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This study compared 3 approaches for handling a fourth level of nesting structure when 

analyzing data from a cluster-randomized trial (CRT). CRTs can include 3 levels of nesting: 

repeated measures, individual, and cluster levels. However, above the cluster level, there may 

sometimes be an additional potentially important fourth level of nesting (e.g., schools, districts, 

etc., depending on the design) that is typically ignored in CRT data analysis. The current study 

examined the impact of ignoring this fourth level, accounting for it using a model-based 

approach, and accounting it using a design-based approach on parameter and standard error (SE) 

estimates. Several fixed effect and random effect variance parameters and SEs were biased 

across all 3 models. In the 4-level model, most SE biases decreased as the number of level 3 

clusters increased and as the number of level 4 clusters decreased. Also, random effect variance 

biases decreased as the number of level 3 clusters increased. In the 3-level and complex models, 

SEs became more biased as the weight level 4 carried increased (i.e., larger intraclass correlation, 

more clusters at that level). The current results suggest that if a meaningful fourth level of 

nesting exists, future researchers should account for it using design-based approach; the model-

based approach is not recommended. If the fourth level is not practically important, researchers 

may ignore it altogether. 
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COMPARING THREE APPROACHES FOR HANDLING A FOURTH LEVEL OF NESTING 

STRUCTURE IN CLUSTER-RANDOMIZED TRIALS 

Introduction 

 Cluster-randomized trials (CRTs) are a category of experimental designs that represent 

the gold standard for research investigating large-scale interventions (Campbell, Mollison, Steen, 

Grimshaw, & Eccles, 2000). They can be used when it may be inappropriate or impossible to 

employ a traditional experiment, such as in the cases of classroom-based education interventions 

or studies of group counseling techniques (Sim & Dawson, 2012). Whereas in a traditional 

experiment, individuals are randomized into experimental conditions, in a CRT, clusters of 

individuals are randomized into conditions. For example, in an education intervention, entire 

classrooms of students may be randomized into the treatment or control groups, as opposed to 

the individual students being randomly assigned to different groups within the same classroom. 

Researchers administer treatment at the cluster level for a variety of reasons, such as increased 

administrative efficiency, decreased risk of experimental contamination, and enhanced 

participant compliance (Donner & Klar, 2004). CRTs are also useful when an intervention is 

designed to be administered to and affect entire clusters of participants (Edwards, Braunholtz, 

Lilford, & Stevens, 1999), as is often the case with education interventions. 

 One implication of CRT studies is that participants within a given cluster are more likely 

to respond similarly to the intervention, and can no longer be assumed to be independent of one 

another (Campbell et al., 2000; Jo, Asparouhov, Muthén, Ialongo, & Brown, 2008). This 

implication violates the independence of observations assumption underlying many single-level 

data analysis techniques such as multiple regression (Hox, 2010). Therefore, researchers should 

use statistical methods designed to account for the nested data structure and lack of independence 
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of observations, such as hierarchical linear modeling (HLM) or latent growth curve modeling 

(LGCM).  

 Although CRT researchers frequently employ HLM to correctly reflect the multilevel 

nature of the data, they also often ignore potentially important higher levels of nesting above the 

level at which randomization occurs. For example, Russell, O'Dwyer, and Miranda (2009) 

investigated the impact of a diagnostic assessment system on students' misconceptions toward 

algebra. In their study, students were nested within teachers, and teachers were randomized into 

one of four intervention groups; the researchers treated the analysis as a 2-level HLM. However, 

teachers were also nested within schools, a potential third level above the level of randomization. 

When ignoring this level of nesting, the results of a study may have been adversely impacted in 

some way, such as by producing biased standard errors (SEs) or inappropriately distributing 

variance across levels (Hox, 2010; Moerbeek, 2004). Whereas some researchers disregarded 

higher levels of nesting structure for justifiable reasons, such as having a small number of 

clusters at that level (e.g., Al Otaiba, Connor, Folsom, Greulich, & Meadows, 2011; Hegedus, 

Dalton, & Tapper, 2015), other researchers did not address why they may have ignored higher 

levels of nesting (e.g., Russell et al., 2009). The purpose of the current study was to investigate 

the impact of ignoring a higher level of nesting structure on the analysis of CRT data as well as 

compare various methods of accounting for that nested data structure. 

Hierarchical Data Structure 

 Hierarchical or nested data structure is common in social research (Raudenbush & Bryk, 

2002), particularly in education where students are nested in classrooms, which are nested in 

schools, and so forth. Generally speaking, there are two overall approaches to handling 

multilevel data. The first is a model-based approach in which researchers specify separate 
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models for each level of the multilevel data, thus modeling non-independence due to cluster 

sampling; this includes analytic techniques such as HLM and LGCM (Muthén & Muthén, 2012; 

Wu & Kwok, 2012). 

 The second method is a design-based approach that models non-independence by 

adjusting parameter estimate SEs based on the cluster sampling design. Specifically, the design-

based approach uses sampling weights to account for clustering; these sampling weights are used 

to compute adjusted SEs for a single-level model (Muthén & Muthén, 2012; Muthén & Satorra, 

1995). In the case of a 2-level analysis (e.g., students nested within classrooms), the result would 

be a single-level model that features adjusted SEs to reflect the non-independence of 

observations instead of a traditional 2-level model (Wu & Kwok, 2012). This design-based 

procedure represents a compromise between fully considering additional levels using multilevel 

modeling and ignoring those levels. 

 One important area of multilevel modeling research involves investigating the effects of 

ignoring levels of nesting. Broadly, ignoring nesting altogether tends to result in underestimated 

SEs (Hox, 2010), but it can also impact other facets of data analysis because many analytic 

techniques can involve multilevel data.  

Research on the Impact of Ignoring Nested Data Structure using a Model-Based Approach 

 Ignoring a level of nesting in 3-level models causes estimated variance attributed to the 

ignored level to be distributed to adjacent levels (Moerbeek, 2004). Furthermore, when the 

ignored level features a predictor variable, the SEs of the predictors at the ignored level and the 

level below it may become biased (Van den Noortgate, Opdenakker, & Onghena, 2005); 

specifically, SEs of predictors at the ignored level may become negatively biased and SEs of 

predictors at the below level may become positively biased. Wampold and Serlin (2000) 
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observed that treatment effect sizes were greatly overestimated when multilevel data structure 

was ignored in multilevel analysis of variance (ANOVA). In the context of multilevel 

confirmatory factor analysis, failing to model nesting structure can decrease overall model fit and 

the accuracy of estimated standardized parameters and SEs (Pornprasertmanit, Lee, & Preacher, 

2014). In growth mixture modeling, ignoring a higher level of nesting structure can cause lower 

classification accuracy, overestimated lower-level variance estimates, and biased SEs (Chen, 

Kwok, Luo, & Willson, 2010). 

 Research has also investigated the effects of incorrectly modeling cross-classified data 

structures. Cross-classified data structures occur when individual units are not purely nested 

within two or more cluster levels (Beretvas, 2011). For example, students (a Level 1 unit) may 

be nested within both schools and neighborhoods (both Level 2 units). Findings from Luo and 

Kwok (2009; 2012) and Meyers and Beretvas (2006) mirrored those of ignoring nested data 

structures altogether: incorrectly modeling cross-classified data structures yielded 

underestimated SE estimates for the predictor variables. 

Research on Design-Based Approaches 

 There are also design-based approaches that use statistical adjustments to account for 

nested data structure. Asparouhov (2005) found that design-based methods of accounting for 

multilevel data are effective for reducing parameter bias in multilevel confirmatory factor 

analysis. Additional simulation research on multilevel confirmatory factor analysis suggested 

that design-based approaches are capable of producing SE estimates that are as accurate as the 

model-based approaches' estimates when Level 1 and Level 2 feature the same underlying factor 

structure (Muthén & Satorra, 1995; Wu & Kwok, 2012). Together, these findings suggest that 
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design-based methods of handling nesting structure can model data as accurately as model-based 

approaches, at least in multilevel confirmatory factor analysis. 

 In sum, the above findings suggest that failing to properly model nested data structure 

using either a model-based or design-based approach can negatively impact one's results in a 

variety of ways. The general conclusion that SEs become underestimated when levels of nesting 

are ignored has substantial practical implications. When SEs are underestimated, the probability 

of making a Type-I error increases. In the context of educational intervention studies such as 

CRTs, this may cause researchers to conclude that a particular intervention is effective when it 

really is not. This, in turn, could cause practitioners or administrators to adopt programs and 

policies that are ineffective. 

 In methodological research, CRTs have received attention regarding various issues such 

as power (Spybrook, Kelcey, & Dong, 2016) and effect sizes (Ames, 2013), but the potential 

impact of a higher level of nesting structure has not yet been explored. The following section 

discusses the importance of CRTs in empirical studies as well as some concerns regarding 

including the appropriate number of levels in CRT data analysis. Given the research findings on 

both the model-based and design-based approaches to account for nested data structure, it may 

be relevant to examine both types of approaches in the context of CRT data. 

Cluster-Randomized Trials 

 CRTs are experimental studies in which clusters of individuals, rather than individuals 

themselves, are randomized into experimental conditions (Donner & Klar, 2004). Examples of 

clusters include classrooms, schools, hospitals, families, neighborhoods, and so forth. CRTs are 

useful research designs because they retain the random nature of randomized controlled trials, 

but can be used in cases in which randomized controlled trials may be impractical due to the 
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inability to randomize individuals directly (Sim & Dawson, 2012). As previously mentioned, 

researchers may also choose to administer treatment at the cluster level for several reasons such 

as increased administrative efficiency (Donner & Klar, 2004) or when interventions are intended 

to be administered at the cluster level (Edwards et al., 1999), as is the case for classroom-based 

interventions in education. For example, Sarama, Clements, Wolfe, and Spitler (2012) 

investigated the effects of a technology-based mathematics program in elementary mathematics 

education. In their study, students were nested within schools, and the schools were randomly 

assigned to one of three experimental groups. Because students typically receive instruction in a 

group format, it is more practical and efficient to test education interventions using an 

experiment that randomizes participants at the cluster or group level. For this reason, the CRT is 

a desirable approach to test interventions on a large scale (e.g., Abe & Gee, 2011; Kim et al., 

2011; Rose, Hawes, & Hunt, 2014). 

 In CRTs, researchers typically employ HLM to account for the lack of independence of 

observations due to the clustering effect, but they also often ignore potentially important higher 

levels of clustering above the level at which randomization occurred (e.g., Al Otaiba et al., 2011; 

Hegedus et al., 2015; Karimi-Shahanjarini, Rashidian, Omidvar, & Majdzadeh, 2013; McDonald 

et al., 2006). One reason some authors cited for ignoring the higher level of nesting was due to a 

small number of clusters at that higher level (e.g., Al Otaiba et al., 2011; Hegedus et al., 2015). 

Hox (2010) suggested including a level of nesting if there are at least 30 clusters at that level. If 

there are too few clusters at the highest level of nesting (i.e., less than 30) and that level of 

nesting is accounted for in the analysis, SE estimates for fixed effect coefficients may become 

negatively biased, which can inflate researchers' probability of committing a Type-I error in 

hypothesis testing (Hox, 2010; Lai & Kwok, 2015). In sum, accounting for a level of nesting 
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structure when it is inappropriate to do so (i.e., when there are too few clusters at that level) can 

negatively impact results in the same way as failing to account for a level of nesting structure 

when it is appropriate to do so. This, in turn, could cause researchers to make inaccurate 

inferences regarding the effectiveness of the intervention being studied. 

 However, Van den Noortgate and colleagues (2005) suggested that if researchers are 

interested in a predictor at a specific level, such as experimental group membership at the cluster 

level, then they should account for the level above and the level below that particular level, as 

SEs may otherwise become biased. Practical considerations for wanting to include additional 

levels of nesting also exist. In education, if students are clustered within classrooms and HLM is 

used to account for nesting structure because the students are no longer purely independent of 

one another, it would follow that classrooms nested within different schools are also not 

independent of one another (i.e., classrooms within the same school are more similar to each 

other compared to classrooms from different schools) and their nesting within schools should 

also be addressed. The existence of this additional level of nesting would have statistical 

implications as classrooms within the same school would likely have correlated error terms, and 

failing to properly account for the school level in the model may result in biased error terms 

(Luke, 2004).  

Modeling Data from CRTs 

 Because CRTs feature nested data structure, individuals are no longer independent of one 

another (Campbell et al., 2000; Jo et al., 2008) and analytic techniques such as HLM or LGCM 

should be used to account for individuals’ non-independence. Although HLM and LGCM come 

from two different analytic traditions (i.e., HLM is based on hierarchical regression and LGCM 

is based on structural equation modeling), when the two techniques are used to examine the same 
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model, they produce identical parameter estimates and differ only in terms of model 

representation (Hox & Stoel, 2005; Stoel, van Den Wittenboer, & Hox, 2003). Therefore, one 

can model HLMs as multilevel LGCMs (MLGCMs), and vice-versa; either approach is 

appropriate for modeling data from CRTs. 

Purpose of the Current Study 

 The purpose of this study was to compare three methods of handling a fourth level of 

nested data structure in simulated CRT data. Additional levels of nesting may be of practical or 

statistical importance in CRT designs, and different ways of handling them has received little 

attention in the current methodological literature. 

 The present study looked at three ways of handling a higher level of nesting across a 

variety of common conditions concerning CRT designs (e.g., number of clusters, intraclass 

correlations), including both ideal (e.g., meeting the minimum recommended 30 clusters at the 

highest level) and not ideal (e.g., having fewer than 30 clusters at the highest level) conditions to 

reflect the conditions described in empirical research (e.g., Al Otaiba et al., 2011; Hegedus et al., 

2015). The current study addressed the following research questions: 

1. How do model-based, level-ignoring, and design-based approaches to handling a fourth 

level of nesting impact fixed and random effect parameter estimate and SE biases in 

simulated CRT data? That is, compared to a specified threshold, does a 4-level model, a 

3-level model that ignores Level 4, or a model that accounts for the fourth level using a 

design-based method introduce substantial parameter or SE bias? 

2. How do design factors impact parameter or SE bias (if any)? That is, are the number 

individuals at Level 2, the number of Level 3 clusters, the number of Level 4 clusters, the 
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intraclass correlation (ICC) at Level 4, or any interactions among them related to 

parameter or SE bias? 

 The current paper examined these questions using a series of two studies. The first study 

compared the three methods of handling the fourth level of nesting using a model that included 

variables only at the first, second, and third levels. However, because SE estimates may become 

biased when a predictor variable is included at a level that is ignored (Van den Noortgate et al., 

2005), the second study used a model that included a covariate at Level 4 to examine the impact 

of different ways of handling that level when a covariate was present.  

Study 1 

Method 

Data Generation 

 CRTs can be comprised of at least three levels: repeated measures (Level 1), individuals 

(Level 2), and clusters (Level 3); randomization into treatment conditions occurs at the cluster 

level. However, in the current study, data for a 4-level model (e.g., repeated measures nested 

within students nested within classrooms nested within schools) was generated to reflect the real-

world nesting structure found in education research, and therefore allow investigation of methods 

that can address this additional level. The 4-level model for data generation is shown below: 

Level 1:  𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝜓𝜓0𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜓𝜓1𝑖𝑖𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡    (1) 

    With 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ~ 𝑁𝑁(0,𝜎𝜎2) 

Level 2:  𝜓𝜓0𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜋𝜋00𝑗𝑗𝑗𝑗 + 𝜋𝜋01𝑗𝑗𝑗𝑗(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖) + 𝑟𝑟0𝑖𝑖𝑖𝑖𝑖𝑖   (2) 

   𝜓𝜓1𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜋𝜋10𝑗𝑗𝑗𝑗 +  𝑟𝑟1𝑖𝑖𝑖𝑖𝑖𝑖      (3) 

    With �
𝑟𝑟0𝑖𝑖𝑖𝑖𝑖𝑖
𝑟𝑟1𝑖𝑖𝑖𝑖𝑖𝑖�  ~ 𝑀𝑀𝑀𝑀𝑀𝑀 ��00� , �

𝜏𝜏𝜓𝜓00  𝜏𝜏𝜓𝜓01 
𝜏𝜏𝜓𝜓10  𝜏𝜏𝜓𝜓11 

��   (4) 
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Level 3:  𝜋𝜋00𝑗𝑗𝑗𝑗 =  𝛽𝛽000𝑘𝑘 +   𝛽𝛽001𝑘𝑘(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗) +  𝑢𝑢00𝑗𝑗𝑗𝑗    (5) 

   𝜋𝜋01𝑗𝑗𝑗𝑗 =  𝛽𝛽010𝑘𝑘 +   𝛽𝛽011𝑘𝑘(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗) +  𝑢𝑢01𝑗𝑗𝑗𝑗    (6) 

   𝜋𝜋10𝑗𝑗𝑗𝑗 =  𝛽𝛽100𝑘𝑘 +   𝛽𝛽101𝑘𝑘(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗) +  𝑢𝑢10𝑗𝑗𝑗𝑗    (7) 

    With �
𝑢𝑢00𝑗𝑗𝑗𝑗
𝑢𝑢01𝑗𝑗𝑗𝑗
𝑢𝑢10𝑗𝑗𝑗𝑗

�  ~ 𝑀𝑀𝑀𝑀𝑀𝑀��
0
0
0
� , �

𝜏𝜏𝜋𝜋00  𝜏𝜏𝜋𝜋01   𝜏𝜏𝜋𝜋02 
𝜏𝜏𝜋𝜋10  𝜏𝜏𝜋𝜋11  𝜏𝜏𝜋𝜋12 
𝜏𝜏𝜋𝜋20  𝜏𝜏𝜋𝜋21  𝜏𝜏𝜋𝜋22 

��  (8) 

Level 4:  𝛽𝛽000𝑘𝑘 =  𝛾𝛾0000 +  𝑣𝑣000𝑘𝑘      (9) 

   𝛽𝛽001𝑘𝑘 =  𝛾𝛾0010 +  𝑣𝑣001𝑘𝑘      (10) 

   𝛽𝛽010𝑘𝑘 =  𝛾𝛾0100        (11) 

   𝛽𝛽100𝑘𝑘 =  𝛾𝛾1000        (12) 

   𝛽𝛽011𝑘𝑘 =  𝛾𝛾0110        (13) 

   𝛽𝛽101𝑘𝑘 =  𝛾𝛾1010 + 𝑣𝑣101𝑘𝑘      (14) 

    With �
𝑣𝑣000𝑘𝑘
𝑣𝑣001𝑘𝑘
𝑣𝑣101𝑘𝑘

�  ~ 𝑀𝑀𝑀𝑀𝑀𝑀��
0
0
0
� , �

𝜏𝜏𝛽𝛽00 𝜏𝜏𝛽𝛽01 𝜏𝜏𝛽𝛽02 
𝜏𝜏𝛽𝛽10 𝜏𝜏𝛽𝛽11 𝜏𝜏𝛽𝛽12
𝜏𝜏𝛽𝛽20 𝜏𝜏𝛽𝛽21 𝜏𝜏𝛽𝛽22

��  (15) 

where Timetijk is a variable with four assessment waves (Time = 0, 1, 2, 3), Covariateijk is a 

dichotomous variable with 0 and 1 representing two different groups at the individual level (e.g., 

male and female), and Groupjk is a dichotomous variable with 0 and 1 representing two different 

intervention groups in the CRT design at the cluster level (e.g., a control group and a treatment 

group). The Level 2 covariate was included to reflect models from empirical research that 

include covariates at the individual level (e.g., Apthorp et al., 2012, Sarama et al., 2012). The 

simulated data featured a balanced design in which individuals were evenly distributed across all 

groups within the covariate and group variables. 

 In this 4-level model, six fixed effect coefficients (i.e., γ0000, γ0010, γ0100, γ1000, γ0110, γ1010) 

and nine variances of the random effects (σ2, τψ00, τψ11, τπ00, τπ11, τπ22, τβ00, τβ11, τβ22) were 



 
 

11 

estimated; no covariances among the random effects were estimated to reduce model complexity. 

To simulate the effect of an efficacious intervention, γ0000, γ0010, γ0100, γ1000, γ0110, and γ1010 were 

fixed to 1.00, 0.10, 0.10, 1.00, 0.10, and 0.1044 respectively. In this simulated scenario, both the 

control group (Groupjk = 0) and the treatment group (Groupjk = 1) experienced growth over time, 

but the treatment group experienced growth at a faster rate than the control group, indicating the 

intervention was successful. More specifically, holding all other variables constant, the 

difference in growth trajectories between the control group and the treatment group was .1044 

units, representing an effect size of about δ = .33 (δ can be interpreted as a Cohen’s d for growth 

trajectories). Values for the γ0000, γ0010, γ0100, γ1000, and γ0110 fixed effect parameters were 

determined following similar methodological research on multilevel modeling (e.g., Chen et al., 

2010; Maas & Hox, 2005). The value for γ1010 was determined based on mean effect sizes 

observed in empirical education intervention studies (Hill, Bloom, Beck, Black, & Lipsey, 2008). 

 Following Raudenbush and Liu’s (2000) criteria, the variances and covariances of the 

random effects were specified as follows: 

   σ2 = 1.00, 

   Tψ = �
𝜏𝜏𝜓𝜓00  𝜏𝜏𝜓𝜓01 
𝜏𝜏𝜓𝜓10  𝜏𝜏𝜓𝜓11 

� = � . 20   .00
. 00    .10�, 

   Tπ = �
𝜏𝜏𝜋𝜋00  𝜏𝜏𝜋𝜋01   𝜏𝜏𝜋𝜋02 
𝜏𝜏𝜋𝜋10  𝜏𝜏𝜋𝜋11  𝜏𝜏𝜋𝜋12 
𝜏𝜏𝜋𝜋20  𝜏𝜏𝜋𝜋21  𝜏𝜏𝜋𝜋22 

� = �
. 15   .00   .00
. 00   .10   .00
. 00   .00   .10

�, 

   Tβ =  �
𝜏𝜏𝛽𝛽00 𝜏𝜏𝛽𝛽01 𝜏𝜏𝛽𝛽02 
𝜏𝜏𝛽𝛽10 𝜏𝜏𝛽𝛽11 𝜏𝜏𝛽𝛽12
𝜏𝜏𝛽𝛽20 𝜏𝜏𝛽𝛽21 𝜏𝜏𝛽𝛽22

� =  �
. 0711   .00   .00
. 00        .10   .00
. 00        .00   .10

� when ICC = .05, and 

   Tβ =  �
𝜏𝜏𝛽𝛽00 𝜏𝜏𝛽𝛽01 𝜏𝜏𝛽𝛽02 
𝜏𝜏𝛽𝛽10 𝜏𝜏𝛽𝛽11 𝜏𝜏𝛽𝛽12
𝜏𝜏𝛽𝛽20 𝜏𝜏𝛽𝛽21 𝜏𝜏𝛽𝛽22

� =  �
. 15   .00   .00
. 00   .10   .00
. 00    .00   .10

� when ICC = .10. 
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As previously stated, the covariances among the random effects were fixed to zero to reduce 

overall model complexity. 

 The current study manipulated four design factors. These design factors were selected 

because they play a role in the accuracy of fixed and random effect parameter and SE estimates 

as well as statistical power in multilevel modeling (Hox, 2010; Spybrook, 2008). 

 Number of individuals per cluster. First, the number of individuals per cluster had two 

conditions, 20 and 40 individuals. These values were based on a literature review by Graves and 

Frohwerk (2009) on the state of multilevel modeling in school psychology and are representative 

of various cluster sizes found in empirical education research. Note that, whereas 20 individuals 

per cluster is a common cluster size in education, 40 individuals may represent the higher end of 

potential cluster sizes. 

 Number of clusters at Level 3. The number of clusters at Level 3 had three conditions: 30, 

60, and 90 clusters. Again, values for the 30- and 60-cluster conditions were based on Graves 

and Frohwerk’s (2009) literature review; the 90-cluster condition was created to represent cases 

that may feature an especially large number of clusters. 

 Number of clusters at Level 4. The number of clusters at the highest level of nesting 

(Level 4) had two conditions: 10 and 30 clusters. The 10-cluster condition was designed to 

reflect the small number of clusters observed at the highest level of nesting in empirical research 

(e.g., Al Otaiba et al., 2011; Hegedus et al., 2015), whereas the 30 cluster condition reflected a 

scenario in which the number of clusters at the highest level was the minimum ideal value for 

empirical research (Hox, 2010). 

 Intraclass correlation at Level 4. Lastly, the ICC at Level 4 had two conditions: a small 

ICC of .05 and a medium ICC of .10. Generally, an ICC of .05 would be considered small for 
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educational research, whereas an ICC of .10 is more reasonable (Hox, 2010). To specify these 

different ICC values, the τβ00 random effect variance estimate was manipulated. The variance 

(τβ00) was set to .0711 to obtain an ICC of .05, and it was set to .15 to obtain an ICC of .10. 

Simulation Design 

 The simulation used a 2 (number of individuals per Level 3 cluster: 20 or 40) x 3 

(number of clusters at Level 3: 30, 60, or 90) x 2 (number of clusters at Level 4: 10 or 30) x 2 

(ICC: .05 or .10) factorial design to generate the data. One thousand replications were generated 

for each condition using SAS 9.4, yielding a total of 24,000 datasets (1000 datasets * 24 

conditions). 

 For each dataset, three different models were fitted, resulting in a total of 72,000 models 

(24,000 datasets * three models). The first was a 4-level HLM that accounted for all four levels 

of nesting structure using the model-based approach. The second was a 3-level HLM that 

ignored the highest level of nesting. These two models were fitted using maximum likelihood 

(ML) estimation in SAS version 9.4. The third was a 3-level model fitted as a MLGCM that 

accounted for the fourth level of nesting using the design-based approach. This model was 

estimated using the TYPE=COMPLEX TWOLEVEL routine and the maximum likelihood with 

robust SEs (MLR) estimator in Mplus version 7 (Muthén & Muthén, 2012), which produced a 3-

level model featuring adjusted SE estimates that correct for the fourth level of nesting. These 

three models will be referred to as the 4-level model, 3-level model, and complex model 

respectively.  

