A Convergence of LDPC Based on Eigenvalues

PDF Version Also Available for Download.

Description

Low-density parity check (LDPC) codes are very popular among error correction codes because of their high-performance capacity. Numerous investigations have been carried out to analyze the performance and simplify the implementation of LDPC codes. Relatively slow convergence of iterative decoding algorithm affects the performance of LDPC codes. Faster convergence can be achieved by reducing the number of iterations during the decoding process. In this thesis, a new approach for faster convergence is suggested by choosing a systematic parity check matrix that yields lowest Second Smallest Eigenvalue Modulus (SSEM) of its corresponding Laplacian matrix. MATLAB simulations are used to study the ... continued below

Creation Information

Kharate, Neha Ashok August 2017.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 65 times , with 8 in the last month . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Kharate, Neha Ashok

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Low-density parity check (LDPC) codes are very popular among error correction codes because of their high-performance capacity. Numerous investigations have been carried out to analyze the performance and simplify the implementation of LDPC codes. Relatively slow convergence of iterative decoding algorithm affects the performance of LDPC codes. Faster convergence can be achieved by reducing the number of iterations during the decoding process. In this thesis, a new approach for faster convergence is suggested by choosing a systematic parity check matrix that yields lowest Second Smallest Eigenvalue Modulus (SSEM) of its corresponding Laplacian matrix. MATLAB simulations are used to study the impact of eigenvalues on the number of iterations of the LDPC decoder. It is found that for a given (n, k) LDPC code, a parity check matrix with lowest SSEM converges quickly as compared to the parity check matrix with high SSEM. In other words, a densely connected graph that represents the parity check matrix takes more iterations to converge than a sparsely connected graph.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • August 2017

Added to The UNT Digital Library

  • Oct. 9, 2017, 11:44 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 8
Total Uses: 65

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kharate, Neha Ashok. A Convergence of LDPC Based on Eigenvalues, thesis, August 2017; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc1011778/: accessed September 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .