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Abstract

We present elastic properties, theoretical and experimental, of Pu metal and Pu-Ga (δ) alloys to-

gether with ab initio equilibrium equation-of-state for these systems. For the theoretical treatment

we employ density-functional theory in conjunction with spin-orbit coupling and orbital polariza-

tion for the metal and coherent-potential approximation for the alloys. Pu and Pu-Ga alloys are

also investigated experimentally using resonant ultrasound spectroscopy. We show that orbital

correlations become more important proceeding from α → β → γ plutonium, thus suggesting

increasing f -electron correlation (localization). For the δ-Pu-Ga alloys we find a softening with

larger Ga content, i.e., atomic volume, bulk modulus, and elastic constants, suggest a weakened

chemical bonding with addition of Ga. Our measurements confirm qualitatively the theory but

uncertainties remain when comparing the model with experiments.

PACS numbers: 71.15.Mb, 71.15.Rf, 71.27.+a, 75.10.Lp, 62.20.Dc,71.20.-b,71.15.Mb
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I. INTRODUCTION

Plutonium metal and alloys provide great challenges for theoreticians and experimental-

ists alike. Theoretically, complex crystal and electronic structures combined with electron

correlations greater than most metals and strong relativistic effects make Pu very difficult

to tackle. On the experimental side, Pu is chemically toxic, radioactive, surrounded with

safety and other regulatory issues that make it demanding to work with. Consequently, the-

ory and experiment have been able to highlight some facets of this material but not reveal

the complete physical picture.

Elasticity constitutes one of the core properties of any material. It is related to strength

and other mechanical properties. On a fundamental material science level, it provides a

very detailed representation of the chemical bonding and thus reflects characteristics of the

electronic structure. The latter is particularly important when evaluating and contrasting

different theoretical models. In the case of Pu (and presumably Pu containing alloys) dy-

namical mean-field theory1 is claimed to describe the electron-correlation effects, while on

the other hand, total-energy calculations obtained from density-functional theory (DFT)

appears consistent with many ground-state properties.2–4 Here we are comparing DFT sin-

gle crystal elastic constants with resonant ultrasound spectroscopy (RUS) polycrystal elastic

moduli in an effort to validate the DFT model for Pu and δ-Pu-Ga alloys electronic struc-

ture. Our study is complementary to other investigations5 of the electronic structure, many

of which were reviewed recently by Moore and van der Laan.6

We are applying DFT to examine equilibrium equation-of-state and single crystal elastic

constants of the six known phases of Pu metal (α, β, γ, δ, δ′, ε) and δ-Pu-Ga alloy (0-10 at.%

Ga). In Fig. 1 we show the Pu phases and indicate their crystal type and number of

independent elastic constants. In parallel with the theory we undertake resonant ultrasound

spectroscopy measurements on polycrystal α, β, and γ plutonium as well as some δ-Pu-Ga

alloys. The experimental data are important for understanding materials properties but

they are also essential in corroborating the DFT approach and any other theoretical model.

For semi-empirical techniques the development of inter-atomic potentials can be constrained

by the presented experimental elastic constants and in some cases, where data are missing,

our DFT predictions.

In Sec. II we describe technical details of the computations including our theoretical
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model for the studied Pu systems. This is followed by Sec. III in which we briefly describe our

elastic-moduli measurements. Next, calculated crystal stabilities and equilibrium equation-

of-state data of the various phases are presented in Sec. IV. Our theoretical and experimental

results for the elastic moduli are given in Sec. V and we provide concluding remarks in Sec.

VI.

II. COMPUTATIONAL

The electronic structure and total energy are obtained from density-functional calcula-

tions which require the atomic geometry and the atomic number (94 for Pu and 31 for

Ga). As is dictated by DFT, the electron exchange and correlation energy functionals and

associated potentials have to be assumed and we use the so-called generalized gradient ap-

proximation (GGA) for this purpose.7

For pure Pu in its complex phases we are adopting an all-electron technique that has

proven to be robust for the actinides in the past.8 The linear muffin-tin orbitals method

does not constrain the shapes of the charge density or potential and the method is thus

referred to as a full potential linear muffin-tin orbitals (FPLMTO) method.9

Electron correlations play an important role in Pu and Pu-rich alloys. Within the frame-

work of DFT it has been shown that calculations including spin polarization, spin-orbit

coupling (SO), and orbital polarization (OP) in conjunction with GGA can produce realis-

tic total energies for all phases3 but the high-temperature body-centered-cubic ε phase. We

have argued that anti-ferromagnetic order for the α, β, and γ phases and magnetic disorder

for the higher temperature phases best represent plutonium within the assumptions of the

DFT model.10,11 Following this recipe we calculate the total energy as a function of strain

and extract the elastic moduli. For α-Pu the effects of orbital polarization on the elas-

tic properties were found to be negligible12 when they were evaluated at the same atomic

volume, corresponding to the equilibrium of the SO+OP treatment. The elasticity of the

remaining phases are also evaluated at the equilibrium volume of the full (SO+OP) theory

but here for both the SO and SO+OP approximations.

The axial ratios of all lower symmetry phases (α and β monoclinic, γ orthorhombic, δ′

tetragonal) are varied (optimized) to produce the lowest total energy. Internal coordinates

are kept fixed at their measure values.13 The monoclinic phases have 13, the orthorhombic 9,
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tetragonal 6, and cubic phases 3 independent elastic coefficients that correspond to specific

strains of the lattice. Small strains (∼ max 1-2 %) are applied and the total-energy response

fitted to a 4th order polynomial allowing for the extraction of the 2nd order coefficient that

is proportional to the corresponding elastic modulus. All applicable strains and equations

for this scheme were presented earlier.12,14 We are ignoring lattice relaxation during the

distortions due to technical limitations of our computations. In the case of α-uranium this

simplification was determined to be acceptable.14

The calculations of random substitutional alloys (δ-Pu-Ga) are best performed within

the coherent-potential approximation (CPA).15 This procedure also conveniently allows for

the treatment of magnetic disorder which otherwise is modeled by a supercell (special quasi-

random structure) as before.10 The CPA is here applied in an identical manner as in our

previous study of pure δ-Pu16 within the scalar relativistic, spin polarized, Green’s function

technique based on the improved screened Korringa-Kohn-Rostoker method. The most

accurate implementation of this approach is the exact muffin-tin orbitals (EMTO) method17

for which the electron potential and density are precise enough to be used for the small

lattice distortions associated with elastic constants. The details are the same as for pure

δ-Pu16 but here we study the δ-Pu-Ga alloy for concentrations 2, 4, 6, 8, and 10 at.% Ga.

III. EXPERIMENTAL

The elastic moduli are determined from measurements of the resonance frequencies using

a RUS18 system constructed entirely of ceramics, metals, and other inorganic materials to

preclude deleterious radiolytic interactions. The system can operate between 1.8 K and 700

K. Several approaches to temperature control are taken in the presented results but the

primary measurements are made in He atmosphere. Temperature is controlled to about

1 mK with an accuracy better than 1 %. The specific shape of the samples are mostly

responsible for errors in the densities and elastic moduli. Therefore, considerable care is

taken to ensure square and parallel shapes of the samples with dimensional errors less than

5 µm.
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IV. CRYSTAL STABILITIES AND EQUILIBRIUM EQUATION-OF-STATE

Before examining the elastic properties we study the crystal stabilities and equilibrium

equation-of-state properties of the Pu phases and the δ-Pu-Ga alloys. We begin with α-Pu

for which the theory is reproducing the details of the monoclinic structure13 very well as

pointed out in our recent publications.12,19 The calculations of the elastic constants for the

monoclinic (P21/m) α-Pu thus assumes the measured data for axial ratios, monoclinic angle,

and atomic positions at the theoretical equilibrium volume 20.3 Å3.

The β phase is also monoclinic with space group B2/m and 17 atoms in the primitive

unit cell, with 34 atoms per unit cell as described in the Pu handbook.13 Due to the com-

plexity to fully relax all structural parameters, particularly in the context of an all-electron

methodology, we are limiting ourselves to only calculate the total energy as a function of

b/a and c/a axial ratios at the equilibrium volume obtained from computations using the

measured13 geometry. In Fig. 2 we show the total-energy contours of β-Pu as a function

of b/a and c/a axial ratios at the theoretical equilibrium volume (23.1 Å3). Here the axial

ratios have been scaled with their experimental13 values (b/a = 1.127 and c/a = 0.847).