 The current study examined the accuracy of fixed effect estimates, random effect 

variances, and all associated SEs. Note that although the current study analyzed the models as 

either HLMs or MLGCMs, the two types of models are interchangeable and their results produce 
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the same estimates when used to analyze the same data (Hox & Stoel, 2005). Therefore, it was 

reasonable to compare parameter estimates and SEs across the two types of models. Furthermore, 

the current findings are all presented as HLM results to ease interpretation and be more 

consistent with the analyses more commonly used in empirical CRT research. 

Analyses 

 For each set of conditions, only replications with estimates for all parameters under all 

three models were considered valid and used for further analysis. Replications that failed to 

compute parameter estimates for all fixed and random effects were considered invalid. Some 

models failed to compute random effect variance parameter estimates, resulting in non-positive 

definite G-matrices (for more information, see Kiernan, Tao, & Gibbs, 2012). All models with a 

non-positive definite G-matrix were excluded from further analyses; 7,735 replications were 

considered invalid based on this criterion, resulting in 16,265 valid replications being used for 

final analyses. Note that of these 7,735 invalid replications, 7,719 of them were considered 

invalid because the 4-level model had non-positive definite G-matrices. Parameter estimates 

from the 4-level model, 3-level model, and complex model were summarized across the valid 

replications for each of the 24 sets of conditions. The relative bias for each fixed effect parameter 

and random effect variance was computed using the following equation: 

𝐵𝐵 �𝜃𝜃�̅� =  
𝜃𝜃�̅𝑒𝑒𝑒𝑒𝑒𝑒 − 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝

𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝
 

where 𝜃𝜃�̅𝑒𝑒𝑒𝑒𝑒𝑒 is the mean of a parameter estimate across the valid replications and 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝 is the true 

parameter value under each design condition. A relative bias of zero indicates an unbiased 

parameter estimate whereas a negative relative bias indicates an underestimation of the 

parameter and positive relative bias indicates an overestimation of the parameter. The current 
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study used a cutoff value of ±.05 for the acceptable relative parameter bias (Hoogland & 

Boomsma, 1998). 

 The relative bias of the estimated SEs was calculated using the following equation: 

𝐵𝐵�𝑆̂𝑆𝜃𝜃� =  
𝑆̂𝑆𝜃̅𝜃�_𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑆𝑆𝜃𝜃�_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑆𝑆𝜃𝜃�_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

where 𝑆̂𝑆𝜃̅𝜃�_𝑒𝑒𝑒𝑒𝑒𝑒 is the mean of the estimated SEs of the parameter estimate across the valid 

replications in the four-level, three-level, and complex models, and 𝑆𝑆𝜃𝜃�_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the standard 

deviation of the parameter estimate across the valid replications of the 4-level model within a 

particular design condition. The current study used a cutoff value of ±.10 for the acceptable 

relative SE bias (Hoogland & Boomsma, 1998). 

 Following other simulation procedures (e.g., Chen et al., 2010; Chung & Beretvas, 2012), 

a series of ANOVAs were used to examine the impact of the design factors on relative parameter 

and SE biases across the three types of models. Given the large number of replications to be 

included in the analysis, even small effects could be detected as statistically significant using the 

F-test. Therefore, the effect size indicator eta squared (η2) was used to determine which design 

factors had a practically significant impact on relative bias; η2 ≥ .01 was used as the criterion to 

identify which factors and interactions had a meaningful effect. In the interest of space, only 

those effects with the largest effect sizes or that are most relevant in terms of interpretation will 

be discussed below. Also in the interest of space, no F-test results will be shown; all results 

discussed below were statistically significant at the α = .05 level. 
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Results 

Four-Level Model 

 Table 1 shows the means and standard deviations of the relative biases for all parameter 

estimates and SEs across the four-level, three-level, and complex models. The mean relative 

biases of the fixed and random effect parameter estimates were examined using the cutoff 

criterion of ±.05, and the mean relative biases of the fixed and random effect SEs were evaluated 

using the cutoff of ±.10 (Hoogland & Boomsma, 1998); bias statistics exceeding these cutoffs 

are shown in bold. 

Table 1 
 
Study 1 Means and Standard Deviations for Relative Parameter and SE Bias Estimates for the 
Four-Level, Three-Level, and Complex Models 
 

  4-level Model 3-level Model Complex Model 
  M SD M SD M SD 

Fixed Effect 
Parameters 

Intercept .0006 .1347 .0006 .1353 .0006 .1353 
Time -.0005 .0651 -.0005 .0651 -.0005 .0651 
Covariate .0042 .8306 .0042 .8306 .0044 .8306 
Group -.0154 1.2917 -.0175 1.3361 -.0175 1.3360 
Time*Group  -.0061 .9818 -.0068 .9892 -.0068 .9893 
Covariate*Group  -.0036 .7728 -.0036 .7728 -.0036 .7728 

Random Effect 
Variances 

Level 1 Residual .0001 .0239 .0001 .0239 <.0001 .0239 
Level 2 Intercept -.0017 .1332 -.0018 .1333 -.0018 .1333 
Level 2 Time -.0003 .0892 -.0003 .0892 -.0002 .0892 
Level 3 Intercept -.2048 .4382 1.0518 .7458 1.0516 .7458 
Level 3 Time -.0462 .2979 .4689 .4576 .4688 .4576 
Level 3 Covariate -.0452 .4148 -.0453 .4149 -.0435 .4156 
Level 4 Intercept .1481 .9408 - - - - 
Level 4 Group  .3547 1.1622 - - - - 
Level 4 Time*Group  .0320 .7338 - - - - 

Fixed Effect SEs 

Intercept -.1034 .1685 -.1323 .1911 -.0743 .1955 
Time -.0363 .1385 .1740 .1675 -.0317 .1978 
Covariate -.0047 .1149 -.0048 .1150 -.0055 .2006 
Group .3972 .3253 .4651 .4138 .4638 .3800 
Time*Group  .2974 .3111 .1478 .3356 .3459 .3704 
Covariate*Group  .9477 .4875 .9473 .4868 .9852 .6687 
Level 1 Residual -.0124 .0312 -.0124 .0312 -.0327 .1922 
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Random Effect 
Variance SEs 

Level 2 Intercept -.0572 .0492 -.0570 .0491 -.0798 .1870 
Level 2 Time -.1232 .1491 -.1231 .1491 -.1484 .2293 
Level 3 Intercept -.2628 .3816 .5479 1.2462 .6685 1.2888 
Level 3 Time -.1660 .2633 .0213 .3108 .0871 .4814 
Level 3 Covariate -.1843 .2087 -.1771 .2085 -.2327 .2653 
Level 4 Intercept -.0336 .3932 - - - - 
Level 4 Group .1585 .4399 - - - - 
Level 4 Time*Group  .0278 .4214 - - - - 

Note. Bias estimates indicating a substantial amount of bias are shown in boldface. 

 First, as the number of individuals per cluster increased, so did the covariate*group 

interaction fixed effect SE bias (η2 = .102). Next, the number of Level 3 clusters also affected 

several parameter and SE estimates. As the number of Level 3 clusters increased, biases for the 

Level 3 intercept variance estimate (η2 = .215) and the Level 4 group random effect variance 

estimate (η2 = .084) decreased; however, as the number of Level 3 clusters increased, SE bias 

increased for both the Level 3 time random effect variance SE (η2 = .035) and the Level 3 

covariate random effect variance SE (η2 = .062). Also, as the number of Level 4 clusters 

increased, the Level 3 time random effect variance SE bias increased (η2 = .083). Broadly 

speaking, SEs became more biased as the number of individuals per cluster, Level 3 clusters, and 

Level 4 clusters increased, but random effect variances became less biased as the number of 

Level 3 clusters increased. 

 Next, the interaction between several design factors impacted parameter and SE biases. 

The interaction between the number of individuals per cluster and the number of Level 3 clusters 

impacted bias in the Level 2 random effect variance SE (η2 = .106). SE bias increased as number 

of individuals per cluster increased, except when there were 30 Level 3 clusters; in this case, 

parameter bias decreased as number of individuals increased. 

 The interaction between the number of Level 3 clusters and Level 4 clusters also 

impacted several parameter and SE biases. This interaction was related to severe biases in the 
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Level 3 intercept random effect variance estimate (η2 = .076), the Level 4 intercept random effect 

variance estimate (η2 = .071), the group fixed effect SE (η2 = .340), the time*group fixed effect 

SE (η2 = .363), the covariate*group fixed effect SE (η2 = .221), the Level 3 intercept random 

effect variance SE (η2 = .347), the Level 3 covariate random effect variance SE (η2 = .036), and 

the Level 4 group random effect variance SE (η2 = .021). As these interactions differed 

dramatically across the parameter and SE bias estimates, bias means across the various cluster 

numbers are shown in Table 2 to help examine the nature of the interactions. As shown in Table 

2, some common patterns emerged from these interactions. Generally, parameter estimates 

became more biased when there were fewer Level 3 clusters, and some estimates and SEs 

became more biased with more Level 4 clusters. Interesting effects also emerged when numbers 

of Level 3 clusters and Level 4 clusters were equal; biases tended to be either very high or very 

low with equal cluster numbers, but these effects were inconsistent across the bias estimates. 

