TRANS-PLUTONIUM ISOTOPE BUILDUP
BY NEUTRON IRRADIATION OF PLUTONIUM

F. P. BRAUER and HELEN H. BURLEY

DECEMBER 15, 1958

HANFORD LABORATORIES
HANFORD ATOMIC PRODUCTS OPERATION
RICHLAND, WASHINGTON

GENERAL ELECTRIC
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.
TRANS-PLUTONIUM ISOTOPE BUILDUP
BY NEUTRON IRRADIATION OF PLUTONIUM

By
F. P. Brauer
Chemical Research
Chemical Research and Development Operation

and
Helen H. Burley
Instrument Research and Development
Physics and Instrument Research and Development Operation

December 15, 1958

HANFORD ATOMIC PRODUCTS OPERATION
RICHLAND, WASHINGTON

Work performed under Contract No. W-31-109-Eng-52 between the Atomic Energy Commission and General Electric Company

Printed by/of the U.S. Atomic Energy Commission

Printed in USA. Price $1.25. Available from the
Office of Technical Services
U.S. Department of Commerce
Washington 25, D.C.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>7</td>
</tr>
<tr>
<td>INTRODUCTION AND SUMMARY</td>
<td>8</td>
</tr>
<tr>
<td>CALCULATIONS</td>
<td>8</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>13</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>17</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Buildup of Plutonium and Trans-Plutonium Isotopes by Neutron Irradiation</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>Burnup of Pu239</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>Atoms Pu238 per Initial Atom Pu239</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>Atoms Pu240 per Initial Atom Pu239</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>Atoms Pu241 per Initial Atom Pu239</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>Atoms Pu242 per Initial Atom Pu239</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Atoms Am241 per Initial Atom Pu239</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Atoms Am242 per Initial Atom Pu239</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Atoms Am243 per Initial Atom Pu239</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>Atoms Cm242 per Initial Atom Pu239</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>Atoms Cm243 per Initial Atom Pu239</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>Atoms Cm244 per Initial Atom Pu244</td>
<td>21</td>
</tr>
<tr>
<td>13</td>
<td>Atoms Cm245 per Initial Atom Pu239</td>
<td>21</td>
</tr>
<tr>
<td>14</td>
<td>Atoms Cm246 per Initial Atom Pu239</td>
<td>22</td>
</tr>
<tr>
<td>15</td>
<td>Atoms Cm247 per Initial Atom Pu239</td>
<td>22</td>
</tr>
<tr>
<td>16</td>
<td>Atoms Cm248 per Initial Atom Pu239</td>
<td>22</td>
</tr>
<tr>
<td>17</td>
<td>Atoms Bk249 per Initial Atom Pu239</td>
<td>22</td>
</tr>
<tr>
<td>18</td>
<td>Atoms Cf249 per Initial Atom Pu239</td>
<td>23</td>
</tr>
<tr>
<td>19</td>
<td>Atoms Cf250 per Initial Atom Pu239</td>
<td>23</td>
</tr>
<tr>
<td>20</td>
<td>Atoms Cf251 per Initial Atom Pu239</td>
<td>23</td>
</tr>
<tr>
<td>21</td>
<td>Atoms Cf252 per Initial Atom Pu239</td>
<td>23</td>
</tr>
<tr>
<td>22</td>
<td>Burnup of Pu240</td>
<td>24</td>
</tr>
<tr>
<td>23</td>
<td>Atoms Pu238 per Initial Atom Pu240</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>Atoms Pu241 per Initial Atom Pu240</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>Atoms Pu242 per Initial Atom Pu240</td>
<td>24</td>
</tr>
<tr>
<td>26</td>
<td>Atoms Am241 per Initial Atom Pu240</td>
<td>25</td>
</tr>
<tr>
<td>27</td>
<td>Atoms Am242 per Initial Atom Pu240</td>
<td>25</td>
</tr>
<tr>
<td>28</td>
<td>Atoms Am243 per Initial Atom Pu240</td>
<td>25</td>
</tr>
<tr>
<td>29</td>
<td>Atoms Cm242 per Initial Atom Pu242</td>
<td>25</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Atoms Cm^{243} per Initial Atom Pu^{240}</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Atoms Cm^{244} per Initial Atom Pu^{240}</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Atoms Cm^{245} per Initial Atom Pu^{240}</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Atoms Cm^{246} per Initial Atom Pu^{240}</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Atoms Cm^{247} per Initial Atom Pu^{240}</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Atoms Cm^{248} per Initial Atom Pu^{240}</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Atoms Bk^{249} per Initial Atom Pu^{240}</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Atoms Cf^{249} per Initial Atom Pu^{240}</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Atoms Cf^{250} per Initial Atom Pu^{240}</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Atoms Cf^{251} per Initial Atom Pu^{240}</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Atoms Cf^{252} per Initial Atom Pu^{240}</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Burnup of Pu^{241}</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Atoms Pu^{238} per Initial Atom Pu^{241}</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Atoms Pu^{239} per Initial Atom Pu^{241}</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Atoms Pu^{240} per Initial Atom Pu^{241}</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Atoms Pu^{242} per Initial Atom Pu^{241}</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Atoms Am^{241} per Initial Atom Pu^{241}</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Atoms Am^{242} per Initial Atom Pu^{241}</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Atoms Am^{243} per Initial Atom Pu^{241}</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Atoms Cm^{242} per Initial Atom Pu^{241}</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Atoms Cm^{243} per Initial Atom Pu^{241}</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Atoms Cm^{244} per Initial Atom Pu^{241}</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Atoms Cm^{245} per Initial Atom Pu^{241}</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Atoms Cm^{246} per Initial Atom Pu^{241}</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Atoms Cm^{247} per Initial Atom Pu^{241}</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Atoms Cm^{248} per Initial Atom Pu^{241}</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Atoms Bk^{249} per Initial Atom Pu^{241}</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Atoms Cf^{249} per Initial Atom Pu^{241}</td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>58</td>
<td>Atoms Cf(^{250}) per Initial Atom Pu(^{241})</td>
<td>33</td>
</tr>
<tr>
<td>59</td>
<td>Atoms Cf(^{251}) per Initial Atom Pu(^{241})</td>
<td>33</td>
</tr>
<tr>
<td>60</td>
<td>Atoms Cf(^{252}) per Initial Atom Pu(^{241})</td>
<td>33</td>
</tr>
<tr>
<td>61</td>
<td>Burnup of Pu(^{242})</td>
<td>33</td>
</tr>
<tr>
<td>62</td>
<td>Atoms Am(^{243}) per Initial Atom Pu(^{242})</td>
<td>34</td>
</tr>
<tr>
<td>63</td>
<td>Atoms Cm(^{244}) per Initial Atom Pu(^{242})</td>
<td>34</td>
</tr>
<tr>
<td>64</td>
<td>Atoms Cm(^{245}) per Initial Atom Pu(^{242})</td>
<td>34</td>
</tr>
<tr>
<td>65</td>
<td>Atoms Cm(^{246}) per Initial Atom Pu(^{242})</td>
<td>34</td>
</tr>
<tr>
<td>66</td>
<td>Atoms Cm(^{247}) per Initial Atom Pu(^{242})</td>
<td>35</td>
</tr>
<tr>
<td>67</td>
<td>Atoms Cm(^{248}) per Initial Atom Pu(^{242})</td>
<td>35</td>
</tr>
<tr>
<td>68</td>
<td>Atoms Bk(^{249}) per Initial Atom Pu(^{242})</td>
<td>35</td>
</tr>
<tr>
<td>69</td>
<td>Atoms Cf(^{250}) per Initial Atom Pu(^{242})</td>
<td>35</td>
</tr>
<tr>
<td>70</td>
<td>Atoms Cf(^{251}) per Initial Atom Pu(^{242})</td>
<td>36</td>
</tr>
<tr>
<td>71</td>
<td>Atoms Cf(^{252}) per Initial Atom Pu(^{242})</td>
<td>36</td>
</tr>
<tr>
<td>72</td>
<td>Burnup of Am(^{241})</td>
<td>36</td>
</tr>
<tr>
<td>73</td>
<td>Atoms Pu(^{238}) per Initial Atom Am(^{241})</td>
<td>37</td>
</tr>
<tr>
<td>74</td>
<td>Atoms Pu(^{239}) per Initial Atom Am(^{241})</td>
<td>37</td>
</tr>
<tr>
<td>75</td>
<td>Atoms Pu(^{240}) per Initial Atom Am(^{241})</td>
<td>37</td>
</tr>
<tr>
<td>76</td>
<td>Atoms Pu(^{241}) per Initial Atom Am(^{241})</td>
<td>37</td>
</tr>
<tr>
<td>77</td>
<td>Atoms Pu(^{242}) per Initial Atom Am(^{241})</td>
<td>37</td>
</tr>
<tr>
<td>78</td>
<td>Atoms Pu(^{243}) per Initial Atom Am(^{241})</td>
<td>38</td>
</tr>
<tr>
<td>79</td>
<td>Atoms Am(^{242}) per Initial Atom Am(^{241})</td>
<td>38</td>
</tr>
<tr>
<td>80</td>
<td>Atoms Am(^{243}) per Initial Atom Am(^{241})</td>
<td>38</td>
</tr>
<tr>
<td>81</td>
<td>Atoms Cm(^{242}) per Initial Atom Am(^{241})</td>
<td>38</td>
</tr>
<tr>
<td>82</td>
<td>Atoms Cm(^{243}) per Initial Atom Am(^{241})</td>
<td>39</td>
</tr>
<tr>
<td>83</td>
<td>Atoms Cm(^{244}) per Initial Atom Am(^{241})</td>
<td>39</td>
</tr>
<tr>
<td>84</td>
<td>Atoms Cm(^{245}) per Initial Atom Am(^{241})</td>
<td>39</td>
</tr>
<tr>
<td>85</td>
<td>Atoms Cm(^{246}) per Initial Atom Am(^{241})</td>
<td>39</td>
</tr>
<tr>
<td>86</td>
<td>Atoms Cm(^{247}) per Initial Atom Am(^{241})</td>
<td>40</td>
</tr>
<tr>
<td>87</td>
<td>Atoms Cm(^{248}) per Initial Atom Am(^{241})</td>
<td>40</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (Cont'd)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>Atoms Bk(^{249}) per Initial Atom Am(^{241})</td>
<td>40</td>
</tr>
<tr>
<td>89</td>
<td>Atoms Cf(^{249}) per Initial Atom Am(^{241})</td>
<td>40</td>
</tr>
<tr>
<td>90</td>
<td>Atoms Cf(^{250}) per Initial Atom Am(^{241})</td>
<td>41</td>
</tr>
<tr>
<td>91</td>
<td>Atoms Cf(^{251}) per Initial Atom Am(^{241})</td>
<td>41</td>
</tr>
<tr>
<td>92</td>
<td>Atoms Cf(^{252}) per Initial Atom Am(^{241})</td>
<td>41</td>
</tr>
<tr>
<td>93</td>
<td>Burnup of Am(^{243})</td>
<td>41</td>
</tr>
<tr>
<td>94</td>
<td>Atoms Cm(^{244}) per Initial Atom Am(^{243})</td>
<td>42</td>
</tr>
<tr>
<td>95</td>
<td>Atoms Cm(^{245}) per Initial Atom Am(^{243})</td>
<td>42</td>
</tr>
<tr>
<td>96</td>
<td>Atoms Cm(^{246}) per Initial Atom Am(^{243})</td>
<td>42</td>
</tr>
<tr>
<td>97</td>
<td>Atoms Cm(^{247}) per Initial Atom Am(^{243})</td>
<td>42</td>
</tr>
<tr>
<td>98</td>
<td>Atoms Cm(^{248}) per Initial Atom Am(^{243})</td>
<td>43</td>
</tr>
<tr>
<td>99</td>
<td>Atoms Bk(^{249}) per Initial Atom Am(^{243})</td>
<td>43</td>
</tr>
<tr>
<td>100</td>
<td>Atoms Cf(^{249}) per Initial Atom Am(^{243})</td>
<td>43</td>
</tr>
<tr>
<td>101</td>
<td>Atoms Cf(^{250}) per Initial Atom Am(^{243})</td>
<td>43</td>
</tr>
<tr>
<td>102</td>
<td>Atoms Cf(^{251}) per Initial Atom Am(^{243})</td>
<td>44</td>
</tr>
<tr>
<td>103</td>
<td>Atoms Cf(^{252}) per Initial Atom Am(^{243})</td>
<td>44</td>
</tr>
<tr>
<td>104</td>
<td>Burnup of Cm(^{244})</td>
<td>44</td>
</tr>
<tr>
<td>105</td>
<td>Atoms Cm(^{245}) per Initial Atom Cm(^{244})</td>
<td>44</td>
</tr>
<tr>
<td>106</td>
<td>Atoms Cm(^{246}) per Initial Atom Cm(^{244})</td>
<td>45</td>
</tr>
<tr>
<td>107</td>
<td>Atoms Cm(^{247}) per Initial Atom Cm(^{244})</td>
<td>45</td>
</tr>
<tr>
<td>108</td>
<td>Atoms Cm(^{248}) per Initial Atom Cm(^{244})</td>
<td>45</td>
</tr>
<tr>
<td>109</td>
<td>Atoms Bk(^{249}) per Initial Atom Cm(^{244})</td>
<td>45</td>
</tr>
<tr>
<td>110</td>
<td>Atoms Cf(^{249}) per Initial Atom Cm(^{244})</td>
<td>46</td>
</tr>
<tr>
<td>111</td>
<td>Atoms Cf(^{250}) per Initial Atom Cm(^{244})</td>
<td>46</td>
</tr>
<tr>
<td>112</td>
<td>Atoms Cf(^{251}) per Initial Atom Cm(^{244})</td>
<td>46</td>
</tr>
<tr>
<td>113</td>
<td>Atoms Cf(^{252}) per Initial Atom Cm(^{244})</td>
<td>46</td>
</tr>
</tbody>
</table>
Graphs suitable for estimating the plutonium and trans-plutonium isotopic content of irradiated plutonium reactor fuel of various initial isotopic compositions are presented. The curves were computed for a neutron flux of 5×10^{13} n/cm2/sec and for irradiation times up to ten years.
TRANS-PLUTONIUM ISOTOPE BUILDUP
BY NEUTRON IRRADIATION OF PLUTONIUM

