Investigation of Immersion Cooled ARM-Based Computer Clusters for Low-Cost, High-Performance Computing

PDF Version Also Available for Download.

Description

This study aimed to investigate performance of ARM-based computer clusters using two-phase immersion cooling approach, and demonstrate its potential benefits over the air-based natural and forced convection approaches. ARM-based clusters were created using Raspberry Pi model 2 and 3, a commodity-level, single-board computer. Immersion cooling mode utilized two types of dielectric liquids, HFE-7000 and HFE-7100. Experiments involved running benchmarking tests Sysbench high performance linpack (HPL), and the combination of both in order to quantify the key parameters of device junction temperature, frequency, execution time, computing performance, and energy consumption. Results indicated that the device core temperature has direct effects on ... continued below

Creation Information

Mohammed, Awaizulla Shareef August 2017.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 44 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Mohammed, Awaizulla Shareef

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

This study aimed to investigate performance of ARM-based computer clusters using two-phase immersion cooling approach, and demonstrate its potential benefits over the air-based natural and forced convection approaches. ARM-based clusters were created using Raspberry Pi model 2 and 3, a commodity-level, single-board computer. Immersion cooling mode utilized two types of dielectric liquids, HFE-7000 and HFE-7100. Experiments involved running benchmarking tests Sysbench high performance linpack (HPL), and the combination of both in order to quantify the key parameters of device junction temperature, frequency, execution time, computing performance, and energy consumption. Results indicated that the device core temperature has direct effects on the computing performance and energy consumption. In the reference, natural convection cooling mode, as the temperature raised, the cluster started to decease its operating frequency to save the internal cores from damage. This resulted in decline of computing performance and increase of execution time, further leading to increase of energy consumption. In more extreme cases, performance of the cluster dropped by 4X, while the energy consumption increased by 220%. This study therefore demonstrated that two-phase immersion cooling method with its near-isothermal, high heat transfer capability would enable fast, energy efficient, and reliable operation, particularly benefiting high performance computing applications where conventional air-based cooling methods would fail.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • August 2017

Added to The UNT Digital Library

  • Oct. 9, 2017, 11:44 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 44

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mohammed, Awaizulla Shareef. Investigation of Immersion Cooled ARM-Based Computer Clusters for Low-Cost, High-Performance Computing, thesis, August 2017; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc1011866/: accessed September 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .