure at which the uniaxial compression path intercepts with the elastic surface, and
X is the pressure where the yield surface intersects with the hydrostat axis. In the RHT model, X =
f ′c/3, which is close to the pore crush pressure. This feature is not available in the K&C material
model. The yield surface in the RHT model is determined through three parameters: the ratio of
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Figure 3.2. An elliptical cap function

initial shear modulus to the modulus after the elastic limit has been passed, the ratio between the
compressive yield strength and the compressive ultimate strength, and the ratio between the tensile
yield strength and the ultimate tensile strength.

Similar to the K&C model, third invariant dependence corresponding to a noncircular octa-
hedral profile is obtained by using the Willam-Warnke function Eq. (1.7) as a scaling factor; see
Fig.3.3. Unlike the K&C concrete model, where the ratio of a material tensile strength to compres-
sive strength ψ(p) is represented by a piecewise linear function, the RHT concrete model defines
ψ(p) as

ψ(p) = ψ0 +BQ
p
f ′c

. (3.3)

where ψ0 is the tensile to compression meridian ratio, and BQ is a brittle to ductile transition factor.
By default, the model assigns a value of 0.6805 to ψ0 and 0.0105 to BQ.

Rate and scale dependence

The RHT model implements a strain rate law that uses a dynamic increase factor (DIF) for tension
at varying strain rates. The DIF is represented by a ratio of dynamic and static tensile strength,
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Figure 3.3. RHT octahedral profile and surfaces

and can be expressed as [35]

DIF =
fct

fcts
=











(

ε̇
ε̇s

)1.016δs
for ε̇ ≤ 30 s−1,

βs

(

ε̇
ε̇s

)1/3
for ε̇ > 30 s−1,

(3.4)

δs =
1

10+6 f ′c/ f ′co
, with f ′co = 10 MPa,

βs = 107.112δs−2.33,

ε̇s = 3×10−6 s−1, (3.5)

where fct is dynamic tensile strength at ε̇ , and fcst is the static tensile strength at a reference rate,
ε̇s. The strain rate ε̇ can be any value between 10−6 to 160 s−1. The parameter δs is adjusted such
that Eq. (3.4) approximates the DIF curve that complies with experimental data given in CEB-FIB
Model Code [35], see Fig. 3.4.

For projectile and fragment impacts, cracking, spalling and scabbing are mainly influenced by
the tensile strength, fracture energy, and strain rate in tension. Penetration, on the other hand,
is influenced by the pressure and the strain rate in compression. When the sudden increase in
strength occurs at lower strain rates, Unosson [37] pointed out that a scabbing in the simulation
can be reduced by a using DIF value in tension. Hence, to predict the correct behavior of the
penetration, spalling, and scabbing, DIF data for tension and compression are required.

The RHT model handles the scale effect similar to the K&C model, namely scaling of the
fracture energy. A linear [19] or bilinear [16, 20] softening law, which is based on the crack
opening, can be included in the RHT model post-failure response under tension [26] when the
stress reduces to zero and the real crack is formed. The fracture energy GF and tensile strength ft
are used to compute the crack width, wu, as shown in Fig. 3.5. In the AUTODYN implementation
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Figure 3.4. Left: Experimental data for DIF according to CEB-
FIB design model code [26]. Right: DIF used in AUTODYN:
RHT concrete model.

Figure 3.5. Bi-linear uniaxial stress-crack opening relationship
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of the RHT model, the maximum cracking strain is related to the maximum crack opening using a
smeared crack approach as

εu =
wu

l
=

4GF

ft l
, (3.6)

where l is a characteristic length typically set equal to the cube root of element volume. The slopes
in Fig. 3.5 are defined as

k1 =
f 2
t

GF
for ε ≤ 1

6εu, (3.7)

k2 =
f 2
t

10GF
for ε >

1
6εu, (3.8)

where ε is the cracking strain and εu is the ultimate cracking strain. This approach is used when the
erosion option is selected in AUTODYN. The implementation of the bilinear softening law to the
RHT model is presented in [26]. In the current commercial release of AUTODYN, however, only
a linear softening is available for the RHT concrete model. Its linear softening slope is defined as

k =
f 2
t

2GF
. (3.9)

Damage accumulation

Once material begins to harden or soften, the damage factor D is used to determine the value of
the current strength surface. The damage factor is defined using

D = ∑ ∆ε p

ε f , (3.10)

where ∆ε p is the accumulated plastic strain, and ε f is the failure strain given by

ε f = D1

(

p
f ′c
− pspall

f ′c

)D2

, (3.11)

and parameters D1 and D2 are user input material constants. Damage causes a reduction in strength,
hence, the strength surface is modified by shifting the surface from an initial surface to a current
damage one. Similar to the K&C model, the current damaged surface during softening is interpo-
lated between the limit and residual surfaces as

Y ∗ = (1−D)Y ∗
m +DY ∗

r or F(I1) = (1−D)F(I1)m +DFr(I1), (3.12)
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and the residual surface is defined as

Y ∗
r = a1 f

(

p
f ′c

)a2 f

or Fr(I1) =
a1 f√

3

(

I1
3

)a2 f

, (3.13)

(3.14)

where

a1 f = Initial slope of residual surface,
a2 f = Residual strength exponent, pressure dependence for residual surface.

Equation (3.12) represents the interpolation between the undamaged material (D = 0) and dam-
aged material (D = 1) at the limit surface.

Plastic update

Similar to the K&C concrete models, a conventional regular associated flow rule is adopted by the
RHT model. Therefore, the details on plastic update of this model is not covered in this report.
The numerical schemes provided by the RHT model’s developers can be found in [31].

Shear and bulk moduli

Similar to the K&C model, the shear and bulk moduli are used and specified through the EOS
provided by the host code(ANSYS AUTODYN). Several options are provided by ANSYS AUTO-
DYN; for example, linear, polynomial, and p−α EOS. The bulk and shear moduli are controlled
via the EOS similar to the K&C model. However, details on any form of modifications through
scaling factors are not provided in the RHT or the ANSYS AUTODYN documentations.
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Chapter 4

The BF1 GeoMaterial Model

The BF1 model is a version of the Sandia GeoModel [12] that has been enhanced to support soft-
ening. The BF1 softening model was originally designed to emulate and, where possible, enhance
the softening approaches used in the Johnson-Holmquist ceramic models, JH1 and JH2 [21, 22].
Like the K&C and RHT models, the softening algorithm is based on strength reduction through
collapse of the limit surface and a phenomenological damage reduction of elastic properties.

Strength surfaces

Like the K&C and RHT models, the BF1 model uses three failure surfaces as shown in Fig. 2.1,
and the corresponding yield criteria are

Yy =

√

Jξ
2 =

(Fm(I1)−N)Fc(I1,κ)

Γ(θ , I1)
, (yield surface), (4.1)

Ym =

√

Jξ
2 =

Fm(I1)

Γ(θ , I1)
, (limit surface), (4.2)

Yr =

√

Jξ
2 =

Fr(I1)

Γ(θ , I1)
, (residual surface), (4.3)

where F(I1) is taken to be an affine-exponential spline:

Fm(I1) = a1 −a3 exp(−a2I1)+a4I1, (4.4)
Fr(I1) = a1 f −a3 f exp(−a2 f I1), (4.5)

and ξ = S−α is a shifted stress tensor (α is backstress).

Similar to the RHT model, the BF1 model provides an option for porosity effects, and the cap
function is

Fc(I1,κ) =

{

1 : I1 < κ,

1−
(

I1−κ
X−κ

)2
: otherwise,

(4.6)
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In Eqs. (4.1)–(4.3), Jξ
2 is the second invariant of the shifted stress (stress minus backstress) and

N is the maximum allowed translation of backstress. The BF1 limit surface is comparable to
the K&C and RHT models, and the distance between the yield surface and the limit surface is
controlled by the value N. For nonzero N, the motion of the yield surface towards the limit surface
is accomplished by kinematic hardening, which accounts for the Baushinger effect and does not
appear to be supported by the other two models.

Like the RHT model, the BF1 cap function Fc(I1,κ) accommodates material weakening caused
by porosity. As in Fig. 3.2, the variable κ marks the point where Fc branches (smoothly) from a
constant value of unity at low pressure to begin its descent along an elliptical path to the value zero
at the hydrostatic compression elastic limit where the yield surface crosses the hydrostat at I1 = X .