INTRODUCTION AND SUMMARY

The recycle of plutonium fuel through a nuclear reactor will result in the buildup of the higher plutonium and trans-plutonium isotopes in the reactor fuel (1)(2). The quantities of the various plutonium and trans-plutonium isotopes which will be formed in the fuel is of interest to the chemical processor. The production of trans-plutonium isotopes by irradiation of high Pu242 plutonium and of americium, and curium is also of interest (14). Graphs useful in estimating the plutonium and trans-plutonium isotopic content of irradiated uranium of various initial isotopic compositions have been presented by several investigators (3)(4)(5). This report contains curves suitable for estimating the buildup of trans-plutonium isotopes in plutonium fuel elements or in plutonium, americium, or curium samples irradiated in a 5×10^{13} thermal neutron/cm2/sec flux.

CALCULATIONS

The main chain of slow neutron capture reactions and beta decays which result in the formation of trans-plutonium isotopes during neutron irradiation of plutonium is shown in Figure 1. Differential equations expressing the production and destruction of each isotope along the chain whose half life is greater than one day were set up. The equations are given below, together with the values of the nuclear constants used in the calculations.

Definitions of Terms

ϕ = pile neutron flux
σ = pile neutron cross section for n, γ reactions
σ' = pile neutron cross section for other reactions (mostly fission)
\[\lambda = \text{radioactive decay constant} \]
\[t = \text{irradiation time} \]
\[N = \text{number of atoms present at time } t \]

The subscripts denote the isotopes by use of the last digits of the atomic numbers and the atomic weights in the conventional manner.

Equations

1. \[\frac{1}{\phi} \frac{dN_{48}}{dt} = \frac{\lambda_{62}}{\phi} N_{62} - \sigma_{48} N_{48} \]
2. \[\frac{1}{\phi} \frac{dN_{49}}{dt} = \sigma_{48} N_{48} - \sigma_{49} N_{49} - \sigma_{49}^' N_{49} \]
3. \[\frac{1}{\phi} \frac{dN_{40}}{dt} = \sigma_{49} N_{49} - \sigma_{40} N_{40} \]
4. \[\frac{1}{\phi} \frac{dN_{41}}{dt} = \sigma_{40} N_{40} - \sigma_{41} N_{41} - \sigma_{41}^' N_{41} - \frac{\lambda_{41}}{\phi} N_{41} \]
5. \[\frac{1}{\phi} \frac{dN_{42}}{dt} = \sigma_{41} N_{41} - \sigma_{42} N_{42} + x \sigma_{51}^' N_{51} \]
6. \[\frac{1}{\phi} \frac{dN_{51}}{dt} = \frac{\lambda_{41}}{\phi} N_{41} - \sigma_{51} N_{51} - \sigma_{51}^' N_{51} \]
7. \[\frac{1}{\phi} \frac{dN_{52}}{dt} = \sigma_{51} N_{51} - \sigma_{52} N_{52} - \sigma_{52}^' N_{52} \]
8. \[\frac{1}{\phi} \frac{dN_{53}}{dt} = \sigma_{52} N_{52} + \sigma_{42} N_{42} - \sigma_{53} N_{53} \]
9. \[\frac{1}{\phi} \frac{dN_{62}}{dt} = y \sigma_{51}^' N_{51} - \sigma_{62} N_{62} - \frac{\lambda_{62}}{\phi} N_{62} \]
\[\frac{1}{\phi} \frac{dN_{63}}{dt} = \sigma_{62} N_{62} - \sigma_{63} N_{63} - \sigma_{63}^' N_{63} - \frac{\lambda_{63}}{\phi} N_{63} \]

\[\frac{1}{\phi} \frac{dN_{64}}{dt} = \sigma_{53} N_{53} + \sigma_{63} N_{63} - \sigma_{64} N_{64} - \frac{\lambda_{64}}{\phi} N_{64} \]

\[\frac{1}{\phi} \frac{dN_{65}}{dt} = \sigma_{64} N_{64} - \sigma_{65} N_{65} - \sigma_{65}^' N_{65} \]

\[\frac{1}{\phi} \frac{dN_{66}}{dt} = \sigma_{65} N_{65} - \sigma_{66} N_{66} \]

\[\frac{1}{\phi} \frac{dN_{67}}{dt} = \sigma_{66} N_{66} - \sigma_{67} N_{67} \]

\[\frac{1}{\phi} \frac{dN_{68}}{dt} = \sigma_{67} N_{67} - \sigma_{68} N_{68} \]

\[\frac{1}{\phi} \frac{dN_{79}}{dt} = \sigma_{68} N_{68} - \sigma_{79} N_{79} - \frac{\lambda_{79}}{\phi} N_{79} \]

\[\frac{1}{\phi} \frac{dN_{89}}{dt} = \frac{\lambda_{79}}{\phi} N_{79} - \sigma_{89} N_{89} - \sigma_{89}^' N_{89} \]

\[\frac{1}{\phi} \frac{dN_{80}}{dt} = \sigma_{79} N_{79} + \sigma_{89} N_{89} - \sigma_{80} N_{80} - \frac{\lambda_{80}}{\phi} N_{80} \]

\[\frac{1}{\phi} \frac{dN_{81}}{dt} = \sigma_{80} N_{80} - \sigma_{81} N_{81} - \sigma_{81}^' N_{81} \]

\[\frac{1}{\phi} \frac{dN_{82}}{dt} = \sigma_{81} N_{81} - \sigma_{82} N_{82} - \frac{\lambda_{82}}{\phi} N_{82} \]
Constants

<table>
<thead>
<tr>
<th>Decay Constants (sec(^{-1}))</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_{62}) = 4.92 \times 10^{-8}</td>
<td>6</td>
</tr>
<tr>
<td>(\lambda_{41}) = 1.66 \times 10^{-9}</td>
<td>6</td>
</tr>
<tr>
<td>(\lambda_{63}) = 6.27 \times 10^{-10}</td>
<td>6</td>
</tr>
<tr>
<td>(\lambda_{64}) = 1.19 \times 10^{-9}</td>
<td>6</td>
</tr>
<tr>
<td>(\lambda_{79}) = 2.76 \times 10^{-8}</td>
<td>6</td>
</tr>
<tr>
<td>(\lambda_{80}) = 2.36 \times 10^{-9}</td>
<td>7</td>
</tr>
<tr>
<td>(\lambda_{82}) = 9.98 \times 10^{-9}</td>
<td>6</td>
</tr>
</tbody>
</table>

Branching

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.19</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>0.81</td>
<td>6</td>
</tr>
</tbody>
</table>

Pile Cross Sections (cm\(^2\))

\(\sigma_{48}\) = 489 \times 10^{-24}	8
\(\sigma_{49}\) = 446 \times 10^{-24}	9
\(\sigma_{41}'\) = 922 \times 10^{-24}	9
\(\sigma_{40}\) = 383 \times 10^{-24}	9
\(\sigma_{41}\) = 407 \times 10^{-24}	9
\(\sigma_{41}'\) = 1116 \times 10^{-24}	9
\(\sigma_{42}\) = 52 \times 10^{-24}	10
\(\sigma_{51}\) = 225 \times 10^{-24}	10
\(\sigma_{51}'\) = 675 \times 10^{-24}	10
\(\sigma_{52}\) = 3400 \times 10^{-24}	11
\(\sigma_{52}\) = 4600 \times 10^{-24}	11
\(\sigma_{53}\) = 137.5 \times 10^{-24}	10
\(\sigma_{62}\) = 20 \times 10^{-24}	11
\(\sigma_{63}\) = 250 \times 10^{-24}	11
\(\sigma_{63}\) = 490 \times 10^{-24}	11
Constants (Cont'd)

<table>
<thead>
<tr>
<th>Pile Cross Sections (Cm2)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{64} = 25×10^{-24}</td>
<td>10</td>
</tr>
<tr>
<td>σ_{65} = 200×10^{-24}</td>
<td>10</td>
</tr>
<tr>
<td>σ_{65}' = 1500×10^{-24}</td>
<td>10</td>
</tr>
<tr>
<td>σ_{66} = 15×10^{-24}</td>
<td>10</td>
</tr>
<tr>
<td>σ_{67} = 200×10^{-24}</td>
<td>10</td>
</tr>
<tr>
<td>σ_{68} = 2×10^{-24}</td>
<td>10</td>
</tr>
<tr>
<td>σ_{79} = 400×10^{-24}</td>
<td>10</td>
</tr>
<tr>
<td>σ_{89} = 270×10^{-24}</td>
<td>11</td>
</tr>
<tr>
<td>σ_{89}' = 600×10^{-24}</td>
<td>11</td>
</tr>
<tr>
<td>σ_{80} = 1500×10^{-24}</td>
<td>11</td>
</tr>
<tr>
<td>σ_{81} = 3000×10^{-24}</td>
<td>10</td>
</tr>
<tr>
<td>σ_{81}' = 3000×10^{-24}</td>
<td>10</td>
</tr>
<tr>
<td>σ_{82} = 30×10^{-24}</td>
<td>11</td>
</tr>
</tbody>
</table>