The total energies are obtained from our full treatment of electron correlations (SO+OP)

and the figure shows a minimum in the energy landscape at (1.0, 1.0) i.e., the calculations

are perfectly reproducing the measured ratios. For comparison we also show, in Fig. 3, a

similar plot at the same atomic volume but without spin polarization, spin-orbit coupling,

and orbital polarization. In this case there is no energy minimum anywhere close to the

axial ratios observed for β-Pu. In contrast, there is a downhill slope in energy toward much

smaller axial ratios suggesting a structural instability of β-Pu. Obviously, electron correla-

tions are very important for the structural stability of β-Pu and must be considered in any

reasonable model for the elastic constants.

The γ phase is orthorhombic with space group Fddd and 8 atoms per primitive unit

cell that is also present in compressed americium (AmIII)20,21 close to 10 GPa. In this

face-centered-orthorhombic structure the atomic coordinates are, contrary to the β phase,

bound by symmetry. Full relaxation of γ-Pu is therefore easier to accomplish and it suffices

to optimize the axial ratios at a given atomic volume. In Fig. 4 we show a total-energy

contour plot at the theoretical equilibrium volume (23.8 Å3) of γ-Pu similar to that of β-Pu

in Fig. 2. As before, the axial ratios have been scaled with measured data13 (b/a = 1.826
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and c/a = 3.217). The energy minimum occurs at about (0.96, 1.01) suggesting that the

c/a ratio is very good while the b/a is slightly underestimated (4 %). DFT without the

aforementioned electronic-correlation effects is completely unable to model this phase (not

shown), a fact that has been discussed in the literature previously.22,23

Both the δ and ε phases are cubic with structures entirely defined by their face-centered

and body-centered cubic symmetries. Between them there is a small pocket of stability for

the δ′ tetragonal (I4/mmm) phase, see Fig. 1. Our calculated equilibrium volume for this

phase is 24.7 Å3 and the optimized axial ratio is about 3.5 % larger than the observed13

(1.329), see Fig. 5.

Thus, in addition to plausible total energies and atomic densities,3 our DFT model sug-

gests structural stability for all Pu phases, except the ε phase (see below), with rather good

crystal parameters as well. In Sec. V will shall apply small strains to the optimized structure

of each phase for evaluation of the elastic moduli.

Next, we summarize our equilibrium equation-of-state properties for pure Pu in its six

known phases together with experimental data taken from the literature. In Table I we

show equilibrium atomic volumes (V) and bulk moduli (B) for the fully correlated treatment

(SO+OP) and with spin-orbit coupling and spin polarization only (SO). For the more limited

treatment, SO, we also evaluate B at the equilibrium volume for the full theory (Bfix). The

calculation of Bfix will allow for a more consistent comparison because the influence of

different equilibrium volumes is removed and the same approach is adopted for the elastic

constants below (Sec. V). Clearly, electron correlation plays an important role because the

difference between the SO and SO+OP equilibrium volumes is substantial for all phases.

Generally, the bulk modulus appears to be much less dependent on the two theoretical

treatments particularly when evaluated at the same (SO+OP) volume (Bfix). For all phases,

Table I reveals that DFT predicts atomic volumes very close to experimental data and

reasonable bulk moduli as well. One cannot, however, expect perfect agreement because

temperature effects are not accounted for in the theory. This is demonstrated in Fig. 6

where we plot with error bars our measured B and shear modulus (G, see more below) for

β-Pu (∼ 430 - 480 K) and γ-Pu (∼ 480 - 620 K).

The δ-Pu-Ga alloy system has been modeled in analogy with pure δ-Pu as a magnet-

ically disordered material and with the random substitutional alloy treated within CPA.