 Next, the triple interaction between Level 4 ICC, number of Level 3 clusters, and number 

of Level 4 clusters substantially impacted the Level 2 time random effect variance SE bias (η2 = 

.101). Bias remained relatively consistent across all groups, except when number of Level 3 and 

Level 4 clusters were the same; SE bias decreased when the ICC was .05 and cluster numbers 

were the same, and increased when the ICC was .10 and cluster numbers were the same. 

 Lastly, the triple interaction between number of individuals per cluster, Level 3 clusters, 

and Level 4 clusters impacted the intercept fixed effect SE bias (η2 = .017). When the number of 

individuals per cluster was 20, the amount of SE bias decreased as the number of Level 4 clusters 

increased; this effect was stronger as the number of Level 3 clusters increased, but was not 

present when the number of individuals per cluster was 40. This triple interaction also affected 

the Level 2 time random effect variance SE bias (η2 = .100). SE bias remained relatively 
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consistent across all groups, except when number of Level 3 and Level 4 clusters were the same; 

SE bias increased when there were 20 individuals per cluster and cluster numbers were equal, 

and decreased when there were 40 individuals per cluster and cluster numbers were equal. 

 

 
Table 2 
 
Study 1 Relative Parameter and SE Bias Means across All Three Models for Number of Level 3 
Clusters by Number of Level 4 Clusters Interaction Effects 
 

Parameter/SE Number of Level 4 
Clusters 

Number of Level 
3 Clusters 

4-level Model 
Bias 

3-level Model 
Bias 

Complex 
Model Bias 

Level 3 Intercept 
Random Effect 
Variance Estimate 

10 30 -.237 .997 .997 
 60 -.080 .941 .940 
 90 -.028 .949 .949 

30 30 -.850 1.457 1.457 
 60 -.168 1.043 1.043 
 90 -.067 1.020 1.020 

Level 3 Time 
Random Effect 
Variance Estimate 

10 30 - .398 .398 
 60 - .422 .421 
 90 - .413 .413 

30 30 - .704 .704 
 60 - .456 .456 
 90 - .459 .459 

Level 4 Intercept 
Random Effect 
Variance Estimate 

10 30 .019 - - 
 60 -.120 - - 
 90 -.139 - - 

30 30 1.354 - - 
 60 .106 - - 
 90 -.030 - - 

Time Fixed Effect 
SE 
 

10 30 - .114 - 
 60 - .162 - 
 90 - .160 - 

30 30 - .244 - 
 60 - .184 - 
 90 - .179 - 

Group Fixed Effect 
SE 

10 30 .556 .682 .692 
 60 .377 .349 .436 
 90 .258 .138 .324 

30 30 -.024 -.024 -.016 
 60 .683 1.056 .714 
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 90 .559 .714 .657 

Time*Group 
Interaction Fixed 
Effect SE 

10 30 .405 .292 .495 
 60 .203 -.039 .267 
 90 .123 -.198 .183 

30 30 -.050 -.050 -.034 
 60 .659 .659 .681 
 90 .492 .378 .530 

(table continues) 
Table 2 (cont.). 

Parameter/SE Number of Level 4 
Clusters 

Number of Level 
3 Clusters 

4-level Model 
Bias 

3-level Model 
Bias 

Complex 
Model Bias 

Covariate*Group 
Interaction Fixed 
Effect SE 

10 30 1.062 1.059 1.138 
 60 1.105 1.104 1.144 
 90 1.133 1.132 1.167 

30 30 -.029 -.028 -.018 
 60 1.087 1.089 1.137 
 90 1.119 1.118 1.145 

Level 3 Intercept 
Random Effect 
Variance SE 

10 30 -.152 .195 .222 
 60 -.220 .203 .412 
 90 -.222 .227 .602 

30 30 -.973 3.11 2.957 
 60 .120 -.018 -.004 
 90 -.182 .033 .127 

Level 3 Covariate 
Random Effect 
Variance SE 

10 30 -.196 -.192 -.277 
 60 -.231 -.220 -.288 
 90 -.217 -.206 -.274 

30 30 -.002 -.002 -.045 
 60 -.196 -.191 -.226 
 90 -.218 -.211 -.246 

Level 4 Group 
Random Effect 
Variance SE 

10 30 .147 - - 
 60 .082 - - 
 90 .037 - - 

30 30 .235 - - 
 60 .442 - - 
 90 .117 - - 

 

Three-Level Model 

 Substantially biased parameter and SE estimates are shown in bold in Table 1. Several 

design factors contributed to the severe parameter and SE biases. As the Level 4 ICC increased 
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(i.e., more variability in the outcome was attributed to Level 4), bias in the Level 3 intercept 

random effect variance estimate also increased (η2 = .113). As the number of individuals per 

cluster increased, the covariate*group fixed effect SE bias also increased (η2 = .102). As the 

number of Level 3 clusters increased, the intercept fixed effect SE bias also increased (η2 = .129). 

As the number of Level 4 clusters increased, the intercept fixed effect SE bias decreased (η2 = 

.335). Generally, bias estimates increased as the Level 4 ICC, number of individuals per cluster, 

and number of Level 3 clusters all increased. 

 The interaction between number of individuals per cluster and number of Level 3 clusters 

also impacted the Level 2 time random effect variance SE bias (η2 = .105). SE bias increased as 

the number of individuals per cluster increased, except when there were 30 Level 3 clusters; in 

this case, parameter bias decreased as number of individuals increased. 

 Next, the interaction between number of Level 3 clusters and Level 4 clusters impacted 

several parameter and SE biases including: the Level 3 intercept random effect variance estimate 

(η2 = .014), the Level 3 time random effect variance estimate (η2 = .016), the time fixed effect SE 

(η2 = .020), the group fixed effect SE (η2 = .488), the time*group interaction fixed effect SE (η2 = 

.399), the covariate*group interaction fixed effect SE (η2 = .220), the Level 3 intercept random 

effect variance SE (η2 = .298), and the Level 3 covariate random effect variance SE (η2 = .038). 

To help examine the nature of these interactions, bias means across the various groups are shown 

in Table 2. Generally, random effect variance and SE biases increased when there were more 

Level 4 clusters, though there were some exceptions. Furthermore, the relationship between bias 

and number of Level 3 clusters was generally stronger when there were more Level 4 clusters. 

As with the 4-level model, interesting and inconsistent effects emerged when cluster numbers 

were equal. 
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 Lastly, two triple interaction effects impacted the Level 2 time random effect variance SE 

bias. The triple interaction between Level 4 ICC, number of Level 3 clusters, and number of 

Level 4 clusters impacted this SE bias (η2 = .101). Bias remained relatively consistent across all 

groups, except when number of Level 3 and Level 4 clusters were the same. SE bias decreased 

when the ICC was .05 and cluster numbers were the same, and increased when the ICC was .10 

and cluster numbers were the same. Next, the triple interaction between the number of 

individuals per cluster, Level 3 clusters, and Level 4 clusters impacted the Level 2 time random 

effect variance SE bias (η2 = .100). Similar to the previous triple interaction, bias remained 

consistent across all groups except when number of Level 3 and Level 4 clusters were the same. 

SE bias increased when there were 20 individuals per cluster and cluster numbers were the same, 

and decreased when there were 40 individuals per cluster and cluster numbers were the same. 

Complex Model 

 Severely biased parameter and SE estimates are shown in bold in Table 1. Four-way 

ANOVA results showed that bias statistics were impacted by several factors. Similar to the 3-

level model, as the Level 4 ICC increased, the Level 3 intercept random effect variance estimate 

bias also increased (η2 = .113). As the number of individuals per cluster increased, the 

covariate*group interaction fixed effect SE bias also increased (η2 = .056). 

 Next, the interaction between the number of individuals per cluster and Level 3 clusters 

impacted the Level 2 time random effect variance SE bias (η2 = .044). SE bias increased as 

number of individuals per cluster increased, except when there were 30 Level 3 clusters; in this 

case, SE bias decreased as number of individuals increased. 

 The interaction between the number of Level 3 clusters and Level 4 clusters impacted 

several parameter and SE biases including: the Level 3 intercept random effect variance estimate 
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(η2 = .014), the Level 3 time random effect variance estimate (η2 = .016), the group fixed effect 

SE (η2 = .331), the time*group fixed effect SE (η2 = .281), the covariate*group fixed effect SE 

(η2 = .133), the Level 3 intercept random effect variance SE (η2 = .290), and the Level 3 

covariate random effect variance SE (η2 = .024). To help examine the nature of these 

interactions, bias means across the various groups are shown in Table 2. Similar to the 3-level 

model, random effect variance and SE biases increased when there were more Level 4 clusters, 

though there were some exceptions. Also similar to the previous models, interesting effects were 

present when clusters numbers were equal. 

 Lastly, a triple interaction between the Level 4 ICC, number of Level 3 clusters, and 

number of Level 4 clusters substantially impacted the Level 2 time random effect variance SE 

bias (η2 = .045). SE bias remained relatively consistent across all groups, except when the 

number of Level 3 and Level 4 clusters were the same. SE bias decreased when the ICC was .05 

and cluster numbers were the same, and bias increased when the ICC was .10 and cluster 

numbers were the same. 

Study 2 

Method 

Data Generation 

 Study 2 served as an extension to Study 1 and investigated the impact of different 

methods of handling a fourth level of nesting structure when a covariate was present at Level 4. 

For example, in a 4-level analysis from a CRT (e.g., repeated measures, students, classrooms, 

schools) in which the treatment is administered at Level 3, a researcher may wish to include a 

relevant Level 4 covariate in the model, such as school-level socioeconomic status (SES), school 

urbanicity, or public-versus-private school status. Variables such as these occurring at the higher 
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cluster level may be important to consider as they would add additional context to the outcome 

of testing the impact of an educational intervention. In this situation, ignoring the fourth level of 

nesting may cause the SEs of both the Level 4 covariate(s) and the Level 3 treatment predictors 

to become biased. Therefore, exploring the outcome of this potential scenario would be of 

interest to CRT researchers. 

 Data generation for Study 2 was identical to that of Study 1, except for a Level 4 

covariate was included in the model. The model equations for Levels 1, 2, and 3 (i.e., Equations 

1 through 8) remained the same as those in Study 1. The Level 4 equations for Study 2 were: 

Level 4:  𝛽𝛽000𝑘𝑘 =  𝛾𝛾0000 +  𝛾𝛾0001(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝑘𝑘) + 𝑣𝑣000𝑘𝑘   (16) 

   𝛽𝛽001𝑘𝑘 =  𝛾𝛾0010 +  𝑣𝑣001𝑘𝑘      (17) 

   𝛽𝛽010𝑘𝑘 =  𝛾𝛾0100        (18) 

   𝛽𝛽100𝑘𝑘 =  𝛾𝛾1000        (19) 

   𝛽𝛽011𝑘𝑘 =  𝛾𝛾0110        (20) 

   𝛽𝛽101𝑘𝑘 =  𝛾𝛾1010 + 𝑣𝑣101𝑘𝑘      (21) 

    With �
𝑣𝑣000𝑘𝑘
𝑣𝑣001𝑘𝑘
𝑣𝑣101𝑘𝑘

�  ~ 𝑀𝑀𝑀𝑀𝑀𝑀��
0
0
0
� , �

𝜏𝜏𝛽𝛽00 𝜏𝜏𝛽𝛽01 𝜏𝜏𝛽𝛽02 
𝜏𝜏𝛽𝛽10 𝜏𝜏𝛽𝛽11 𝜏𝜏𝛽𝛽12
𝜏𝜏𝛽𝛽20 𝜏𝜏𝛽𝛽21 𝜏𝜏𝛽𝛽22

��  (22) 

where Covariate2k was a dichotomous variable with 0 and 1 representing two different groups at 

the fourth level (e.g., public versus private school at the school level). 

 In this 4-level model, seven fixed effect coefficients (i.e., γ0000, γ0010, γ0100, γ1000, γ0110, 

γ1010, γ0001) and nine variances of the random effects (σ2, τψ00, τψ11, τπ00, τπ11, τπ22, τβ00, τβ11, τβ22) 

were estimated; as with Study 1, no covariances among the random effects were estimated to 

reduce model complexity. Values for all fixed effect coefficients present in Study 1 remained the 

same for Study 2 in order to simulate the outcome of an effective intervention. The value of γ0001 
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was fixed at 0.10 to indicate that there was a small difference between Level 4 covariate groups 

at the start of the intervention (i.e., Time = 0). The variances and covariances of the random 

effects were fixed at the same values as those used in Study 1, following Raudenbush and Liu’s 

(2000) criteria. 

 The same four design factors manipulated in Study 1 were manipulated in the present 

study as well: number of individuals per Level 3 cluster, number of Level 3 clusters, number of 

Level 4 clusters, and conditional ICC. The current study also used the same values for the design 

factors as Study 1. 

Analyses 

 The same analytic procedures from Study 1 were used in Study 2. That is, for each set of 

conditions, only replications with estimates for all parameters under all three models were 

considered valid and used for further analysis. Replications that failed to compute any parameter 

estimate were considered invalid; 8,215 replications were considered invalid based on this 

criterion, resulting in 15,785 valid replications being used for final analyses. Note that, of these 

8,215 invalid replications, 8,200 of them were invalid because the 4-level model failed to 

compute all parameter estimates. Study 2 examined the relative bias estimates of the fixed effect 

parameters, random effect variances, and corresponding SEs using the equations and acceptable 

bias thresholds described in Study 1 (Hoogland & Boomsma, 1998). Furthermore, the current 

simulation used a series of ANOVAs and the η2 ≥ .01 criterion to identify which design factors 

and interactions had a meaningful impact on relative parameter and SE bias. As with Study 1, 

only those effects with the largest effect sizes or that were most relevant in terms of 

interpretation will be described below and no F-test results will be shown in the interest of space. 

All results discussed below were statistically significant at the α = .05 level. 
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Results 

Four-Level Model 

 Table 3 shows the means and standard deviations of the relative biases for all parameter 

estimates and SEs across the four-level, three-level, and complex models. As with Study 1, the 

mean relative biases of the fixed and random effect parameter estimates were examined using the 

cutoff criterion of ±.05, and the mean relative biases of the fixed and random effect SEs were 

evaluated using the cutoff of ±.10 (Hoogland & Boomsma, 1998); bias statistics exceeding these 

cutoffs are shown in bold.  

 Four-way ANOVA results revealed that several factors impacted parameter and SE 

biases. First, as the Level 4 ICC increased, the Level 2 time random effect variance SE bias also 

increased (η2 = .059). Next, as the number of individuals per cluster increased, the 

covariate*group interaction fixed effect SE bias (η2 = .306) and the Level 3 covariate random 

effect variance SE bias (η2 = .015) increased, and the Level 2 Level 2 time random effect 

variance SE bias decreased (η2 = .052). Broadly, as the Level 4 ICC and the number of 

individuals per cluster increased, SEs became more biased, with one exception. 

 The number of Level 3 clusters impacted biases for the Level 3 intercept random effect 

variance estimate (η2 = .227), the Level 4 group random effect variance estimate (η2 = .040), the 

time*group fixed effect SE (η2 = .119), the covariate2 fixed effect SE (η2 = .024), the Level 3 

time random effect variance SE (η2 = .029), the Level 4 group random effect variance SE (η2 = 

.061), and the Level 4 time*group random effect variance SE (η2 = .053). Because these effects 

took on different patterns, Table 4 shows the mean parameter and SE biases across numbers of 

Level 3 clusters. Most parameter and SE biases decreased as the number of Level 3 clusters 

increased, though there were some exceptions.  
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Table 3 
 
Study 2 Means and Standard Deviations for Relative Parameter and SE Bias Estimates for the 4-
Level, 3-Level, and Complex Models 
 

 4-level Model 3-level Model Complex Model 
 M SD M SD M SD 
Fixed Effect Parameters       
     Intercept .0006 .1872 .0007 .1901 .0007 .1901 
     Time .0006 .0656 .0006 .0656 .0006 .0656 
     Covariate .0035 .8450 .0035 .8451 .0038 .8451 
     Group -.0137 1.1263 -.0125 1.1703 -.0126 1.1703 
     Time*Group  -.0047 .8481 -.0061 .8525 -.0060 .8525 
     Covariate*Group  -.0072 .5935 -.0072 .5934 -.0071 .5935 
     Covariate2 -.0051 2.4826 -.0082 2.5450 -.0082 2.5450 
Random Effect Variances       
     Level 1 Residual -.0003 .0236 -.0003 .0236 -.0004 .0236 
     Level 2 Intercept -.0022 .1358 -.0021 .1359 -.0021 .1359 
     Level 2 Time .0001 .0923 .0001 .0923 .0001 .0923 
     Level 3 Intercept -.2234 .4452 .8801 .6086 .8798 .6087 
     Level 3 Time -.0409 .3008 .4301 .4141 .4300 .4141 
     Level 3 Covariate -.0483 .4339 -.0499 .4348 -.0483 .4354 
     Level 4 Intercept -.0220 .7428 - - - - 
     Level 4 Group  .2743 .9893 - - - - 
     Level 4 Time*Group  -.0555 .5465 - - - - 
Fixed Effect SEs       
     Intercept -.1895 .1520 -.2682 .1563 -.1548 .2167 
     Time -.0399 .1406 .1535 .1596 -.0350 .1977 
     Covariate -.0234 .1173 -.0238 .1174 -.0229 .1969 
     Group .4267 .2685 .4666 .3417 .4883 .3230 
     Time*Group  .3855 .2927 .2375 .3577 .4336 .3454 
     Covariate*Group  1.0152 .3010 1.0144 .3012 1.0524 .5174 
     Covariate2 -.2021 .1609 -.3753 .1381 -.1355 .1751 
Random Effect Variance SEs       
     Level 1 Residual .0025 .0342 .0026 .0342 -.0166 .1926 
     Level 2 Intercept -.0675 .0422 -.0672 .0422 -.0905 .1835 
     Level 2 Time -.1059 .0422 -.1058 .0422 -.1320 .1823 
     Level 3 Intercept -.2758 .3929 .5309 1.1688 .6165 1.1885 
     Level 3 Time -.1646 .2637 -.0115 .2689 .0428 .4208 
     Level 3 Covariate -.2126 .1960 -.2061 .1965 -.2642 .2487 
     Level 4 Intercept -.0036 .4021 - - - - 
     Level 4 Group .1926 .4414 - - - - 
     Level 4 Time*Group  .1196 .4448 - - - - 
Note. Bias estimates indicating a substantial amount of bias are shown in boldface. 
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Table 4 
 
Study 2 Parameter and SE Bias Means across Numbers of Level 3 Clusters in the 4-level Model 
 
 Number of Level 3 Clusters 
Parameter/SE bias 30 60 90 
Level 3 Intercept Random 
Effect Variance Estimate 

-.625 -.117 -.049 

Level 4 Group Random Effect 
Variance Estimate 

.605 .202 .119 

Time*Group Interaction Fixed 
Effect SE 

.531 .405 .279 

Covariate2 Fixed Effect SE 
 

-.246 -.181 -.190 

Level 3 Time Random Effect 
Variance SE 

-.103 -.148 -.216 

Level 4 Group Random Effect 
Variance SE 

.337 .235 .069 

Level 4 Time*Group Random 
Effect Variance SE 

.285 .126 .010 

 

 Next, as the number of Level 4 clusters increased, the time*group interaction fixed effect 

SE bias (η2 = .213), the Level 4 group random effect variance SE bias (η2 = .058), and the Level 

4 time*group random effect variance SE bias (η2 = .044) also increased. However, the Level 3 

time random effect variance SE bias decreased as number of Level 4 clusters increased (η2 = 

.076). 

 The interaction between the number of Level 3 clusters and Level 4 clusters impacted 

several parameter and SE bias estimates including: the Level 3 intercept random effect variance 

estimate (η2 = .071), the intercept fixed effect SE (η2 = .012), the group fixed effect SE (η2 = 

.159), and the Level 3 intercept random effect variance SE (η2 = .340). To help examine the 

nature of these interactions, bias means across the various cluster numbers are shown in Table 5. 

These interaction effects took on a variety of patterns, but random effect variances and SEs 
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generally became less biased as the number of Level 3 clusters increased, but were impacted 

inconsistently by the number of Level 4 clusters. 

Table 5 
 
Study 2 Relative Parameter and SE Bias Means across All Three Models for Number of Level 3 
Clusters by Number of Level 4 Clusters Interaction Effects 
 

Parameter/SE 
Number of Level 4 

Clusters 
Number of Level 

3 Clusters 
4-level Model 

Bias 
3-level Model 

Bias 
Complex 

Model Bias 
Level 3 Intercept 
Random Effect 
Variance Estimate 

10 30 -.254 - - 
 60 -.073 - - 
 90 -.024 - - 

 30 30 -.877 - - 
  60 -.177 - - 
  90 -.074 - - 
Intercept Fixed 
Effect SE 

10 30 -.229 - - 
 60 -.201 - - 
 90 -.199 - - 

 30 30 -.233 - - 
  60 -.117 - - 
  90 -.164 - - 
Group Fixed Effect 
SE 

10 30 .544 .635 .654 
 60 .369 .307 .426 

  90 .313 .159 .380 
 30 30 .267 .265 .284 
  60 .616 .955 .644 
  90 .528 .661 .619 
Level 3 Intercept 
Random Effect 
Variance SE 

10 30 -.124 .142 .134 
 60 -.205 .157 .310 
 90 -.238 .152 .440 

30 30 -.973 2.909 2.765 
  60 .121 -.033 -.019 
  90 -.184 .004 .096 

 

 Lastly, although the Level 4 time*group random effect variance estimate was severely 

overestimated (see Table 3), none of the design factors were substantial contributors to this bias 

according to the four-way ANOVA results and the η2 ≥ .01 criterion. 
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Three-Level Model 

 Severely biased parameter and SE estimates are shown in bold in Table 3. ANOVA 

results indicated that bias statistics were impacted by several factors. First, as the Level 4 ICC 

increased, several biases also increased, including: the Level 3 intercept random effect variance 

estimate (η2 = .118), the time fixed effect SE (η2 = .010), the group fixed effect SE (η2 = .025), 

and the Level 2 time random effect variance SE (η2 = .059). Next, as the number of individuals 

per cluster increased, covariate*group fixed effect SE bias (η2 = .306) and the Level 3 covariate 

random effect variance SE bias (η2 = .019) both increased and the Level 2 time random effect 

variance bias decreased (η2 = .051). In general, SE biases increased as the Level 4 ICC and the 

number of individuals per cluster increased, with one exception. 

 As the number of Level 3 clusters increased, the intercept fixed effect SE bias (η2 = .129) 

and the covariate2 fixed effect SE bias (η2 = .181) both increased and the time*group fixed effect 

SE bias (η2 = .216) decreased. Next, as the number of Level 4 clusters increased, the intercept 

fixed effect SE bias (η2 = .383) and the covariate2 fixed effect SE bias (η2 = .341) both decreased 

whereas the time*group fixed effect SE bias increased (η2 = .409). 

 Next, the interaction between the number of individuals per cluster and Level 3 clusters 

impacted the time fixed effect SE bias (η2 = .020). SE bias increased as the number of individuals 

per cluster increased, except when there were 90 Level 3 clusters. In that case, SE bias decreased 

as the number of individuals per cluster increased. 

 The interaction between number of Level 3 clusters and Level 4 clusters impacted the 

group fixed effect SE bias (η2 = .013) and the Level 3 intercept random effect variance SE bias 

(η2 = .296). To help examine the nature of these interactions, bias means across the various 

cluster numbers are shown in Table 5. The group fixed effect SE bias decreased as the number of 
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Level 3 clusters increased, but only when there were 10 Level 4 clusters. The Level 3 intercept 

random effect variance SE bias was severely overestimated when the numbers of Level 3 clusters 

and Level 4 cluster were equal. Lastly, although the Level 3 time random effect variance 

estimate was severely overestimated (see Table 3), none of the design factors substantially 

contributed to this bias according to the four-way ANOVA results and the η2 ≥ .01 criterion. 

Complex Model 

 Substantially biased parameter and SE estimates are displayed in bold in Table 3. Four-

way ANOVA results showed that parameter and SE biases were impacted by several factors. As 

the ICC at Level 4 increased, the Level 3 intercept random effect variance estimate bias also 

increased (η2 = .118). As the number of individuals per cluster increased, the covariate*group 

fixed effect SE bias increased as well (η2 = .117). Overall, as ICC and the number of individuals 

per cluster increased, SEs became more biased. 

 Next, as the number of Level 3 clusters increased, biases for the intercept fixed effect SE 

(η2 = .016), time*group fixed effect SE (η2 = .088), and covariate2 fixed effect SE (η2 = .023) all 

decreased. As the number of Level 4 clusters increased, biases for the time*group fixed effect SE 

(η2 = .106) and the covariate2 fixed effect SE (η2 = .028) both increased. Similar to previous 

models, as the number of Level 3 and Level 4 clusters increased, SE biases became more biased. 

 The interaction between the number of Level 3 clusters and Level 4 clusters impacted the 

group fixed effect SE bias (η2 = .153) and the Level 3 intercept random effect variance SE bias 

(η2 = .293). To help examine the nature of these interactions, bias means across the various 

cluster numbers are shown in Table 5. Similar to the 3-level model, the group fixed effect SE 

bias decreased as the number of Level 3 clusters increased, but only when there were 10 Level 4 

clusters. The Level 3 intercept random effect variance SE bias was severely overestimated when 
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the number of Level 3 clusters and Level 4 cluster were equal. Lastly, although the Level 2 time 

random effect variance SE, the Level 3 time random effect variance estimate, and the Level 3 

covariate random effect variance SE were severely biased (see Table 3), ANOVA results 

indicated that none of the design factors were substantially related to these biases based on the η2 

≥ .01 criterion. 