Like the K&C and RHT concrete model, the BF1 material model supports the Willam-Warnke
Γ(θ) function for third invariant dependence, but it also provides Mohr-Coulomb and Gudehus
options. The ratio ψ(I1) used in this model can be a constant or it can be determined automatically
within the BF1 code as a pressure-dependent function coupled to pressure dependence of the TXC
strength:

ψ(I1) =
1

1+
√

3A(I1)
. (4.7)

The ratio ψ(I1) is determined automatically based on the slope of the compressive meridian, A(I1).
If this meridional slope is zero, then ψ = 1. The meridional slope steepens (with decreasing
pressure) to a maximum allowed value. Thus, the yield surface smoothly varies from a von Mises
character at high pressure to a maximum principal stress at low pressure. When used with the
Willam-Warnke option, this gives the pressure varying octahedral profile similar to Fig. 2.2 and
Fig. 3.3 for the K&C and RHT models, respectively.

Like the K&C and RHT models, the BF1 model allows the limit surface to collapse down to
a residual surface as damage increases. Both the initial limit surface and residual surface are de-
scribed using the form in Eq. (4.4). They merely use different a−parameters. The morphing of the
limit surface between them as damage progresses relies on an internal alternative parameterization
of Eq. (4.4). A limit surface of the form given in Eq. (4.4) can be viewed as bounded by the dashed
lines in Fig. 4.1. The user specifies values for the indicated slopes residual surfaces, from which
the code computes corresponding a−parameters.

As damage proceeds, each of the four limit surface parameters is interpolated linearly between
intact and residual values. If for example, the user wishes to emulate a loss of hydrostatic tensile
strength similar to the K&C model, then PEAKI1 for the residual surface is zero. To emulate
damage similar to that of the Johnson-Holmquist damage (JH1 or JH2), the user would give re-
duced residual values for FSLOPE, ST REN, and PEAKI1 (and Y SLOPE = 0 for both intact and
residual). In the absence of data for failed strength, the BF1 model defaults the residual strength
parameters to that of sand (PEAKI1 = 0, FSLOPE = 0.18, Y SLOPE = 0, ST REN = intact value).

An upcoming release of BF1 includes numerical efficiency enhancements that give 40% speed
up by a return algorithm in a lower-dimensional space for which the result is then projected into
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Figure 4.1. Parameters for residual surface

six dimensional space, similar to the approach of Bicanic and Pearce [3]. The new version also
includes support for yield or limit surface vertices and new handling for pathological yield surface
contours near the hydrostatic tensile limit.

Rate and scale dependence

The plastic flow used by BF1 is rate dependent. Under high strain rates, elastic material response
occurs almost instantaneously, but accumulated damage is retarded by the material’s inherent “vis-
cosity”, which prohibits observable inelasticity to proceed instantaneously. Thus, at high rates,
the material will appear to be more “elastic” than it would at low rates. Until sufficient time has
elapsed for damage to accumulate, the stress will lie transiently outside the yield surface, or even
outside the limit surface.

Rate dependence

Unlike the K&C and RHT models that rely on DIF data to account for rate effect, the BF1 model
uses a generalized Duvaut-Lions [10] rate-sensitive formulation, which computes two limiting
solution for the updated stress:

1. the low-rate (quasi-static) solution σ L that is found by solving the rate-independent equa-
tions.
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Figure 4.2. Illustrations of the generalized Duvaut-Lions rate
sensitivity and the scale factor η employed in the BF1 model [14]

2. the high-rate solution σ H corresponding to insufficient time for any plastic response to de-
velop so that it is simply the trial elastic stress.

To a good approximation, as illustrated in Fig. 4.2, The Duvaut-Lions rate formulation updates
stress using interpolation between the low-rate quasi-static plasticity solution σ L and the high-rate
purely elastic solution σ H ,

σ ≈ σ L +η(σ H −σ L), (4.8)

where η is a scale factor that varies from 1 at high strain rates to 0 at low strain rates as shown in
Fig. 4.2. To handle transients properly, the implementation in BF1 [12] is actually more sophisti-
cated than Eq. (4.8).

The abscissa in Fig. 4.2 is normalized by the material’s “characteristic” response time τ . A
time interval ∆t is considered “long” if ∆t � τ , and there is sufficient time for material to fully
develop plastic response and yield a solution that coincides with the quasi-static solution σ L. In
contrast, the time interval is deemed “short” if ∆t � τ .

Like the K&C and RHT concrete models, which rely on the empirical DIF data, the BF1
also uses empirical data to provide flexibility in matching high strain rate for a wide range of
material types. However, the similarity ends there. The dynamic increasing factor (DIF) that is
used in the former models is a function of the strain rate, making it jump discontinuously if there
is a jump in strain rate (as in the arrival of a shock). In the BF1 model, there is an effective
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DIF that is a functional of the strain rate that corresponds to stress states that can lie outside
the yield surface but cannot arrive or depart from such transient states instantaneously. In the
BF1 formulation, experimental data for apparent increase in strength is interpreted as the steady
state stress displaced from the yield surface under constant strain rate. The distinction between
views is that the DIF function approach fails to capture the transients prior to reaching steady
state. Moreover, the DIF function approach can cause numerical problems because it is capable
of discontinuities. As detailed in the BF1 user’s guide, the characteristic time is not a constant but
instead may itself depend on the strain rate and on the position of the stress on the yield surface so
that rate dependence of pore collapse can differ from that of cracking [5].

The BF1 model supports different levels of rate sensitivity depending on the mechanism of
inelasticity. Specifically, pore collapse can be more rate sensitive than cracking, as has been ob-
served in laboratory data [13, 5]. Rate dependence for softening is a relatively new addition to
the BF1 model that is not documented in [12]. Softening is viewed as arising from crack growth.
Since cracks tend to grow at a fixed speed regardless of the loading rate, BF1 treats softening rate
dependence as a time-based process for which material scale effects enter naturally by recognizing
that the amount of time required for a crack to propagate a fixed distance (e.g. the distance to the
next crack to begin crack coalescence at the onset of catastrophic failure) must be itself fixed if
crack speed is a constant. BF1 detects the onset of softening by stress reaching the limit surface,
but it delays the subsequent degradation in elastic and strength properties until the required amount
of time has passed. As mentioned, this delay time is viewed as the time needed to propagate a fixed
distance and therefore its value is scale dependent.

Specifically, when the BF1 model is run with the BFS1 enhancement, it is proportional to a
characteristic length of the finite element similar to the one used by the K&C and RHT models.
The BF1 model is used as a “base” damage model that is premised on the assumption that its
material parameters have been assigned values appropriate to the scale of the finite element for a
homogeneously deformed domain. As illustrated in Fig. 4.3, such tests ideally would be conducted
for multiple specimen sizes to directly measure scale effects as well as inherent variability in
measured properties. If T̄ is the time-to-failure observed for a laboratory sample of volume V̄ , then
the time-to-failure T assigned to a finite element of volume V is

T = T̄

(

V

V̄

)1/3
. (4.9)

One appeal of a time-based damage progression model is that it naturally leads to a dependence
of the effective damage energy on loading rate. The amount of strain that can accumulated between
tgrow = 0 and tgrow = T is higher at high strain rates, thus leading to higher stresses, higher failure
energy, and therefore an increase in the number of failed elements. This trend is consistent with
fragmentation behavior observed in the laboratory where samples impacted at high rate produce a
larger number of fragments than those impacted at low rates. This feature distinguishes BF1 from
the K&C and RHT models, which apparently use rate insensitive fracture energies.

1The BFS model [5, 29] is a model for automatically assigning scale appropriate BF1 parameters based on the size
of the finite element relative to the size of the specimen used in laboratory model calibration tests.
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Figure 4.3. Standard Weibull distribution plots showing in-
creased Brazilian strength Tbr with decreased sample size. Here, Ps

is the complementary cumulative probability, which may be inter-
preted as the probability that the sample is safe from failure. The
slope of the fitted line is the Weibull modulus, which quantifies
variability in strength.
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Figure 4.4. BF1 damage function for FSPEED values in the
range from 5 to 30. The higher FSPEED values correspond to the
steeper slope.

Damage accumulation

During calculations, if the stress is at or above the limit stress, a time-of-growth variable is incre-
mented as

tn+1
grow = ∆t, (4.10)

where ∆t is the time step. Otherwise,

tn+1
grow = tn

grow. (4.11)

Given the current value of tgrow, an adjustable phenomenological damage parameter is evaluated
using a function of the form illustrated in Fig. 4.4.

The smoothness of the transition of damage from 0 to 1 is controlled by a user parameter
FSPEED such that large values of FSPEED would correspond to a nearly step discontinuity from
D = 0 to D = 1. The FSPEED option was added merely as a convenience to allow BF1 to emulate
the JH1 damage model [21] using large FSPEED or JH2 [22] using smaller values of FSPEED to
allow more gradual development of damage.

Whereas many damage models might evolve damage as a function of accumulated plastic
strain, the function in Fig. 4.4 evolves damage as a function of time. The rationale behind this
choice is discussed below.
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As damage progress from D = 0 to D = 1, the tangent shear and bulk moduli degrade from their
initial values to residual values that are currently assigned internally in the code. Assuming that
the residual state corresponds to a rubble-like state, the shear modulus is reduced to zero. The bulk
modulus is reduced to a small fraction of its initial value if the pressure is tensile, but it equals its
intact value if pressure is compressive. The reason why the tensile bulk modulus is not allowed to
reach zero is not physical, but instead tied to the method for tracking of volumetric strain to detect
recompression. This method is currently under revision to allow zero bulk modulus in tension.

The stiffness degradation component of the BF1 model is regarded by even its own developers
as nothing more than an ad hoc means of achieving qualitatively correct behavior. A more physi-
cally based stiffness degradation model would allow development of induced anisotropy reflecting
the tendency for quasi-brittle materials to develop orthotropically oriented cracks. Future revisions
of BF1 are anticipated to support induced elastic anisotropy either by retrofitting its existing ability
to model orthotropic rock joints or by introducing a directional damage theory based on the work
of Dienes [9] and Kachanov [23]. At present, however, the shear modulus G and bulk modulus K
are degraded as follows:

K = K intact(1−dK), (4.12)
G = Gintact(1−dG), (4.13)

where

dK =

{

0 if p > 0 (compression),
D∗ if p < 0 (tension),

(4.14)

and

dG = D∗ (dF/dI1)p=pcurrent
(dF/dI1)p=0

. (4.15)

The expression for dG is designed to allow full recovery of the shear stiffness as confining pressure
increases. Recognizing from the work of Dienes [9] and Kachanov [23] that elastic compliance is
related to the cube of crack size and recalling that crack propagation speeds tend to be constant,
the D∗ used in the above formulas is based on the isotropic part of the anisotropic crack-degraded
stiffness formulas of Dienes, and is expressed as

D∗ = 1− 1
1+

( 1
1−D −1

)3 . (4.16)

Using D∗ instead of D will cause the bulk modulus to “hang on” close to its initial value for a
while to reflect the fact that small cracks do not significantly alter stiffness. A significant and
sudden drop in stiffness can be seen only when cracks become large. As mentioned, the power of
3.0 dependence reflects trends predicted in microphysical theories for stiffness of a cracked body.
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Plastic update

During the initial hardening phase (before onset of damage) the BF1 model updates the material
state using standard techniques of classical plasticity theory. As already mentioned, for example,
the strain rate is decomposed into elastic and plastic parts, with the elastic part determined from
elastic unloading data and the plastic part being a multiple of the flow potential gradient,

ε̇ p = µ̇
(

∂φ
∂σ

)

, (4.17)

where µ̇ is called the “consistency” parameter because its value is set to ensure consistency with
the requirement that stress remain on the yield surface during plastic loading. The consistency
parameter can be determined by satisfying

ḟ =
∂ f
∂σ

: σ̇ +
∂ f
∂κ

κ̇ +
∂ f
∂α

: α̇ = 0. (4.18)

Unlike the K&C and RHT models, the BF1 allows for kinematic hardening as well as isotropic
hardening. As is typical in conventional plasticity modeling, closure of the governing equations
(i.e. obtaining enough equations to solve, as detailed in [1]) requires specification of evolution
equations for all internal variables. For BF1, there are two internal state variables: κ for pore
collapse and α for kinematic hardening.

The isotropic hardening is governed by the rate variable κ̇ , where κ is the pressure at which
void begins to collapse, see Fig. 3.2. The kinematic hardening is governed by α̇ . It was shown in
[12] that these rates are proportional to the consistency parameter and can be expressed as

κ̇ = hkµ̇ and α̇ = Hα µ̇ , (4.19)

where hk is an isotropic hardening modulus, and Hα is a kinematic hardening tensor, each of which
is determined from laboratory data as described below.

Evolution equation for pore collapse

If a material is capable of permanent volume change, then the material likely contains voids. Recall
from Eq. (4.6) that the branch point κ and the hydrostat intercept X are used to characterize the
effect of void collapse. The hydrostatic intercept Xo equals the value of I1 (which is proportional
to pressure p = I1/3) at which pores begin to collapse, as indicated by point A in Fig.4.5. There
after, increasing pressure is required to continue pore collapse. If this pressure is provided, the
yield hydrostat, X = 3p, intercept moves outward until all pores have been crushed out, at which
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Figure 4.5. Hydrostatic pressure vs. volumetric strain

point the load and unload curves in hydrostatic compression become tangent, as indicated by point
B in Fig. 4.5.

If the pressure is released at any point during hydrostatic compression, there will be permanent
residual plastic volume change, ε p

v , as labeled in Fig. 4.5. Thus, since a relationship between X and
ε p

v is directly measured in the laboratory, it might seem natural to use the hydrostat X as an internal
variable. However, for numerical reasons, it proves to be more convenient to use κ as the internal
state variable. Given the measured relationship between X and ε p

v and the relationship between κ
and X in Eq. (4.6), κ and ε p

v are implicitly related. Then, by the chain rule

κ̇ =
dκ
dε p

v
ε̇ p

v =
dκ
dX

dX
dε p ε̇ p

v . (4.20)

Moreover, since ε̇ p
v = trε̇ p, Eq. (4.19) leads to

κ̇ = hkµ̇ where hk = 3 dκ
dX

dX

dε p
v

∂φ
∂ I1

(4.21)

Evolution equation for backstress

When kinematic hardening is enabled, a shifted stress tensor ξ = S−α is used in the yield func-
tion instead of the actual stress. The backstress (deviatoric tensor) α is initially zero and evolves
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Figure 4.6. Qualitative sketch of shear stress vs. shear strain

proportionally to the deviatoric part of the plastic strain rate according to

α̇ = HGα(α)γ̇ p and γ̇ p = dev(ε̇ p) =

(

λ̇
∂φ
∂ξ

)

, (4.22)

where H is a material constant and Gα(α) is a scalar-valued decay function designed to limit the
kinematic hardening such that Gα → 0 as second invariant of α approaches a user-specified maxi-
mum allowed value N. This behavior gives results similar to power law hardening as qualitatively
illustrated in Fig. 4.6. The BF1 model uses the following decay function

Gα(α) = 1−
√

trα2
√

2N
. (4.23)

Using Eqs. (4.19) and (4.22), the kinematic hardening modulus tensor is

Hα = HGα(α)dev
(

∂φ
∂ξ

)

. (4.24)

Shear and bulk moduli

While the K&C model presumes a constant Poisson’s ratio (from which nonlinear shear modulus
can be computed from nonlinear bulk modulus), the BF1 model computes the shear and bulk
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modulus using input parameters that are obtained by curve fitting hydrostatic and triaxial data to
nonlinear functions. The BF1 model supports linear and nonlinear hypoelasticity. Unlike the K&C
and RHT model, where tabulated data are used, the nonlinear elasticity in BF1 is implemented by
allowing the tangent moduli to vary with the stress according to

K = b0 +b1 exp
(

− b2
|I1|

)

, (4.25)

G = g0





1−g1 exp
(

−g2J1/2
2

)

1−g1



 , (4.26)

where b0,b1,g0,g1 and g2 are material parameters fitted to experimental data. The model is linear
elastic if b0 and g0 are specified, and all other elastic parameters are zero (or unspecified). Unlike
the K&C and RHT models, additional terms (with additional parameters) are available to support
elastic-plastic coupling, where plastic hardening changes elastic properties (e.g. pore collapse
induces elastic stiffening).

A disadvantage of Eqs. (4.25) and (4.26) is that they are difficult to parameterize because
neither is integratable to obtain a closed form analytical expression for stress as a function of
elastic strain. Alternatives are therefore under investigation. Other concerns are that Eqs. (4.25)
and (4.26) have not been well validated in tension, and the current (2008) implementation does
not consistently incorporate a “z-tensor” of the type discussed by Brannon [14] that is required in
incremental plasticity with elastic-plastic coupling.

Like the K&C and RHT models, BF1 uses an isotropic elastic stiffness except that some pre-
existing initial elastic anisotropy is optionally available for joints. However, since damage gener-
ally induces significant anisotropy in stiffness, all three models currently rely on very fine meshing
so that deformation-induced anisotropy is approximated through explicit (mesh resolved) hetero-
geneity.
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Chapter 5

LS-DYNA Concrete Model 159 (CSCM)

This chapter presents an additional overview of a new concrete material found in LS-DYNA, Con-
crete Model 159 (referred to as CSCM in this report). It was developed for DYNA3D Analysis
Tools for Roadside Safety Applications II (2007) program by the U.S. Department of Transporta-
tion [11]. Since this model is not a part of this survey project’s original Statement of Work (SOW),
only a brief summary of its features will be given here.

Strength surfaces

The CSCM model uses strength surfaces similar to the previous models investigated in this report.
The failure surface is defined by the three invariants together with the cap hardening parameter
similarly to the RHT and BF1 models. The yield function is expressed by

f (I1,J2,J3,κ) = J2 −Γ(θ , I1)F
2
f Fc (5.1)

where Γ(θ , I1) is the Rubin third-invariant factor. The cap function is the same as in the RHT and
BF1 models (see Chapters 3 and 4). The same affine-exponential spline used by the BF1 model is
used to describe the limit surface,

Fm(I1) = a1 −a3 exp−a2I1 +a4I1 (5.2)

The initial yield stress is then determined from the limit surface using

Fy(I1) = NH(a1−a3 exp−a2I1 +a4I1) (5.3)

where NH is a factor ranging between 0.7 < NH ≤ 1, which governs the location of the initial yield
surface. Therefore, the CSCM model is similar to the RHT model’s use of a multiplier to specify
the separation between the initial yield surface, whereas the BF1 model specifies this separation
additively.

The CSCM model supports kinematic hardening very similar to the BF1 model. The translation
of the yield surface is done via the back stress α . The total stress is updated by summing the initial
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stress and the backstress. The hardening rule used by this material model is based on stress to
ensure that the shear surface coincides with the limit surface. The rate of kinematic hardening is
controlled by a user input CH , and the incremental back stress is expressed as

∆α = CHG(α)(σ −α)∆ε̇∆t. (5.4)

The quantity G(α) is used to limit the increment such that the yield surface cannot move beyond
the limit surface as discussed in Chapter 4 for the BF1 model. In fact, the above equation can
be compared with Eq. (4.78) in [12]. No simulations were performed to determine if the CSCM
kinematic hardening model is identical to the BF1 model in all respects.

Rate and scale dependence

The strength of the model is increased with increasing strain rate. The CSCM model applies rate
effects to the limit surface, residual surface, and the fracture energy as shown in the previous
sections. A modified Duvaut-Lions formulation is applied to the yield surface such that the high-
rate stress is an interpolation between the quasistatic low-rate stress and the elastic stress:

σ ≈ σ L +η(σ H −σ L), where η =
∆t/γ

1+∆t/γ
. (5.5)

A similar equation is given in the BF1 model’s introduction to rate dependence, but the BF1 doc-
umentation points out that additional terms are needed once the dynamic stress lies outside the
quasistatic yield surface.

As discussed in Chapter 4, the viscoplastic stress is bounded between the current rate-independent
stress and the elastic trial stress at each time step. The high strain rate is handled by modifying γ
using

γ =
γo

ε̇n (5.6)

Equation (5.6) allows for user input parameters, γo and n, that can fit rate effects data at high and
low strain rates. These parameters are used to represent DIF specifications given by CEB [35]
similar to the K&C and RHT models. Input parameter γ can be determined using the following
relationships as given in CEB-FIP [35],

• Tension:

DIF =

{

ε̇
ε̇o

1.016δs for ε̇ ≤ 30s−1

βs
ε̇
ε̇o

1/3 for ε̇ > 30s−1,
(5.7)
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where

δs =
1

10+6 f ′c/ fco
,

logβs = 7.112δs−2.33,

fco = 10 MPa,
ε̇o = 30×10−6s−1, and
f ′c = concrete compressive strength.

• Compression:

DIF =

{

ε̇
ε̇o

1.026αs for ε̇ ≤ 30s−1

βs
ε̇
ε̇o

1/3 for ε̇ > 30s−1,
(5.8)

where

αs =
1

5+9 f ′c/ fco
logγs = 6.156αs−2,

ε̇o = 30×10−6s−1, and
f ′c = concrete compressive strength.

Despite having a similar base-line formulation to handle the rate effect as the BF1 model (using
Duvuat-Lions rate sensitivity formula), the CSCM model has a built-in feature that allows a user
to include DIF data for the rate effect. In addition, a user is also given an option to apply the DIF
to the static fracture energy (enabled by the model’s defaults), which causes the fracture energy to
be strain rate dependent. The CSCM model’s default DIF is based on the developer’s experience,
and is different from those given in CEB-FIP model code.

Similar to the K&C and RHT models, the CSCM model handles scale effects by incorporating
an element characteristic length wu (cube root of the element volume). The model calculates
the damage parameters as a function of element size. Regardless of element size, the fracture
energy, G f , remains constant. The fracture energy is regulated separately between brittle and
ductile softening, and is computed by integrating the stress-displacement curve.

G f =

{

r0bw
(1+b

ab

)

log(1+b) for brittle softening
2r0dw

(1+d
cd

)

log(1+d)+2w
(

1+d
c2

)

∫ ∞
0

ye−y

1+ce−y dy for ductile softening,
(5.9)

where

y = −c
(√

x−√
xo

)

√

f ′

w
,

x = displacement,
xo = displacement at peak strength f ′.
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Using Eqs. (5.10) and (5.9), the softening parameters a and c are computed according to the el-
ement characteristic length w, while b and c remain user input parameters. The value G f is ap-
proximated by the model from three fracture energy inputs: (1) from tensile stress, G f t , (2) shear
stress, G f s, and (3) compressive stress, G f c. When rate effects are considered, the fracture energy
is scaled using

Gvp
f = G f

(

ro

rs

)n

. (5.10)

The range of 0.5 ≤ n ≤ 1 is recommended by the developer. When n equals to 1, the Gvp
f is

proportional to the increase in strength with rate effects.

Damage accumulation

Both strain softening and modulus reduction are accounted for in the damage formulation based
on [34]. The damage stress, σ d , is computed by

σ d = (1−D)σ vp (5.11)

where D is a damage parameter ranging from 0 to 1, and σ vp is a stress tensor without damage,
which is updated from the viscoplasticity algorithm. This algorithm structure of applying damage
after evaluation of the non-damaged stress update is identical to what was used in the versions
of the BF1 model predating 2008. (Starting in 2008, the damage part of the BF1 algorithm was
integrated within the stress update subcycles.)

The CSCM model handles damage using a strain-based energy approach. When this energy
exceeds a material damage threshold, damage is initiated and accumulated via the parameter D.
The damage threshold is determined using two different formulations for brittle and ductile dam-
age. Unlike the BF1 model, which allows damage in compression, brittle damage accumulates
in the CSCM model only when the pressure is tensile. Its damage threshold, τb, depends on the
maximum principal strain

τb =
√

Eε2
max. (5.12)

The brittle damage initiates when τb > r0b, where r0b is the initial brittle damage threshold. Such
behavior is supported as a special case in the BF1 model.

Ductile damage, on the other hand, accumulates when the pressure is compressive, and the
damage threshold, τd depends on the total strain components and is expressed as

τd =

√

1
2

σ : ε. (5.13)
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It initiates when the initial ductile damage threshold, r0d , is exceeded.

The rate effect is accounted for by shifting the damage threshold using

r0 =

(

1+
E ε̇γ

rs
√

E

)

rs, (5.14)

where ro is the shifted threshold with viscoplasticity, rs is the damage threshold before the appli-
cation of viscoplasticity, and γ is rate effects. The shifted damage threshold allows the delay of the
damage initiation while the plasticity accumulates. This approach appears to be unrelated to the
damage delay strategies of the other three models.

Damage accumulation during softening is computed as a function of the damage threshold
using

D(τ) =







0.999
b

(

1+b
1+bexp−a(τ−r0b) −1

)

for brittle τ = τb,

Dmax
d

(

1+d
1+d exp−c(τ−r0d) −1

)

for ductile τ = τd

(5.15)

The parameters a,b,c, and d are determined by curve-fitting Eq. (5.15) to the softening portion of
a stress-strain plot. The parameter Dmax represent a maximum attainable damage and is defined as

Dmax =

{
(√

3J2
I1

)1.5
if

√
3J2
I1

< 1
1 if otherwise.

(5.16)

When considering rate effects, the above equation is scaled using

Dmax = Dmax ×max
[

1,

(

1+
r0
rs

)1.5
]

(5.17)

In the current release of the CSCM material model, the exponent 1.5 is set internally by the devel-
oper based on examination of single element simulations. The maximum increment of the damage
in a single time step is 0.1, and it is also set internally by the model.

Incidentally, Eq. (5.15) allows flexibility in the damage accumulation behavior that is similar
to the time-based approach used in the BF1 model.

Plastic update

Similar to the other concrete models, a conventional regular associated flow rule is adopted by
the CSCM model. Therefore, the details on plastic update of this model are not covered in this
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report. According to the developers, the model efficiency is improved by using subincrementation
instead of iteration to return the stress state to the yield surface. It is invoked only when the current
strain increment exceeds a maximum strain limit specified by a user or the model’s default. The
numerical schemes provided by the CSCM model’s developers can be found in [30, 32].

Shear and bulk moduli

The CSCM model computes the default shear and bulk moduli using

G =
E

2(1+ν)
and K =

E
3(1−2ν)

, (5.18)

where E is the Young’s modulus and ν is the Possion’s ratio. The Young’s modulus E is determined
from an equation in CEB-FIP:

E = EC

(

f ′c
10

)1/3
, (5.19)

where EC is the Young’s modulus of a 10 MPa concrete. The Young’s modulus EC is not used in
the prepeak hardening part of the simulations.
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Chapter 6

Model comparisons

This chapter presents a list of the comparison of theory and implementation of each model. In
addition, the four models are also compared numerically for several case studies.

Comparison of theory and implementation

Listed below are the features comparison of each model:

• The K&C concrete model relies most heavily on a set of empirically obtained data and
curves. The accuracy of the result depends on a good set of data for yield stress factor η and
effective plastic strain λ , which are obtained via trial and error.

• The RHT, BF1, and CSCM models support a cap on the yield surface, while the K&C model
does not appear to have this option (although the K&C model does allow porosity effects in
the compaction EOS).

• The BF1 model supports intrinsic anisotropy through an elastic joint model. The CSCM
model supports intrinsic elastic anisotropy associated with rebar. Both BF1 and CSCM
models support deformation induced anisotropy thru kinematic hardening. None of the other
models support anisotropy in any form. All of these models, including the BF1 and CSCM
models, neglect the anisotropy that one might expect from oriented crack growth.

• The BF1 model determines the TXE/TXC strength ratio ψ automatically based on the slope
of the compressive meridian. If this slope is zero, ψ = 1. As the slope increases to a maxi-
mum allowed value (corresponding to a principal stress criterion), ψ = 1/2. The RHT model
appears to be handling this issue in a similar manner. On the other hand, the K&C model
defines ψ as a piecewise function of pressure, where ψ is always 1/2 in the tensile pressure
range.

• All four models offer defaults for unspecified parameters. The K&C model defaults values
to that for 45MPa concrete. The RHT model offers defaults via loading preset parameters
for 35MPa and 140MPa concretes. The BF1 model offers preset parameters for 23MPa con-
crete and conventional strength Portland cement as well as several other materials such as
limestone and ceramic. Moreover, when building a new parameter set from scratch, the BF1
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model defaults to reasonable guesses. For example, if no flow parameters are given, they
default to associative flow parameters. The CSCM model automatically generates parame-
ters for concretes having strengths that range between 20 and 58 MPa via built in quadratic
fitting equations.

• Softening is best handled in the BF1 model by using it in combination with statistical het-
erogeneity and scale effects available in the BFS enhancement that can be regarded as an
add-on available only in certain host codes. The K&C, RHT, and CSCM models appear to
use only scale effects, but they could be modified to be run with statistics as well if they use
an input parameter change of variables similar to the BF1 model use of the parameters in
Fig. 4.1 as alternatives to its a-parameters. Parameter re-definition is needed when running
with uncertainty to ensure that admissible realizations of the failure surfaces are generated.

• The K&C, RHT, and CSCM models deal mainly with concrete material, and may seem to
require fewer user input parameters than the BF1 model, but this seems to be simply because
parameters for those models default to concrete values. The greater concern is that some
built-in parameters (i.e., not controllable by the user) may limit usefulness of the K&C and
RHT models for other concrete-like materials such as rocks.

Although the BF1 model has many possible user input parameters, it automatically sets
defaults for any unspecified parameters. The BF1 model might be capable of simulating
responses of a wider range of materials. For example, user input parameters can be mod-
ified to model simpler elastic materials, as well as classical plasticity idealizations such as
von Mises, Tresca, and Mohr-Coulomb theories. The ability to reduce to simpler models
has allowed the BF1 model’s solution algorithm to be rigorously tested against analytical
solutions.

• To model rate sensitivity, the K&C, RHT and CSCM models use a strength enhancement
factor (or DIF), which follows the concrete data given in CEB-FIP design code. The K&C
model allows for data of DIF to be entered in a tabulated form. The RHT model, on the other
hand, cannot cover the whole range of strain rate given in CEB-FIP because it represents DIF
vs. log ε̇ only in a linear form.

Both BF1 and CSCM models handle rate effects using a Duvaut-Lions overstress formulation
that is time based rather than strain rate based, which therefore allows for more accurate
prediction of transients. These models incorporate a characteristic material response time.
The CSCM model includes a means of setting the response time to match CEB-FIP data,
whereas no automated support is currently available in the BF1 model to match specified
data for rate effects in uniaxial strain loading.

• Both K&C and RHT models support user-specified EOS. The RHT supports a wide range of
EOS forms that includes linear, polynomial, p−α , and user tabulated compaction data, etc.
The K&C models allow EOS to be specified only in a tabulated form. On the other hand,
the BF1 and CSCM models provides a built-in nonlinear EOS designed to match data over
pressure ranges ordinarily encountered in low to moderate pressure hydrostatics tests, and
does not allow for any user specified EOS methods.
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Figure 6.1. Comparison of meridian profiles to the K&C’s pro-
file. (The CSCM and BF1 curves coincide.)

• The BF1 model includes elastic-plastic and elastic-damage coupling (plasticity or damage
changes the bulk modulus). The K&C model has no coupling of elastic properties to inelastic
loading history. However, it scales the bulk modulus depending on pressure using a scaling
factor. The coupling feature is unclear for the RHT model because this information is lacking
in its user manual. All three models support nonlinear bulk modulus.

• The K&C, BF1, and CSCM models provide well-documented user manuals (in English),
which also explain the schemes used in detail. On the other hand, the user manual for the
RHT model is not available with the packaged model.

Numerical comparison

The data used for the RHT, BF1, and CSCM models are tuned to yield results similar to those
presented by Unosson [37] using the K&C model . The material models’ default values are used
for the parameters when their input information are insufficient. This section refers to the user’s
inputs using symbols given in AUTODYN and LS-DYNA [6, 27].

Meridional profile

This section presents a numerical comparison of the meridional curves obtained from the four
investigated models. The curves from the RHT, BF1, and CSCM models are constructed based on
the parameters for the 153MPa concrete used for the K&C model in [37]. These parameters are
shown in Table 6.1. The comparisons of the curves from each model are shown in Fig.6.1.
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Table 6.1. Parameters for meridional curves

Model parameters value

All Compressive strength, f ′c 153 MPa
All Tensile strength, ft 8.2 MPa
K&C limit surface parameter, a0 50.6 MPa
K&C limit surface parameter, a1 0.465
K&C limit surface parameter, a2 65.7 GPa−1

K&C residual surface parameter, a0 f 0.0 MPa
K&C residual surface parameter, a1 f 0.465
K&C residual surface parameter, a2 f 65.7 GPa−1

RHT limit surface initial slope, A 2.2
RHT limit surface exponent, N 0.5
RHT residual surface initial slope, B 1.8
RHT residual surface exponent, M 0.55
BF1 limit surface parameter, a1 722 MPa
BF1 limit surface parameter, a2 4.99×10−10

BF1 limit surface parameter, a3 713 MPa
BF1 limit surface parameter, a4 none
BF1 limit surface parameter, FSLOPEI 0.36
BF1 limit surface parameter, ST RENI 722 MPa
BF1 limit surface parameter, PEAKI1I 24.6 MPa
BF1 residual surface parameter, FSLOPEF 0.3
BF1 residual surface parameter, ST RENF 733 MPa
BF1 residual surface parameter, PEAKI1F 246 Pa
CSCM limit surface parameter, α 722 MPa
CSCM limit surface parameter, β 4.99×10−10

CSCM limit surface parameter, λ 713 MPa
CSCM limit surface parameter, θ none
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Figure 6.2. p−α equation of state employed by the RHT model.

Table 6.2. P−α EOS input parameters

Input parameters values

Porous density (kg/m3), ρp 2572
Porous sound speed (m/s), cp 3200
Initial compaction pressure (MPa), pe 200
Solid compaction pressure (MPa), ps 2000
Compaction exponent, n 2
Bulk modulus (GPa), K 28.43

Single element test: isotropic compression

Single element isotropic compression tests are conducted for each model, and hydrostatic pressure
versus volumetric strain are obtained. The results are compared to the experimental data for a
153MPa concrete provided in [37]. Both K&C and RHT models require the EOS’s to be specified.
The K&C model requires a tabular EOS. The RHT model provides options for various functional
forms of the EOS. For porosity effects, our test simulations employ the following p−α model:

α = 1+(αp−1)

[

ps − p
ps − pe

]n

. (6.1)

The parameters αp, ps and pe used here are defined and shown in Fig. 6.2 and Table 6.2.

The BF1 and CSCM models have built-in mechanical EOS and they both employ the following
relationship between porosity and plastic volumetric strain (which is an indirect measure of pore
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Figure 6.3. Equation of state: BF1 and CSCM crush curve

Table 6.3. Uniaxial strain loading for single element tests

time (s) displacement (m) velocity (m/s)
K&C, BF1, CSCM RHT

0.0 0.0 -0.3
1.0 -0.3 -0.3
1.000001 - 0.3
2.0 0.0 0.3

collapse):

p3 − ε̄ p
v = p3e−(p1+p2ξ̄ )ξ̄ , where ξ̄ = X̄ − p̄0 = 3(p−PE). (6.2)

The parameters p1, p2, p3 and PE are defined in Fig. 6.3. The parameters required by the RHT
p−α , BF1 and CSCM crush curves are approximated by curve fitting the EOS data given in [37]
to the K&C model. The comparison of the hydrostatic compression curves from each model is
illustrated in Fig. 6.4

Single element test: uniaxial strain

Single element uniaxial strain tests are conducted using the data shown in Tables 6.1 and 6.4. The
loading data for each model are given in Table 6.3. Figure 6.5 shows a comparison of the stress
difference

√
3J2 versus pressure. All of the material models show similar behavior except the K&C

model. In this test, the pressure exceeds the maximum pressure data given in the EOS table used
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Figure 6.4. Comparison of hydrostatic pressure versus volumet-
ric strain

Table 6.4. Material properties for concrete

Property value

Density (kg/m3) 2770
Uniaxial compressive strength (MPa) 153
Modulus of elasticity (GPa) 58
Poisson’s ratio 0.16
Bulk modulus (GPa) 28.4
Shear modulus (GPa) 25

by the K&C model, and extrapolated data are added to the EOS table for the K&C model to obtain
results beyond 2 GPa.

Projectile penetration

Here we present numerical simulations of the perforation of a high performance concrete with a
75 mm steel projectile using the RHT and CSCM material models. The goal of these simulations
is to investigate the results obtained using these two models and to compare them to the results
from the K&C model given in [37]. ANSYS: AUTODYN is used for the investigation of the RHT
concrete model, while LS-DYNA is used for the CSCM model. The data used in the RHT and
CSCM models are tuned to give similar results to Unosson’s as discussed in the single elements
sections. These data are shown in Tables 6.5 - 6.7. A simplified Johnson-Cook strength model is
used for the steel projectile to ensure that the pressure in the target concrete does not damage the
projectile.
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Figure 6.5. Comparison of stress difference versus pressure un-
der uniaxial strain. (The BF1 and CSCM models results are differ-
ent not because of model differences but because the BF1 model
was driven with logarithmic strain, whereas the CSCM model was
run using engineering strain.)

Table 6.5. Input parameters for the steel projectile

Property value

Density (kg/m3) 7800
Modulus of elasticity (GPa) 207
Initial velocity (m/s) 617
Shear modulus (GPa) 81.8
Yield stress (MPa), A 1539
Hardening constant (MPa), B 477
Hardening exponent, n 0.18
Strain rate constant, C 0.012
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Table 6.6. Input parameters for the RHT concrete target

Property value

Density (kg/m3), ρ 2770
Shear modulus (GPa), G 25
Compressive strength (MPa) 153
Tensile strength, ft/ fc 0.054
Shear strength, fs/ fc 0.3
Limit surface parameter, A 2.2
Limit surface parameter, N 0.5
Tensile/compressive meridian ratio, Qo 0.6805
Brittle to ductile transition, BQ 0.0105
Gelastic/Gelastic - plastic, PREFACT 2.0
Elastic strength/ ft , T ENSRAT 0.8
Elastic strength/ fc, COMPRAT 0.75
Cap on yield surface enable
Residual surface parameter, B 1.8
Residual surface parameter, M, 0.55
Compressive strain rate exponent, α 0.01
Tension strain rate exponent, δ , 0.013
Maximum fracture strength ratio 1×1020

Damage constant, D1 0.04
Damage constant, D2 1.0
Minimum strain to failure 0.01
Residual shear modulus ratio, SHRAT D 0.13
Principal tensile failure stress (Pa) 8.2×106

Maximum principal stress difference/2 1×1020

Fracture energy (J/m2) 162
Flow rule radial return
Stochastic failure none
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Table 6.7. Input parameters for the CSCM concrete target

Property value

Density (kg/m3), ρ 2770
Maximum strain increment default
Rate effect disable
Elements erosion criterion 1.5
Modulus recovery in compression, enable
Cap retraction none
Preexisting damage none
Shear modulus (GPa), G 25
Bulk modulus (GPa), K 28.43
TXC surface parameter (Pa), α 4.19×108

TXC surface parameter (1/Pa), β 1×10−9

TXC surface parameter (Pa), λ 3.89×108

TXC surface parameter, θ 0.0433
TOR surface parameter, α1 0.761
TOR surface parameter (1/Pa), β1 0
TOR surface parameter, λ1 0
TOR surface parameter (1/Pa), θ1 2×10−5

TXE surface parameter, α2 0.68
TXE surface parameter (1/Pa), β2 0
TXE surface parameter, λ2 0
TXE surface parameter (1/Pa), θ2 2.29×10−5

Hardening initiation NH and rate CH 0.0 and 0.0
Cap aspect ratio R and initial location Xo (Pa) 5.0, 6×108

Maximum plastic volume compaction, W 0.7434
Linear shape parameter (1/Pa), D1 6×10−10

Quadratic shape parameter (1/Pa2), D2 0
Ductile and brittle softening parameter, B and D 100 and 0.1
Fracture energy in uniaxial compression (N/m), G f c 16200
Fracture energy in uniaxial tension (N/m), G f t 162
Fracture energy in pure shear (N/m), G f s 162
Shear-to-compression transition parameter, pwrc 5.0
Shear-to-tension transition parameter, pwrt 1.0
Modify moderate pressure softening parameter, pmod 1.0
Compressive rate effect and exponent, η0c and N0c 1.83×10−4 and 0.504
Tensile rate effect and exponent, η0t and N0t 1.76×10−5 and 0.560
Maximum overstress allowed in compression (Pa), overc 1.05×108

Maximum overstress allowed in tension (Pa), overt 7.76×106

Ratio of fluidity parameters, srate 1.0
Fracture energy rate effect parameter 1.0
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The contour plots of damage prediction by the RHT and CSCM models are illustrated in
Figs. 6.6 and 6.7. Despite claims that inclusion of scale effects eliminates mesh dependence,
it is clear from the pattern of radial cracking and from the shape of the perforation that the mesh
texture strongly influences how the damage is distributed. As explained in [5], deterministic dam-
age models of the type surveyed in this report are incapable of predicting realistic radial cracking
even if they include scale effects for damage. This fact is why the BF1 model does not include
scale effects. Instead, the BFS extension of the BF1 model incorporates scale effects as a natu-
ral consequence of statistical heterogeneity of the material strength, thus leading to a statistically
mesh independent prediction for the number and orientation of radial cracks. Specifically, the BFS
extension generates random realizations of the BF1 parameters based on scaling the size of the
finite element relative to the specimen size used in the BF1 model parameterization.

As mentioned earlier, our perforation case study aims to reproduce the analysis in [37], which
used the K&C model in an older version of LS-DYNA. Similar number of nodes and elements are
used in our simulations. However, in the current version of LS-DYNA, this problem fails to run
to completion even though it uses identical parameters, geometry, and boundary conditions. When
fitting the data of DIF given in [37] to both models, perforations in the concrete targets are not
predicted. The penetrations in both RHT and CSCM simulations stop at approximately 2/3 of the
target’s thickness.

When the DIF values are close to unity, the simulations using the RHT and CSCM models
predict perforation. The size of the impact crater predicted by the RHT model is much smaller than
that in [37] for the K&C model. The CSCM, on the other hand, shows the crater of a comparable
size. The RHT, CSCM and the previously published K&C simulation [37] exhibit double cracks in
the coordinate direction, and single cracks at 45◦. Such spurious behavior is typical of deterministic
smeared damage models. As the mesh is refined, it is expected that the number of radial cracks will
increase, thus indicating non-predictiveness of smeared damage models even when they include
scale effects for fracture energy. The severe mesh dependence of smeared damage models is also
noted in a systematic study by Timmel, et al. [36].

As shown in Table 6.8, none of the smeared damage models are able to predict the residual
velocity of 291 m/s that was observed in the experiment.

Table 6.8. Residual velocity comparison

Material models impact velocity (m/s) residual velocity (m/s)

Experiment [37] 617 291
K&C [37] 617 320
RHT 617 264
CSCM 617 327
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Figure 6.6. RHT Model: Contour plots of damage: side, front,
and back view of the target (top to bottom).
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Figure 6.7. CSCM Model: Contour plots of damage: side, front,
and back view of the target (top to bottom).
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Verification

Verification is evidence that the equations are solved correctly. We could find no evidence of sys-
tematic verification protocols for either the K&C, RHT, or CSCM models. Some potential for
verification issues have been identified, but not aggressively investigated by these developers. For
example, existence of a vertex in the failure surface of the K&C models was noted [28], but dis-
missed with the comment that “this does not violate any fundamental theoretical requirement. In
fact, due to the use of a Prandtl-Reuss flow rule as implemented with the radial return algorithm, it
creates no numerical difficulties either.” Very little is said in the K&C, RHT, and CSCM publica-
tions about mesh dependence other than an unsubstantiated claim that inclusion of a length scale
in fracture energy eliminates mesh dependency.

In contrast to the K&C, RHT, and CSCM models, the BF1 model uses the following verification
practices:

• Demonstration of mesh dependency that led to an enhanced form of the BF1 model (called
BFS) that accounts for scale dependent statistical uncertainty of strength, thus mitigating
(not eliminating) mesh dependency while also reproducing the massive uncertainty in exper-
imental data for concrete.

• Identification of three possible types of vertices in the failure surface and implementation of
vertex handling that has been verified against analytical solution.

• Run time monitoring of solution quality with remote debugging. Without access to the K&C,
RHT, and CSCM source codes, it is uncertain how these models deal with inadmissible
results such as an erroneous prediction of a negative consistency parameter. If the BF1
model encounters such a problem, it terminates the calculation by issuing a debugging file
that can be sent to the model developer for a bug fix followed by a rapid re-release of a
corrected model (often within 48 hours).

• Automated scripts that allow assembly of version-controlled releases of the model in forms:
an F77 version, an F90 version, and two stand-alone model driver versions. Automation of
the release ensures identical source code on multiple platforms.

• Driver regression and benchmark testing involving approximately 30 test problems using
three material data sets (thus totaling 90 tests) that must either pass before a new version
is released or, if they do not pass, a “known bug” comment must be included in the release
documentation.

• Genuine verification testing against analytical solutions. Unlike the K&C and RHT models,
BF1 is capable of reducing to simpler idealized models for which agreement with analytical
solutions has been confirmed.

• Pseudo verification testing for expected trends in solution as parameters are changed.

• Robustness verification achieved through benchmarks that target common problem areas
such as loading past a vertex, loading that is highly tangential to the failure surface, running
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Figure 6.8. FEA vs. analytical/numerical elastic wave velocity
example

with an inordinately large time step to ensure proper subcycling, dramatic transients in the
loading direction, massive strains, etc.

• Rate of convergence testing with and without subcycling demonstrating first order conver-
gence. Note: second-order convergence has not been attempted since it would require not
only strain rate ε̇ , but also strain acceleration ε̈ .

• Limited field-scale verification testing to reveal issues not attributable to the constitutive
model. In situations where analysts have suspected a verification or validation problem with
the BF1 model, the BF1 developers have designed verification tests that ultimately showed
the bug to reside in the host code, not the constitutive model. The good agreement of the
BF1 model for the elastic problem in Fig. 6.8 for example, was not achieved until artificial
viscosity was repaired in the host codes that were attempting the inelastic validation of that
problem. The BF1’s remote debugging capabilities have also led to discovery of errors in
host code advection of tensor fields as well as more routine problems such as user input
mistakes (most commonly confusion between uniaxial effective strength and effective shear
strength).

• Extensive documentation. The BF1 model has two components: the base model for the
nonsoftening case and damage theory for softening. A detailed user’s guide for the nonsoft-
ening component that documents the theory for relatively new users is available [12]. It also
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outlines the numerical solver; summarizes verification and validation tests, provides step-
by-step parameterization instructions, summarizes input parameter symbols and keywords
(with cross-referencing to relevant theory equations); provides input sets for several mate-
rials (including high- and low-strength concrete), and shows how to set input for reducing
the model to simpler idealizations (Hooke’s law, von Mises plasticity, Mohr-Coulomb, etc)
for verification testing. The more recent BFS changes to the BF1 model have not yet been
documented.

• Run-time input “sanity” checking with automated defaults. The BF1 model has 40 possible
inputs keywords, but the number of inputs that are actually required scales appropriately
with the complexity of the problem. If, for example, the user wishes to run linear elasticity,
then only two parameters (bulk and shear modulus) are needed. All user input is checked
at run time for physical or mathematical admissibility (e.g. bulk modulus must be positive).
Reasonable defaults are set for unspecified parameters (e.g. associativity is imposed unless
the user explicitly requests non-associativity).

• Portability. The BF1 model conforms to the Model Interface Guidelines [4], which has
allowed it to be implemented in five different host codes, all using identical source code.
An installation of the model at LLNL took only one day of the BF1’s developer’s time.
Moreover, this broad use of the model has exercised it on numerous computing platforms
using multiple compilers, thereby correcting minor numerical issues such as convergence
criteria, along the way.

The above list of software SQA practices is perhaps what distinguishes the BF1 model from
other models more than any other metric. Rising up to these SQA standards might lead to apparent
delays in the implementation of new model features but it is believed that they ultimately reduce
the total time required to achieve trustworthy, physically meaningful, simulations.