Although founded on the same fundamental DFT, with GGA for the exchange and corre-
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lation functionals, the CPA is here implemented in EMTO with no spin-orbit coupling and

with shape approximations of charge density and electron potentials that are not present

in the FPLMTO calculations. Consequently, there are some minor differences in the ob-

tained data for δ-Pu between the two methods, see Table I. The principal purpose of our

EMTO-CPA calculations, however, is to investigate the influence of gallium in δ-Pu. In

Fig. 7 we show in the upper panel the atomic volume as a function of gallium content

in δ-Pu together with measured24 data. The EMTO method predicts volumes about 2%

greater than experiments (and FPLMTO) for pure δ-Pu but the Ga-concentration depen-

dence appears to be very similar to the experimental data. In the lower panel of Fig. 7 this

fact is illustrated when we plot the scaled volume, VPu−Ga

VPu
, as a function of at.% Ga. The

volume depends linearly with at.% Ga in this studied interval where theory and experiment

essentially coincide.

The bulk modulus and its pressure derivative, B′, also depends linearly on Ga content

in our calculations. Fig. 8 displays these properties and notice here that B increases and

B′ decreases in a linear fashion. For three concentrations (2.36, 3.30, and 4.64 at.% Ga) we

measure the temperature dependence of the bulk modulus, shown in Fig. 9. At any given

temperature there is an increase in the bulk modulus between 2.36 and 4.64 at.% Ga in

δ-Pu. At 300 K the relative increase is about 2.3 % while our calculations (Fig. 8) suggest

a larger increase (5.5 %). Interestingly, our measurements for the 3.30 at.% Ga alloy have a

lower bulk modulus and this is not reproduced by our theory.

The calculated pressure derivative of the bulk modulus is sensitive to the Ga content,

see Fig. 8, which is consistent with the fact that the thermal expansion is very sensitive to

alloying. Our calculations do not, however, predict a negative B′ necessary for the anomalous

negative thermal expansion.

V. ELASTIC CONSTANTS

The single crystal elastic constants for α-Pu were recently calculated12 and we follow the

same procedure here to also compute these for the β, γ, δ, and δ′ phases of Pu. For the

high-temperature ε phase our disordered magnetic model10,11 predicts a negative tetragonal

shear constant and thus no mechanical stability. We speculate that phonon anharmonicity

and entropy, not accounted for in the present model, are promoting its stability before melt.
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Although it was found12 that electron correlation, in terms of orbital polarization, has

a negligible influence on the moduli for α-Pu we choose here to investigate its importance

for the remaining phases that likely have stronger electron correlation. In Tables II and

III we present the monoclinic elastic constants for the α (from Ref.12, included for com-

pleteness) and β phases, respectively. First we notice that orbital polarization has a minor,

but non-negligible, influence on the moduli for the β phase. The six cii components have

straightforward interpretations, the three first, c11, c22, and c33, correspond to strains in the

x, y, and z directions, respectively. The next three, c44, c55, and c66, are related to strains

causing changes in the angles between the axes. Focusing on the cii’s, which are more in-

tuitive than the others, we find that they are significantly smaller for β than α plutonium.

Because they scale inversely with the atomic volume12 a reduction is expected following the

volume expansion associated with the α→ β transition. The difference in volume suggests a

decrease of the order of 12 % while the actual reduction is considerably greater (see below).

The succeeding phase in Pu (Fig. 1) is the orthorhombic γ-Pu. Due to the higher crystal

symmetry in γ, compared to α and β plutonium, fewer elastic constants are independent.

Still, nine strains are needed to obtain all of them and the procedure was outlined in detail

in our previous investigation of α-U.14 The results are listed in Table IV. Notice in the

table that orbital polarization is more important for the elasticity in the γ phase compared

to that of α and β plutonium. In this sense, electron correlation appears to be stronger

in γ-Pu than the lower temperature phases. In Fig. 10 we plot the average cii for α, β,

and γ plutonium. In this figure we also display the results when the average cii for the α

phase is being scaled corresponding to the lower densities (greater atomic volumes) of the

β and γ phases. Clearly, the average cii decreases stronger with the phase transitions than

a simple volume scaling suggests. The reduced magnitude of the elastic constants are thus

driven not only by changes in the atomic density but also by phase-specific alterations in

the character of the chemical bonds as one proceeds through the α → β → γ transitions.

These variations in the electronic structure can be interpreted as indicative of 5f -electron

localization or increasing electron correlation.

Next transition takes plutonium to the cubic δ phase. Although δ-Pu is stable only in

a narrow range at relatively high temperatures, it can be stabilized to room temperature

and below by adding small amounts of an appropriate metal. One often used additive is

gallium which therefore motivates our study on the δ-Pu-Ga alloy system. First, however,
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we address unalloyed δ-Pu. As mentioned, a cubic system has only three independent elastic

constants (c11, c12, and c44). As is a common practice when calculating elastic constants for

cubic metals, we have chosen to compute the tetragonal shear constant, c′ = c11−c12
2

together

with c44 and separate c11 and c12 by using the bulk modulus (Table I) and the relationship

B = c11+2c12
3

.

The theoretical elastic constants are collected and compared to single crystal data on

δ-Pu in Table V. First we realize that FPLMTO and EMTO results are not identical.

Our previous report on δ-Pu16 recognized this as well and it is expected when the methods

adopt distinct approximations. The present c44 is also slightly lower than earlier data16 and

more accurate because we apply smaller strains (EMTO) and use more k points for the

band structure (FPLMTO). Compared to single crystal data, both methods overestimate

c11 somewhat while c12 and c44 are relatively close. Also, c44 for the EMTO calculation

appears too high. Unless fortunate cancellations of errors occur in the computations, we

expect the FPLMTO to be more accurate than EMTO which does not include spin-orbit

coupling and orbital polarization, even though the latter evidently has a relatively small

influence, see Table I. In addition, the non-spherical parts of charge density and potentials

are treated differently between the techniques which may cause minor disparities in the

elastic constants.

With increasing temperature Pu returns once again to a lower symmetry phase, i.e., the

tetragonal δ′. Elastic constants have not been measured for this phase that is only stable in

a small sliver of the phase diagram (Fig. 1). Nevertheless, for completeness, we also present

our predictions for δ′-Pu in Table VI. The tetragonal symmetry is higher than that of the

orthorhombic and six elastic constants are independent. The equations relating strains to

the orthorhombic moduli14 can be used observing the fact that c22 = c11, c55 = c44, and

c23 = c13. Table VI suggests that OP has a small but significant influence on the cij’s similar

to the other phases (except α-Pu). In the SO+OP treatment c33 ' c11 and c66 ' c44 which

may suggest a chemical bonding akin to higher (cubic) symmetry even though c12 6= c13.

The final phase before melting, ε-Pu, as we have alluded to, does not have a positive

tetragonal shear constant c′ and is therefore mechanically unstable. This fact was already

observed10 in the calculated tetragonal (Bain) transformation path that displayed a local

maximum for the bcc (ε) phase. It was also noted3 that the total energy for this phase is

too high to be less than 200 K above the δ phase. Both these failures of the model, we
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believe, are related to our low temperature treatment of this high temperature phase for

which entropy, not included in our model, is absolutely essential. A similar situation occurs

for many metals including Ti, Zr, and Hf for which a solution, based on a self-consistent ab

initio lattice dynamics method, has recently been presented.25

Let us now return to the δ phase focusing on the Ga-stabilized system. In Fig. 11 we plot

our calculated c′ and c44 for δ-Pu-Ga up to 10 at.% Ga. Both moduli soften with increasing

Ga content while the anisotropy ratio ( c44
c′

) shown in the inset, reaches a maximum ∼ 9 for

6 at.% Ga. For pure Pu ultrasonic26 and x-ray27 measurements this ratio is 7.1 and 6.3,

respectively. Incidentally, our SO+OP FPLMTO calculations for δ-Pu (Table V) suggest a

more isotropic system with c44
c′
∼ 2. The stark contrast between the two sets of calculations

of this ratio lies in the fact that one overestimates c′ and the other c44.

Next, we attempt to compare our calculated single crystal elastic constants with experi-

mental data obtained from polycrystal samples. The comparison necessitates an averaging

procedure for the single crystal results. There are many ways of approximating an effective

polycrystal modulus from single crystal data with the Voigt and Reuss bounds being per-

haps the best known. It is not our intention here to explore these averaging techniques but

rather in a consistent fashion relate our theoretical results for all Pu phases and the δ-Pu-Ga

system to our polycrystal data. As in our previous paper on α-Pu12 we simply adopt the

Voigt expressions for calculating the shear and bulk modulus which we then use to obtain

c̃11 through

B = c̃11 −
4G

3
, (1)

where c̃11 is calculated from the measured sound speed through the relationship v1 =
√

c̃11
ρ

.

The Voigt upper bounds for the bulk (BV ) and shear (GV ) moduli are, for non-cubic lattices,

BV =
1

9
[c11 + c22 + c33 + 2(c12 + c13 + c23)] (2)

and

GV =
1

15
[c11 + c22 + c33 + 3(c44 + c55 + c66)− (c12 + c13 + c23)], (3)

respectively. Applying Eqs. 1-3 together with our calculated single crystal cij, presented

above, we fill the entries in Table VII. The RUS data entered here cover the α, β and

γ phases together with room temperature (300 K) δ-Pu alloyed with 2.36 at.% Ga. The
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latter approximates unalloyed δ-Pu well because the elastic properties depend only very

weakly on small Ga concentrations for δ-Pu in our RUS measurements (not shown). No

RUS data is collected for the δ′ or ε phases. Elastic moduli at the lowest temperature

that stabilizes each phase, see Fig. 6, are compiled in Table VII. Notice that theory and

experimental data compare relatively well for α, β, and γ taking into account that GV is

an upper bound for G. In the case of δ-Pu the single crystal experimental GV is about 30%

larger than the polycrystal data (Table VII) due to the large anisotropy and the resulting

inaccuracy of the averaging procedure used here. Our calculated δ-Pu moduli can be directly

compared with the single crystal data and they agree fairly well as discussed above. A similar

level of agreement is expected also for δ′ plutonium but the answer has to wait until the

measurements have been done.

VI. CONCLUSION

We report the first theoretical single crystal elastic constants for all phases of Pu metal,

excluding the ε phase, and also for the δ-Pu-Ga alloy system. Accompanying these are RUS

measurements for polycrystal α, β, γ, and Ga-stabilized δ plutonium. All Pu phases, except

ε, are predicted by theory to be mechanically stable having crystal geometries very close to

their true observed structures. Also, the magnitudes of the DFT elastic constants appear

to be similar to what is obtained from the RUS measurements, particularly for the α, β,

and γ phases. From this and the fact that DFT energies are nearly degenerate3 one must

conclude that the electronic structure for Pu is well described by the DFT model and the

aforementioned electron correlations.

The elastic properties δ-Pu (and presumably δ′-Pu) agree somewhat less favorably with

single crystal or polycrystal RUS data and it may suggest that electron-correlation effects

are treated more approximately than for the lower temperature phases. Alternatively, en-

tropies not accounted for may play a greater role at higher temperatures as we have already

suggested above for the ε phase. Either way, key features of the δ-Pu chemical bonding are

reproduced by theory including a small tetragonal shear constant (c′), a larger anisotropy

ratio (c44/c
′) than most metals, good lattice constant, and a good bulk modulus.

We predict a linear behavior for the atomic volume, bulk modulus, and the pressure

derivative of the bulk modulus for the δ-Pu-Ga system. The decrease of the atomic volume
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with Ga content is in excellent agreement with experiment. For B, our RUS data indicate

a substantial increase between 2.36 at.% and 4.64 at.% Ga, in accord with our alloy cal-

culations, whereas for the 3.30 at.% Ga alloy B has a minium in the RUS analysis that is

not predicted by theory. The volume behavior (Fig. 7) is somewhat surprising because on

one hand adding Ga contracts the δ-Pu volume closer to that of α-Pu while on the other it

stabilizes the δ relative to the α phase. Our DFT model correctly captures this interesting

result which is simply due to the fact that Ga has a smaller size in the fcc phase.
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Figures

FIG. 1: The experimental phase diagram of Pu. The type of crystal and number of independent

elastic constants are indicated.

FIG. 2: Equi-total-energy curves as a function of axial b/a and c/a ratios for β-Pu obtained from

the fully correlated (SO+OP) treatment. Here the axial ratios are scaled with their measured13

values. The plot shows a minimum close to (1.0, 1.0) which represents the measured axial ratios.

The first 5 energy contours are separated by 0.02 mRy/atom with a 0.1 mRy/atom separation for

the remaining ones.

FIG. 3: Same as Fig. 2 but here the calculations do not include spin polarization, spin-orbit

coupling, or orbital polarization. The plot shows a drop in total energy for axial ratios smaller

than 94 % of the experimental13 values. The actual total-energy minimum for this simplified model

lies outside the plotted ranges. The first 5 energy contours are separated by 0.25 mRy/atom with

a 0.5 mRy/atom separation for the remaining ones.

FIG. 4: Same as Fig. 2 but here for γ-Pu. The plot shows a minimum close to (0.96, 1.01) which is

relatively close to the measured (1.0, 1.0) axial ratios.13 The first 4 energy contours are separated

by 2 mRy/atom and 4 mRy/atom for the remaining contours.

FIG. 5: Total energy as a function of c/a axial ratio for δ′-Pu. The axial ratio has been scaled

with its measured value.13 The calculations overestimate the axial ratio slightly (3.5 %).

FIG. 6: Our measured temperature dependence, with error bars, for the bulk (B) and shear (G)

moduli for β and γ plutonium.
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FIG. 7: Upper panel: EMTO atomic volume for δ-Pu-Ga as a function of Ga content together

with experimental24 data. FPLMTO result is marked with a star. Lower panel: EMTO and exper-

imental atomic volumes scaled with their respective δ-Pu values. Notice the essentially identical

dependence on Ga content between our calculations and measurements.

FIG. 8: EMTO B and B′ as functions of Ga content in δ-Pu-Ga alloy. Both quantities depend

linearly on the amount of Ga.

FIG. 9: Present RUS measurements of the bulk modulus as a function of temperature for the 2.36,

3.30, and 4.64 at.% Ga specific δ-Pu-Ga alloys.

FIG. 10: Average cii (solid circles) for α, β, and γ plutonium. Solid squares show the average cii

for α-Pu scaled with the equilibrium volume of the respective phases (see text). Solid lines are

guides to the eye only.

FIG. 11: EMTO c′ and c44 elastic constants as functions of Ga content. The inset shows the

corresponding anisotropy ratio c44/c
′. Solid lines are guides to the eye only.

Tables

TABLE I: Present FPLMTO (SO and SO+OP) and EMTO results together with experimental

data.13,28,29 Bfix is the bulk modulus evaluated at the equilibrium volume corresponding to the

full electron-correlation treatment (SO+OP).

Phase Method V B Bfix

α SO 19.0 59 25

α SO+OP 20.3 50 50

α Expt 20.0-20.4 37-66

β SO 22.0 41 33
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β SO+OP 23.1 37 37

β Expt 22.7 34.3

γ SO 22.7 38 30

γ SO+OP 23.8 32 32

γ Expt 23.5 25.7

δ SO 24.2 46 39

δ SO+OP 24.9 41 41

δ EMTO 25.5 39.6 44.2

δ Expt 25.0 29-30

δ′ SO 24.2 41 38

δ′ SO+OP 24.7 44 44

δ′ Expt 24.8

ε SO 23.9 21 20

ε SO+OP 24.6 23 23

ε EMTO 26.6 29.7 32

ε Expt 24.4

TABLE II: α-Pu elastic constants in GPa at 20.3 Å3 taken from Ref.12 Results for (SO) and

(SO+OP) methods are nearly identical.

Method c11 c22 c33 c44 c55 c66 c12 c13 c23 c15 c25 c35 c46

SO 120.0 108.8 86.2 43.4 50.6 43.7 -9.30 1.10 -11.5 22.1 20.2 21.9 -0.25

TABLE III: β-Pu elastic constants in GPa at 23.1 Å3.

Method c11 c22 c33 c44 c55 c66 c12 c13 c23 c15 c25 c35 c46

SO 75.1 63.1 64.3 35.8 21.4 26.5 22.0 20.6 18.1 21.3 21.4 21.8 -0.30

SO+OP 75.4 64.4 65.1 32.2 22.4 27.2 27.0 20.6 23.1 20.6 21.5 19.4 -0.95

TABLE IV: γ-Pu elastic constants in GPa at 23.8 Å3.