Flux (n/cm2/sec)

\[d = 5 \times 10^{13} \]

Initial Condition (at time zero)

- a) $N_{49} = 1$ all other N's = 0
- b) $N_{40} = 1$ all other N's = 0
- c) $N_{41} = 1$ all other N's = 0
- d) $N_{42} = 1$ all other N's = 0
- e) $N_{51} = 1$ all other N's = 0
- f) $N_{53} = 1$ all other N's = 0
- g) $N_{64} = 1$ all other N's = 0
The set of simultaneous differential equations was solved with a Goodyear analog computer for each of the initial conditions and a constant neutron flux of 5×10^{13} n/cm2/sec. The concentrations of all the isotopes described by the equations were plotted as functions of irradiation time by an eight-pen Sanborn recorder associated with the computer. Figures 2 through 113 are curves drawn from the results of the computations. The numbers of atoms of ^{238}Pu, ^{239}Pu, ^{240}Pu, ^{241}Pu, ^{242}Pu, ^{241}Am, ^{242}Am, ^{243}Am, ^{242}Cm, ^{243}Cm, ^{244}Cm, ^{245}Cm, ^{246}Cm, ^{247}Cm, ^{248}Cm, ^{249}Bk, ^{249}Cf, ^{250}Cf, ^{251}Cf, and ^{252}Cf per initial atoms of ^{239}Pu, ^{240}Pu, ^{241}Pu, ^{242}Pu, ^{241}Am, ^{243}Am, or ^{244}Cm are plotted as functions of irradiation times. The accuracy of the results are limited by the uncertainties in the cross sections rather than by the precision of the computations or the precision of reproduction of the curves. The over-all computation and reproduction error is estimated to be less than ten per cent.

DISCUSSION

The curves presented in this report can be used to estimate the americium, curium, berkelium, and californium buildup in plutonium of any likely initial isotopic composition or in ^{241}Am, ^{243}Am, and ^{244}Cm irradiated in a thermal neutron flux of 5×10^{13}. The accuracy of such estimates will depend on the agreement of the neutron cross section for the reactor under consideration with the cross section values used in these computations. The ^{240}Pu effective pile cross section in particular is strongly influenced by the reactor neutron spectrum and the ^{240}Pu concentration at any given time. (12)(13).

As an example of the use of Figures 2 through 113, the plutonium and trans-plutonium isotopic content of a one kilogram plutonium sample irradiated for two years in a 5×10^{13} neutron/cm2/sec flux has been calculated. The plutonium was assumed to be twenty-two per cent ^{239}Pu, twenty-four per cent ^{240}Pu, six per cent ^{241}Pu, and forty-eight per cent ^{242}Pu. The sample was assumed to be initially free of americium and
other trans-plutonium isotopes. Figures 2 through 21 can be used to estimate the amounts of the various isotopes present in the sample at the end of the two-year irradiation per initial Pu239 content of the sample as shown in Table I. The use of the correction of atom ratio to weight ratio is not justified by the precision of the computation but is included for completeness. Likewise Figures 20 through 72 can be used to estimate the amounts of the various isotopes present at the end of the irradiation which result from initial neutron capture events with Pu240, Pu241, and Pu242 contained in the sample at the start of the irradiation. The results for all isotopes included in this example are tabulated in Table II.
TABLE I

ISOTOPES PRODUCED FROM Pu^{239} INITIALLY PRESENT

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Kilograms Pu^{239} Initially Present</th>
<th>Atoms Per Initial Atom From Figures</th>
<th>Conversion Factor Of Atom Ratio To Weight Ratio</th>
<th>Kilograms Pu^{239} At End of Irradiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu^{238}</td>
<td>0.22</td>
<td>1×10^{-3}</td>
<td>238/239</td>
<td>0.22 x 10^{-3}</td>
</tr>
<tr>
<td>Pu^{239}</td>
<td>0.22</td>
<td>1×10^{-2}</td>
<td>239/239</td>
<td>0.22 x 10^{-2}</td>
</tr>
<tr>
<td>Pu^{240}</td>
<td>0.22</td>
<td>1.5×10^{-1}</td>
<td>240/239</td>
<td>0.33 x 10^{-1}</td>
</tr>
<tr>
<td>Pu^{241}</td>
<td>0.22</td>
<td>3.7×10^{-2}</td>
<td>241/239</td>
<td>0.81 x 10^{-2}</td>
</tr>
<tr>
<td>Pu^{242}</td>
<td>0.22</td>
<td>3.4×10^{-2}</td>
<td>242/239</td>
<td>0.75 x 10^{-2}</td>
</tr>
<tr>
<td>Am^{241}</td>
<td>0.22</td>
<td>1.6×10^{-3}</td>
<td>241/239</td>
<td>0.35 x 10^{-3}</td>
</tr>
<tr>
<td>Am^{242}</td>
<td>0.22</td>
<td>3.8×10^{-5}</td>
<td>242/239</td>
<td>0.84 x 10^{-5}</td>
</tr>
<tr>
<td>Am^{243}</td>
<td>0.22</td>
<td>2×10^{-3}</td>
<td>243/239</td>
<td>0.44 x 10^{-3}</td>
</tr>
<tr>
<td>Cm^{242}</td>
<td>0.22</td>
<td>5.5×10^{-4}</td>
<td>242/239</td>
<td>1.2 x 10^{-4}</td>
</tr>
<tr>
<td>Cm^{243}</td>
<td>0.22</td>
<td>6×10^{-6}</td>
<td>243/239</td>
<td>1.3 x 10^{-6}</td>
</tr>
<tr>
<td>Cm^{244}</td>
<td>0.22</td>
<td>2.6×10^{-4}</td>
<td>244/239</td>
<td>0.57 x 10^{-4}</td>
</tr>
<tr>
<td>Cm^{245}</td>
<td>0.22</td>
<td>2×10^{-6}</td>
<td>245/239</td>
<td>0.44 x 10^{-6}</td>
</tr>
<tr>
<td>Cm^{246}</td>
<td>0.22</td>
<td>2×10^{-7}</td>
<td>246/239</td>
<td>0.44 x 10^{-7}</td>
</tr>
<tr>
<td>Cm^{247}</td>
<td>0.22</td>
<td>1×10^{-9}</td>
<td>247/239</td>
<td>0.22 x 10^{-9}</td>
</tr>
<tr>
<td>Cm^{248}</td>
<td>0.22</td>
<td>1×10^{-11}</td>
<td>248/239</td>
<td>0.22 x 10^{-11}</td>
</tr>
<tr>
<td>Bk^{249}</td>
<td>0.22</td>
<td>5×10^{-15}</td>
<td>249/239</td>
<td>1.1 x 10^{-15}</td>
</tr>
<tr>
<td>Cf^{249}</td>
<td>0.22</td>
<td>5×10^{-16}</td>
<td>249/239</td>
<td>1.1 x 10^{-16}</td>
</tr>
<tr>
<td>Cf^{250}</td>
<td>0.22</td>
<td>8×10^{-16}</td>
<td>250/239</td>
<td>1.8 x 10^{-16}</td>
</tr>
<tr>
<td>Cf^{251}</td>
<td>0.22</td>
<td>1×10^{-16}</td>
<td>251/239</td>
<td>0.22 x 10^{-16}</td>
</tr>
<tr>
<td>Cf^{252}</td>
<td>0.22</td>
<td>5×10^{-17}</td>
<td>252/239</td>
<td>1.1 x 10^{-17}</td>
</tr>
</tbody>
</table>
ISOTOPES PRODUCED BY TWO YEAR IRRADIATION OF PLUTONIUM SAMPLE

Kilograms at End of Irradiation

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Pu(^{239})</th>
<th>Pu(^{240})</th>
<th>Pu(^{241})</th>
<th>Pu(^{242})</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu(^{238})</td>
<td>0.22 x 10^{-3}</td>
<td>0.48 x 10^{-3}</td>
<td>0.3 x 10^{-3}</td>
<td>0.12 x 10^{-3}</td>
<td>1 x 10^{-3}</td>
</tr>
<tr>
<td>Pu(^{239})</td>
<td>0.22 x 10^{-2}</td>
<td>0.89 x 10^{-1}</td>
<td>0.3 x 10^{-4}</td>
<td>1.2 x 10^{-1}</td>
<td></td>
</tr>
<tr>
<td>Pu(^{240})</td>
<td>0.33 x 10^{-1}</td>
<td>0.24 x 10^{-1}</td>
<td>0.6 x 10^{-3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pu(^{241})</td>
<td>0.81 x 10^{-2}</td>
<td>0.13 x 10^{-1}</td>
<td>0.35 x 10^{-3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pu(^{242})</td>
<td>0.75 x 10^{-2}</td>
<td>0.11 x 10^{-2}</td>
<td>0.81 x 10^{-2}</td>
<td>0.75 x 10^{-1}</td>
<td></td>
</tr>
<tr>
<td>Am(^{241})</td>
<td>0.35 x 10^{-3}</td>
<td>0.31 x 10^{-1}</td>
<td>0.84 x 10^{-3}</td>
<td>0.44 x 10^{-3}</td>
<td>0.47</td>
</tr>
<tr>
<td>Am(^{242})</td>
<td>0.84 x 10^{-5}</td>
<td>0.34 x 10^{-4}</td>
<td>0.29 x 10^{-2}</td>
<td>0.16 x 10^{-2}</td>
<td>0.16 x 10^{-2}</td>
</tr>
<tr>
<td>Am(^{243})</td>
<td>0.44 x 10^{-3}</td>
<td>0.24 x 10^{-2}</td>
<td>0.18 x 10^{-2}</td>
<td>0.48 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Cm(^{242})</td>
<td>1.2 x 10^{-4}</td>
<td>0.48 x 10^{-3}</td>
<td>0.16 x 10^{-3}</td>
<td>0.48 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Cm(^{243})</td>
<td>1.3 x 10^{-6}</td>
<td>0.65 x 10^{-5}</td>
<td>0.45 x 10^{-5}</td>
<td>0.76 x 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Cm(^{244})</td>
<td>0.57 x 10^{-4}</td>
<td>0.29 x 10^{-3}</td>
<td>0.14 x 10^{-1}</td>
<td>1.2 x 10^{-5}</td>
<td></td>
</tr>
<tr>
<td>Cm(^{245})</td>
<td>0.44 x 10^{-6}</td>
<td>0.29 x 10^{-5}</td>
<td>0.14 x 10^{-3}</td>
<td>0.15 x 10^{-1}</td>
<td></td>
</tr>
<tr>
<td>Cm(^{246})</td>
<td>0.44 x 10^{-7}</td>
<td>0.31 x 10^{-6}</td>
<td>0.14 x 10^{-1}</td>
<td>0.15 x 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Cm(^{247})</td>
<td>0.22 x 10^{-9}</td>
<td>0.24 x 10^{-8}</td>
<td>0.3 x 10^{-8}</td>
<td>0.35 x 10^{-6}</td>
<td></td>
</tr>
<tr>
<td>Cm(^{248})</td>
<td>0.22 x 10^{-11}</td>
<td>0.24 x 10^{-10}</td>
<td>0.31 x 10^{-8}</td>
<td>0.35 x 10^{-6}</td>
<td></td>
</tr>
<tr>
<td>Bk(^{249})</td>
<td>1.1 x 10^{-15}</td>
<td>0.14 x 10^{-13}</td>
<td>0.36 x 10^{-13}</td>
<td>0.25 x 10^{-11}</td>
<td></td>
</tr>
<tr>
<td>Cf(^{249})</td>
<td>1.1 x 10^{-16}</td>
<td>0.14 x 10^{-14}</td>
<td>0.14 x 10^{-11}</td>
<td>0.24 x 10^{-11}</td>
<td></td>
</tr>
<tr>
<td>Cf(^{250})</td>
<td>1.8 x 10^{-16}</td>
<td>0.96 x 10^{-15}</td>
<td>0.2 x 10^{-12}</td>
<td>0.2 x 10^{-12}</td>
<td></td>
</tr>
<tr>
<td>Cf(^{251})</td>
<td>0.22 x 10^{-16}</td>
<td>0.19 x 10^{-15}</td>
<td>0.5 x 10^{-13}</td>
<td>0.5 x 10^{-13}</td>
<td></td>
</tr>
<tr>
<td>Cf(^{252})</td>
<td>1.1 x 10^{-17}</td>
<td>1.0 x 10^{-16}</td>
<td>0.3 x 10^{-15}</td>
<td>0.14 x 10^{-13}</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

(1) Jaffey, A. H., "Long Term Variation in Composition and Neutron Yield in Pile Plutonium", Nuclear Science and Engineering 1, 3 (1956).

FIGURE 1
Buildup of Plutonium and Trans-Plutonium Isotopes by Neutron Irradiation
FIGURE 2
Burnup of Pu239

FIGURE 3
Atoms Pu238 per Initial Atom Pu239

FIGURE 4
Atoms Pu240 per Initial Atom Pu239

FIGURE 5
Atoms Pu241 per Initial Atom Pu239
FIGURE 6
Atoms Pu242 per Initial Atom Pu239

FIGURE 7
Atoms Am241 per Initial Atoms Pu239

FIGURE 8
Atoms Am242 per Initial Atoms Pu239

FIGURE 9
Atoms Am243 per Initial Atom Pu239
FIGURE 10
Atoms Cm242 per Initial Atoms Pu239

FIGURE 11
Atoms Cm243 per Initial Atom Pu239

FIGURE 12
Atoms Cm244 per Initial Atom Pu239

FIGURE 13
Atoms Cm245 per Initial Atom Pu239
FIGURE 14
Atoms Cm\(^{246}\) per Initial Atom Pu\(^{239}\)

FIGURE 15
Atoms Cm\(^{247}\) per Initial Atom Pu\(^{239}\)

FIGURE 16
Atoms Cm\(^{248}\) per Initial Atom Pu\(^{239}\)

FIGURE 17
Atoms Bk\(^{249}\) per Initial Atom Pu\(^{239}\)
Atoms ^{249}Cf per Initial Atom ^{239}Pu

Atoms ^{250}Cf per Initial Atom ^{239}Pu

Atoms ^{251}Cf per Initial Atom ^{239}Pu

Atoms ^{252}Cf per Initial Atom ^{239}Pu
FIGURE 22
Burnup of Pu240

FIGURE 23
Atoms Pu238 per Initial Atom Pu240

FIGURE 24
Atoms Pu241 per Initial Atom Pu240

FIGURE 25
Atoms Pu242 per Initial Atom Pu240
FIGURE 26
Atoms Am^{241} per Initial Atom Pu^{240}

FIGURE 27
Atoms Am^{242} per Initial Atom Pu^{240}

FIGURE 28
Atoms Am^{243} per Initial Atom Pu^{240}

FIGURE 29
Atoms Cm^{242} per Initial Atom Pu^{240}
FIGURE 30
Atoms Cm243 per Initial Atom Pu240

FIGURE 31
Atoms Cm244 per Initial Atoms Pu240

FIGURE 32
Atoms Cm245 per Initial Atom Pu240

FIGURE 33
Atoms Cm246 per Initial Atom Pu240
FIGURE 34
Atoms Cm247 per Initial Atom Pu240

FIGURE 35
Atoms Cm248 per Initial Atom Pu240

FIGURE 36
Atoms Bk249 per Initial Atom Pu240

FIGURE 37
Atoms Cf249 per Initial Atom Pu240
FIGURE 38
Atoms Cf250 per Initial Atom Pu240

FIGURE 39
Atoms Cf251 per Initial Atom Pu240

FIGURE 40
Atoms Cf252 per Initial Atom Pu240

FIGURE 41
Burnup of Pu241
FIGURE 42
Atoms Pu238 per Initial Atom Pu241

FIGURE 43
Atoms Pu239 per Initial Atom Pu241

FIGURE 44
Atoms Pu240 per Initial Atom Pu241

FIGURE 45
Atoms Pu242 per Initial Atom Pu241
FIGURE 46
Atoms Am241 per Initial Atom Pu241

FIGURE 47
Atoms Am242 per Initial Atom Pu241

FIGURE 48
Atoms Am243 per Initial Atom Pu241

FIGURE 49
Atoms Cm242 per Initial Atom Pu241
FIGURE 50
Atoms Cm243 per Initial Atom Pu241

FIGURE 51
Atoms Cm244 per Initial Atom Pu241

FIGURE 52
Atoms Cm245 per Initial Atom Pu241

FIGURE 53
Atoms Cm246 per Initial Atom Pu241
FIGURE 54
Atoms Cm\(^{247}\) per Initial Atom Pu\(^{241}\)

FIGURE 55
Atoms Cm\(^{248}\) Per Initial Atom Pu\(^{241}\)

FIGURE 56
Atoms Bk\(^{249}\) per Initial Atom Pu\(^{241}\)

FIGURE 57
Atoms Cf\(^{249}\) per Initial Atom Pu\(^{241}\)
FIGURE 58
Atoms ^{250}Cf per Initial Atom ^{241}Pu

FIGURE 59
Atoms ^{251}Cf per Initial Atom ^{241}Pu

FIGURE 60
Atoms ^{252}Cf per Initial Atom ^{241}Pu

FIGURE 61
Burnup of ^{242}Pu
FIGURE 62
Atoms Am\(^{243}\) per Initial Atom Pu\(^{242}\)

FIGURE 63
Atoms Cm\(^{244}\) per Initial Atom Pu\(^{242}\)

FIGURE 64
Atoms Cm\(^{245}\) per Initial Atom Pu\(^{242}\)

FIGURE 65
Atoms Cm\(^{246}\) per Initial Atom Pu\(^{242}\)
FIGURE 66
Atoms Cm247 per Initial Atom Pu242

FIGURE 67
Atoms Cm248 per Initial Atom Pu242

FIGURE 68
Atoms Bk249 per Initial Atom Pu242

FIGURE 69
Atoms Cf249 per Initial Atom Pu242
FIGURE 70
Atoms ^{250}Cf per Initial Atom ^{242}Pu

FIGURE 71
Atoms ^{251}Cf per Initial Atom ^{242}Pu

FIGURE 72
Atoms ^{252}Cf per Initial Atom ^{242}Pu

FIGURE 73
Burnup of Am241
FIGURE 74
Atoms ^{238}Pu per Initial Atom ^{241}Am

FIGURE 75
Atoms ^{239}Pu per Initial Atom ^{241}Am

FIGURE 76
Atoms ^{240}Pu per Initial Atom ^{241}Am

FIGURE 77
Atoms ^{241}Pu per Initial Atom ^{241}Am
Atoms Pu242 per Initial Atom Am241

Atoms Am242 per Initial Atom Am241

Atoms Am243 per Initial Atom Am241

Atoms Cm242 per Initial Atom Am241
FIGURE 82
Atoms Cm243 per Initial Atom Am241

FIGURE 83
Atoms Cm244 per Initial Atom Am241

FIGURE 84
Atoms Cm245 per Initial Atom Am241

FIGURE 85
Atoms Cm246 per Initial Atom Am241
FIGURE 86
Atoms Cm247 per Initial Atom Am241

FIGURE 87
Atoms Cm248 per Initial Atom Am241

FIGURE 88
Atoms Bk249 per Initial Atom Am241

FIGURE 89
Atoms Cf249 per Initial Atom Am241
FIGURE 90
Atoms ^{250}Cf per Initial Atom ^{241}Am

FIGURE 91
Atoms ^{251}Cf per Initial Atom ^{241}Am

FIGURE 92
Atoms ^{252}Cf per Initial Atom ^{241}Am

FIGURE 93
Burnup of ^{243}Am
FIGURE 94
Atoms Cm244 per Initial Atom Am243

FIGURE 95
Atoms Cm245 per Initial Atom Am243

FIGURE 96
Atoms Cm246 per Initial Atom Am243

FIGURE 97
Atoms Cm247 per Initial Atom Am243
FIGURE 98
Atoms Cm248 per Initial Atom Am243

FIGURE 99
Atoms Bk249 per Initial Atom Am243

FIGURE 100
Atoms Cf249 per Initial Atom Am243

FIGURE 101
Atoms Cf250 per Initial Atom Am243
FIGURE 102
Atoms Cf251 per Initial Atom Am243

FIGURE 103
Atoms Cf252 per Initial Atom Am243

FIGURE 104
Burnup of Cm244

FIGURE 105
Atoms Cm245 per Initial Atom Cm244
FIGURE 106
Atoms Cm\(^{246}\) per Initial Atom Cm\(^{244}\)

FIGURE 107
Atoms Cm\(^{247}\) per Initial Atom Cm\(^{244}\)

FIGURE 108
Atoms Cm\(^{248}\) per Initial Atom Cm\(^{244}\)

FIGURE 109
Atoms Bk\(^{249}\) per Initial Atom Cm\(^{244}\)
FIGURE 110
Atoms ^{249}Cf per Initial Atom ^{244}Cm

FIGURE 111
Atoms ^{250}Cf per Initial Atom ^{244}Cm

FIGURE 112
Atoms ^{251}Cf per Initial Atom ^{244}Cm

FIGURE 113
Atoms ^{252}Cf per Initial Atom ^{244}Cm
INTERNAL DISTRIBUTION

<table>
<thead>
<tr>
<th>Copy Number</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R. J. Brouns</td>
</tr>
<tr>
<td>2</td>
<td>L. P. Bupp</td>
</tr>
<tr>
<td>3</td>
<td>Helen H. Burley</td>
</tr>
<tr>
<td>4</td>
<td>R. L. Dickeman</td>
</tr>
<tr>
<td>5</td>
<td>J. E. Faulkner</td>
</tr>
<tr>
<td>6</td>
<td>P. F. Gast</td>
</tr>
<tr>
<td>7</td>
<td>L. H. McEwen</td>
</tr>
<tr>
<td>8</td>
<td>J. M. Nielsen</td>
</tr>
<tr>
<td>9</td>
<td>W. H. Reas</td>
</tr>
<tr>
<td>10</td>
<td>J. R. Triplett</td>
</tr>
<tr>
<td>11</td>
<td>E. E. Voiland</td>
</tr>
<tr>
<td>12</td>
<td>F. P. Brauer</td>
</tr>
<tr>
<td>13 - 17</td>
<td>Extra</td>
</tr>
<tr>
<td>18</td>
<td>300 File</td>
</tr>
<tr>
<td>19</td>
<td>Record Center</td>
</tr>
<tr>
<td>20 - 23</td>
<td>G. E. Technical Data Center, Attn: A. Cohen</td>
</tr>
</tbody>
</table>