It should be noted that similar to the BF1 model, the CSCM model provides extensive docu-
mentation that gives an overview of the theory, as well as examples of how to used the model in
LS-DYNA. The K&C model has documentation that provide such information, but the detailed
documentation is available only for the Release II of the model. The K&C Concrete Release III
is the latest release, which has a user guide that focuses on helping users getting started. No
theoretical details are given with this current release.

Validation

As parts of commercial packages, the K&C and RHT models have been used and validated by
many authors. This chapter presents and summarizes the findings from some of these works.
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K&C: drop weight tests

In drop weight tests performed at FOI (FOA), the K&C model’s ability to predict the material and
structural response was evaluated [17]. In the tests, four reinforced concrete beams were subjected
to impact loading using a drop weight. Hansson et al. [17], showed that the simulation was able to
replicate the cracks in mode I, similar to the test results, but also predicted a mode II crack from
the center point of impact that was not observed in the experiment.

K&C: simulations of penetration and perforation of high performance con-
crete

Simulations of penetration and perforation of three types of high performance concrete targets were
performed to assess the K&C model’s ability to predict depth of penetration or residual velocity. A
6.3kg armor piercing steel projectile with an ogive nose radius of 127mm, length of 225mm, and
diameter of 75mm was fired at the targets at zero impact angle and 620m/s velocity. The targets had
a diameter of 1400mm. The target’s lengths of 400mm and 800mm were used for the perforation
and penetration tests, respectively. Unosson [37] showed that the model yielded good agreement
with test data for perforation, but unsatisfactory results for penetration. Different element size was
not able to be used in one material definition, and the damage curve was fitted only to one specific
element size. As a result, an incorrect fracture energy release was computed, resulting in excessive
amounts of shear damage in the element transition zone. When DIF (see Section 2) was used in
the model, its effect lasted only to half the targets depth, beyond which changes in DIF had no
effect.

K&C: explosive wall breaching

Double-reinforced concrete slabs having dimensions of 2.4×2.4×0.2m were subjected to the ex-
plosive loading environments produced by contact detonation charges. Akers et al. [2], showed
in their work that the K&C model predicted a hole in the slabs close to the experimental value.
However, the damage in the slabs was found to be excessive. No detailed explanations regarding
the incorrect damage prediction were given in [2]. However, the tendency of this class of model to
over-predict damage is well known and believed by some researchers [5] to be attributable to de-
terminism (i.e. lack of statistical variability) that prevents localized failure in the form of discrete
crack networks. Incorporating both scale effects statistical variability in properties dramatically
reduces the phenomenon of excessive damage.

K&C: vehicle-barrier crash test simulations

Numerical simulations for triaxial loading were conducted on plain concrete and compared to the
experimental data. The calibrated K&C parameters were used to simulate a vehicle impact/crash
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into a concrete barrier. Under triaxial tests, the parameters were tuned until the model showed
correct linear and nonlinear response of the concrete in comparison to the experimental data [39].
Based on these well tuned parameters, a vehicle-barrier crash test was simulated. Yonten et al.
[39] presented the comparison of the simulations using various concrete models available within
the LS-DYNA program; each displayed different prediction from one another. No experimental
data were used in assessing the vehicle-barrier crash test simulation results.

RHT: simulation of penetration of high performance concrete

Simulations of a steel projectile penetrating a concrete target were presented and compared to
experimental results in [18]. Hansson et al. [18] showed the influence of impact geometry on
the calculated penetration path. For instance, a very small yaw angle had a large effect on the
penetration path and exit velocity of the projectile in the simulation. The input data were tuned
to match the penetration experiments but there was no mention of whether or not the alteration
of parameters corrupted agreement with the original data on which the original parameters were
based. It was also shown that the failure surfaces are dependent on pressure, strain rate, and triaxial
stress state, and hence could handle most cases that are of “importance” for projectile penetration
into brittle material like concrete. In addition, Hansson et al. [18] pointed out the difficulty of
assessing the parameters that describe damage evolution, residual strength, and the tensile behavior
and that new testing methods to determine damage development in concrete and strength of damage
or partly damaged concrete still need to be developed. Some progress on measurement of damaged
strength has been made by Chen et al. [7]. The BF1 model acknowledges this lack of data by
defaulting an unspecified residual yield surface to that of sand.

RHT: concrete subjected to projectile and fragment impacts

Leppänen [26] showed a simulation using the RHT model where a single fragment was shot against
a concrete wall with impact velocities of 1024 m/s, 1163 m/s and 1238 m/s. At 1024 and 1163
m/s impact velocity, the calculation did not show the spalling evident in the experimental data, but
scabbing behavior was correctly described. On the other hand, at 1238 m/s impact velocity, both
spalling and scabbing behavior were correctly predicted.

RHT: jumbo jet impacting on thick concrete walls

The RHT model was used by Katayama et al. [24] to simulate impact of a Boeing 747 passenger
jet into a concrete wall. This three dimensional simulation was assessed for its ability to predict
observed perforation, non-perforation, and spalling of the concrete. The model was able to predict
the qualitative response of the concrete wall, but quantitative accuracy was not discussed in detail.

These are a few examples of existing simulations performed using the K&C and RHT concrete
models. Both models appear to be very promising despite some weaknesses and existing flaws.
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With parameter tuning, they seem to be able to capture the qualitative response of the concrete
under impact but fail to accurately capture the damage in detail. Both models rely heavily on the
data extracted from “correct/meaningful” experiments, which are not often available.

According to works cited here, the K&C model appears to work well in predicting perforation
but not penetration. The excessive damage from penetration is largely caused by the element size
dependency according to [37]. However, several improvements have been made since the model
(LS-DYNA material 72) was evaluated, and a scaling factor that adjusts the fracture energy release
depending on the element size has been included in the newer version (material 72R3). The K&C
model includes tables and functions that are sophisticated enough to allow very accurate fitting
to standard materials characterization experiments. However, predictiveness in general loading is
still lacking.

For the RHT model, many benchmarks were performed to provide information for the model’s
basic parameters. However, these data are still not sufficient for the model to accurately capture
the response at various strain rates. Similar to the K&C model, penetration is influenced heavily
by the empirical data. While none of the works using the K&C model mentioned above discussed
the effect of spalling and scabbing, simulations performed using the RHT model showed that these
effects can be predicted to some degree.
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Chapter 7

Conclusions

Four conventional damage plasticity models for concrete, K&C, RHT, BF1, and CSCM are com-
pared. All four models use very similar elastic and inelastic computational procedures. All of the
models support nonlinear elasticity, but with different formulations. All four models employ three
strength surfaces: (1) yield surface, (2) limit surface, and (3) residual surface. Differences are seen
in mathematical expressions defining the profiles of these strength surfaces.

The four models being compared differ in their softening evolution equations, as well as in
their equations used to degrade the elastic stiffness. For all four models, scale effects are modeled
differently. The K&C model requires that a particular material parameter affecting the damage
evolution rate must be set by the user according to the mesh size to preserve energy to failure.
Similarly, the BF1 model presumes that all material parameters are set to values appropriate to
the scale of the element, and automated assignment of scale-appropriate values is available only
through an enhanced implementation of BF1 (called BFS) that regards scale effects to be coupled to
statistical variability of material properties. The RHT model appears to similarly support optional
uncertainty and automated settings for scale dependent material parameters.

K&C and RHT support rate dependence by allowing the strength to be a function of strain rate,
whereas the BF1 and CSCM models use Duvaut-Lion viscoplasticity theory to give a smoother
prediction of transient effects. During softening, all four models require a certain amount of strain
to develop before allowing significant damage accumulation. For K&C, RHT, and CSCM, the
strain-to-failure is tied to fracture energy release, whereas a similar effect is achieved indirectly in
the BF1 model by a time-based criterion that is tied to crack propagation speed.

All models investigated in this report rely heavily on well tuned parameters to reproduce ob-
served material response. The BFS enhancement to the BF1 model automates the assignment of
parameters based on experimentally justified scaling effects. There appears to be no barrier to
adopting the best features of any of these models into one another. Therefore, any of these models
could be used as a starting point to rectify deficiencies of smeared damage models and to then
further enhance the physics of damage.
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