Method c11 c22 c33 c44 c55 c66 c12 c13 c23

SO 91.1 67.2 74.5 28.6 14.1 27.5 8.80 22.9 16.0

SO+OP 81.0 63.7 70.5 21.6 11.9 21.7 3.15 22.6 22.6
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TABLE V: FPLMTO (SO and SO+OP) and EMTO δ-Pu elastic constants in GPa at 24.9 and

25.5 Å3, respectively. Experimental data24 is for single crystal δ-Pu.

Method c11 c12 c44

SO 61.7 27.7 35.0

SO+OP 65.0 29.0 38.0

EMTO 50.1 34.4 65.3

Expt 36 26 31

TABLE VI: δ′-Pu elastic constants in GPa at 24.7 Å3.

Method c11 c33 c44 c66 c12 c13

SO 61.0 49.3 39.1 31.3 35.2 25.6

SO+OP 64.7 62.0 42.1 42.2 43.2 29.6

TABLE VII: Presently calculated Voigt averages of bulk and shear moduli (BV , GV and c̃11, see

text) together with present RUS and literature data.13,28,29 All in units of GPa. SO and SO+OP

(FPLMTO) data are calculated at the equilibrium volume of the SO+OP treatment while EMTO

results for δ-Pu are evaluated at the EMTO equilibrium volume (25.5 Å3).

Phase Method BV GV c̃11

α SO 30.6 49.9 97.1

α Expt(poly) 37-54.4 43.5-43.7 104.6-112.8

β SO 36.0 26.2 70.9

β SO+OP 38.5 25.3 72.2

β Expt(poly) 34.4 18.2 58.7

γ SO 36.5 26.4 71.7

γ SO+OP 34.6 22.2 64.2

γ Expt(poly) 25.7 16.5 47.7

δ SO 39.0 27.8 76.0

δ SO+OP 41.0 30.6 81.8

δ EMTO 39.4 42.3 95.8

δ Expt(poly) 29.7 16.2 51.3

δ Expt(single) 29.0 21.0 57.0
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δ′ SO 38.2 26.8 73.9

δ′ SO+OP 44.0 31.4 85.9

18



20

21

22

23

24

25

200 400 600 800

A
to

m
ic

 V
ol

um
e 

( Å
3  )

Temperature ( K )

α

β

γ

δ
δ'
εPu

monoclinic (13)

monoclinic (13)

orthorhombic (9)

cubic
(3)

tetragonal
(6)

cubic (3)









0

0.1

0.2

0.3

0.4

0.5

0.98 1.00 1.02 1.04 1.06 1.08

To
ta

l e
ne

rg
y 

(m
Ry

/a
to

m
)

c/a axial ratio

δ'-Pu





24.0

24.5

25.0

25.5

A
to

m
ic

 v
ol

um
e 

(Å
3 )

DFT-EMTO

Expt

*

0.95

0.96

0.97

0.98

0.99

1.00

0 2 4 6 8 10

V
Pu

-G
a / 

V
Pu

Ga in δ -Pu (%)



0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10

N
or

m
al

iz
ed

 B
 a

nd
 B

'

Ga in

B / BPu

B' / B'Pu

δ -Pu (%)



28.5

29.0

29.5

30.0

30.5

31.0

31.5

280 290 300 310 320 330 340 350

Bu
lk

 m
od

ul
us

 (G
Pa

)

Temperature (K)

2.36 at.% Ga

4.64 at.% Ga

3.30 at.% Ga



45

50

55

60

65

70

75

A
ve

ra
ge

 c
ii (G

Pa
)

Phase
α β γ

α cii scaled

average cii



6.0

6.5

7.0

7.5

52

56

60

64

0.00 0.02 0.04 0.06 0.08 0.10

c' 
(G

Pa
) c44  (G
Pa)

Mole Fraction of Ga

c44c'

8.4

8.6

8.8

9.0

9.2

0 0.02 0.04 0.06 0.08 0.1

c44/c'

δ-Pu-Ga


