Production and Collections of Antiprotons

PDF Version Also Available for Download.

Description

The historical best antiproton yield obtained at the antiproton source is equal to 1.8 {center_dot} 10{sup -5}. That corresponds to the acceptance of about 17 mm {center_dot} mrad while the largest measured debuncher acceptance is about 25 mm {center_dot} mrad. It is expected that better debuncher tuning will increase the debuncher acceptance to about 35 mm {center_dot} mrad. Thus, improvements of optics and steering in the AP2 line and debuncher should allow an increase of antiproton yield by about 1.7 times to 3.1 {center_dot} 10{sup -5} for 35 mm {center_dot} mrad acceptance as shown in Figure 17. Although the maximum ... continued below

Physical Description

14 pages

Creation Information

Lebedev, V. January 1, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The historical best antiproton yield obtained at the antiproton source is equal to 1.8 {center_dot} 10{sup -5}. That corresponds to the acceptance of about 17 mm {center_dot} mrad while the largest measured debuncher acceptance is about 25 mm {center_dot} mrad. It is expected that better debuncher tuning will increase the debuncher acceptance to about 35 mm {center_dot} mrad. Thus, improvements of optics and steering in the AP2 line and debuncher should allow an increase of antiproton yield by about 1.7 times to 3.1 {center_dot} 10{sup -5} for 35 mm {center_dot} mrad acceptance as shown in Figure 17. Although the maximum lithium lens gradient, which we can reliably achieve nowadays, is significantly below the optimum we should not expect significant increase of antiproton yield with lens upgrade. To reach the maximum antiproton yield with lens of the same length (15 cm) one would need to increase the lens gradient by 1.4 and 1.7 times correspondingly for 25 and 35 mm {center_dot} mrad acceptances. That corresponds to gradients of 105 and 127 kG/cm reaching of which is a challenging problem. And in spite of this significant increase of focusing strength that will bring only 13% and 16% antiproton yield increases corresponding to acceptances of 25 and 35 mm {center_dot} mrad. Minor improvement of about 3-4% can be achieved comparatively easy by lengthening of the lens by 20-30%.

Physical Description

14 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: FERMILAB-PBAR-NOTE-666
  • Grant Number: AC02-07CH11359
  • DOI: 10.2172/984567 | External Link
  • Office of Scientific & Technical Information Report Number: 984567
  • Archival Resource Key: ark:/67531/metadc1012194

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 2001

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 3, 2017, 9:26 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lebedev, V. Production and Collections of Antiprotons, report, January 1, 2001; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc1012194/: accessed December 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.