Discussion 

 The purpose of the current study was to examine the impact of different methods of 

accounting for a fourth level of nesting structure on parameter and SE estimates in the context of 

CRT designs. Previous research has suggested that ignoring potentially meaningful levels of 

nesting can result in the improper allocation of explained variance across different levels of the 

model (Moerbeek, 2004). Furthermore, Van den Noortgate and colleagues (2005) suggested that 

when a researcher is interested in a predictor at a specific level, such as treatment group 

membership at the cluster level, then they should account for both levels of nesting adjacent to 

that level. However, ignoring higher levels of nesting can be justified in some situations, such as 

when the number of clusters at that level is small (Hox, 2010). The current study observed 

several interesting findings regarding the impact of different methods of accounting for a fourth 

level of nesting structure. 

 None of the fixed effect parameter estimates were severely biased for the four-level, 

three-level, or complex models. However, several biased SEs and random effect variances were 

present in all three models. Although all three models had a great deal of overlap in their biases 

(see Tables 1 and 3), they also each featured unique biased parameters and SEs, suggesting that 

all models have both common and unique issues. 
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 First, the 4-level model had several biased random effect parameters and SEs at Level 4. 

These biases were driven primarily by the number of Level 3 clusters, the number of Level 4 

clusters, and their interaction. Generally speaking across both studies, most SE biases decreased 

as the number of Level 3 clusters increased (with some exceptions), and increased as the number 

of Level 4 clusters increased. Furthermore, random effect variance biases decreased as the 

number of Level 3 clusters increased. 

 The 4-level model likely had several biased SEs and random effect variances because 

multilevel models with three or more levels are more difficult to estimate than simpler models 

(Hox, 2010). Including additional levels of nesting simultaneously increases the number of 

parameters that need to be estimated and reduces the cluster size at the highest level, making it 

more difficult to compute robust parameter and SE estimates. Overall, the 4-level model had 

more severely biased parameter and SE estimates than the 3-level and complex models, several 

of which occurred at the fourth level of nesting. 

 In the 3-level and complex models, the Level 3 intercept random effect variance estimate 

was severely overestimated; generally, bias was greater when there were more Level 4 clusters 

and a larger Level 4 ICC. This finding is reasonable in the context of previous research 

(Moerbeek, 2004). Because the fourth level of nesting was not completely accounted for, 

intercept variance that should have been attributed to that level was instead reallocated to the 

level below it. The Level 4 ICC played a particularly large role in this; as the amount of 

variability attributed to Level 4 increased, variance biases increased dramatically. 

 Furthermore, numerous SEs were also biased in the 3-level and complex models. This 

was unsurprising given that prior research has suggested that failing to properly model nesting 

structure can negatively impact the accuracy of SE estimates (Hox, 2010; Pornprasertmanit et al., 
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2014). These biases were driven primarily by the Level 4 ICC and the interaction between the 

number of Level 3 and Level 4 clusters. Broadly, the more weight Level 4 carried (i.e., larger 

ICC, more clusters at that level), the more biased SE estimates became, though there were some 

exceptions. 

 It is worth noting that in both studies, the complex model, which accounted for the fourth 

level of nesting using the design-based approach, had fewer severely biased SEs than the 4-level 

and 3-level models. This is likely due to two reasons. First, because the TYPE=COMPLEX 

routine in Mplus uses adjusted SE estimates that account for the presence of a higher level of 

nesting (Muthén & Muthén, 2012), the complex model performed better and featured fewer 

severely biased SE estimates than the 3-level model, which ignored the fourth level altogether. 

Second, because the complex model accounted for the highest level of nesting, but did not need 

to compute any of the random effect variances or SEs that existed at Level 4, it featured fewer 

biased estimates and SEs than the 4-level model. 

 Study 2 included a covariate at Level 4 to evaluate the impact of the various methods of 

handling Level 4 on its parameter and SE bias. Although the Level 4 covariate parameter 

estimate was not biased in any of the models, its SE was substantially underestimated in all three 

models. This finding is consistent with previous research which suggested that parameter and SE 

estimates may become biased when a level featuring a predictor is ignored (Van den Noortgate et 

al., 2005). Current results suggested that if researchers plan to acknowledge the fourth level of 

nesting using either the model- or design-based approach, the Level 4 covariate SE is less biased 

when there is a larger number of Level 3 clusters in the analysis. However, if researchers ignore 

the highest level of nesting, then SE bias actually decreases when there are fewer Level 3 clusters 

and more Level 4 clusters. 
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 Also of note, upon examination of the interaction between number of Level 3 and Level 4 

clusters' effect on parameter and SE biases, several unique effects emerged when the number of 

Level 3 and Level 4 clusters were both 30. Several parameters and SEs became either highly 

accurate or highly biased relative to other bias means when cluster numbers were equal (e.g., see 

the covariate*group interaction fixed effect SE or the Level 3 intercept random effect variance 

SE shown in Table 2). It is unknown at this time why these effects occurred, but future research 

can explore the impact on parameter and SE bias when lower- and higher-level cluster numbers 

are equal. 

Recommendations for CRT Researchers 

 The present findings carry implications for future researchers employing CRT designs. 

Based on the current results, if a meaningful level of nesting structure exists above the level at 

which randomization occurs (i.e., having a Level 4 ICC of about .10, having about 30 clusters at 

Level 4), then researchers should consider accounting for it in their analyses using a design-

based approach. In the current study, the complex model employing a design-based approach to 

handling Level 4 had fewer biased SEs and performed better than the 3-level model. Therefore, 

researchers should account for that level using a design-based approach rather than ignoring it 

altogether. If the Level 4 ICC is very small and/or there are few Level 4 clusters, then it would 

be appropriate to ignore that level and analyze the data using a 3-level model. 

 Accounting for Level 4 using a model-based approach is not recommended based on the 

current findings. The present study encountered model estimation issues because some 4-level 

models failed to compute random effect variances. Furthermore, among the three models that 

were tested, the 4-level model featured the largest number of biased parameters and SEs. Several 

of these estimates remained severely biased even under the more optimal conditions (i.e., having 
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a Level 4 ICC of .10, having 30 clusters at Level 4). Researchers would need more than 30 

clusters at Level 4 to help reduce model estimation issues and severe parameter bias. Because 

one reason researchers ignore the higher level is due to having too few clusters (e.g., Al Otaiba et 

al., 2011; Hegedus et al., 2015), it is unlikely that having more than 30 Level 4 clusters would 

occur in empirical research. Therefore, because of the estimation issues and highly biased results 

associated with the 4-level model, it is recommended that future CRT researchers do not account 

for Level 4 using a model-based approach. 

Limitations  

 The present study had a few limitations. First, the current study examined a relatively 

specific set of models and design conditions; therefore, the results may be relevant only for the 

conditions examined here. Also, the models used in the current study only estimated random 

effects variances. Although random effects covariances are typically estimated in empirical 

research, they were excluded in this study to reduce model complexity and due to hardware 

limitations. 

Future Directions 

 Although the current study found some interesting results regarding different methods of 

handling a level of nesting that features a predictor variable, these findings are not definitive. 

Future researchers can further explore the impact of handling a level of nesting structure that 

features a predictor in different types of multilevel models and contexts (e.g., cross-classified 

models, etc.). Also, the current findings suggest that, if researchers plan to account for the 

highest level of nesting using a model-based approach, having 30 clusters at that level does not 

produce unbiased parameter estimates and SEs. Future research can examine the impact of 
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having more than 30 clusters at the highest level and examine how many clusters are necessary 

to get biases below the threshold values. 

 The current study also observed some interesting effects on parameter and SE biases 

when the number of Level 3 and Level 4 clusters were equal. Whereas some research has 

examined the impact of having a small number of individuals per cluster (Bell, Morgan, 

Kromney, & Ferron, 2010), research has not yet explored cases in which there may be a smaller 

number of lower-level clusters nested within higher-level clusters. Additional research is needed 

to examine why parameters and SEs may have become either highly biased or highly accurate 

when the cluster numbers are equal. Lastly, future simulation research on 4-level models could 

implement simpler models, such as by excluding covariates or some random effects. This would 

allow for the estimation of random effects covariances, and researchers could examine the 

impact of different methods of handling a higher level of nesting on these parameters as well. 

Conclusion 

 In summary, in a CRT, an additional higher level of nesting may exist above the level at 

which group randomization occurred; using different methods of handling this higher level of 

nesting impacted parameter and SE biases in a variety of ways. The current findings suggest that, 

if a meaningful fourth level exists, it would be beneficial to account for it using a design-based 

approach in multilevel modeling. The model-based approach is not recommended due to having 

issues regarding model estimation and parameter bias. If the higher level is not meaningful or 

practically important, then future researchers may ignore it altogether.  
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