Observations of Random Walk of the Ground In Space and Time

PDF Version Also Available for Download.

Description

We present results of micron-resolution measurements of the ground motions in large particle accelerators over the range of spatial scales L from several meters to tens of km and time intervals T from minutes to several years and show that in addition to systematic changes due to tides or slow drifts, there is a stochastic component which has a 'random-walk' character both in time and in space. The measured mean square of the relative displacement of ground elements scales as dY{sup 2} {approx} ATL over broad range of the intervals, and the site dependent constant A is of the order ... continued below

Creation Information

Shiltsev, Vladimir January 1, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We present results of micron-resolution measurements of the ground motions in large particle accelerators over the range of spatial scales L from several meters to tens of km and time intervals T from minutes to several years and show that in addition to systematic changes due to tides or slow drifts, there is a stochastic component which has a 'random-walk' character both in time and in space. The measured mean square of the relative displacement of ground elements scales as dY{sup 2} {approx} ATL over broad range of the intervals, and the site dependent constant A is of the order of 10{sup -5{+-}1} {micro}m{sup 2}/(s{center_dot}m).

Source

  • Journal Name: Phys.Rev.Lett.104:238501,2010; Journal Volume: 104

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-PUB-10-188-APC
  • Grant Number: AC02-07CH11359
  • DOI: 10.1103/PhysRevLett.104.238501 | External Link
  • Office of Scientific & Technical Information Report Number: 982863
  • Archival Resource Key: ark:/67531/metadc1012298

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 3, 2017, 9:25 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Shiltsev, Vladimir. Observations of Random Walk of the Ground In Space and Time, article, January 1, 2010; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc1012298/: accessed October 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.