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ABSTRACT

This paper describes the Purex Process, which employs solvent

extraction to separate and purify uranium and plutonium from each other

and from fission products contained in irradiated uranium fuel elements.

A description of the over-all process, utilizing tri-butyl phosphate solvent

(in a kerosene-type diluent) and nitric acid salting agent, is provided

along with chemical process flowsheets. The process chemistry of

uranium, plutonium, and fission products is discussed as affected by process

variables. Methods of recovery of spent solvent and acid are briefly dis-

cussed. Alternate process arrangements are suggested.
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THE PUREX PROCESS - A SOLVENT EXTRACTION

REPROCESSING METHOD FOR IRRADIATED URANIUM

I. INTRODUCTION

The Purex Process is another continuous solvent extraction process

which has been developed and demonstrated through laboratory and pilot

plant work to recover and purify uranium and plutonium from irradiated

uranium fuel. This process performs the same functions and has the same

products as the Redox Process, but it differs in the use of solvent and salt-

ing agent. Whereas the Redox Process utilizes hexone, methyl isobutyl

ketone, for a solvent and aluminum nitrate for a salting agent, The Purex

Process utilizes tri-butyl phosphate as the solvent and nitric acid as the

salting agent. Advantages of the Purex Process stem primarily from the

following points: (1) the tri-butyl phosphate solvent system is safer as a

result of the higher flash point and lower volatility of the solvent, and (2)

the nitric acid salting agent is readily recoverable (by distillation), permit-

ting much lower requirements for both waste storage and essential materials.

Aside from these two differences, the two processes parallel each other

considerably.

The tri-butyl phosphate, solvent extraction, fuel-processing system

involves a maximum of six major steps:

1. Extraction of uranium and plutonium from aqueous solutions

into the organic TBP-diluent phase.

2. Partitioning of the uranium and plutonium.

3. Decontamination and recovery of the uranium.

4. Decontamination and recovery of the plutonium.

5. Solvent recovery.

6. Nitric acid recovery (including waste concentration).

All six of these steps will be briefly discussed in this paper, along

with an over-all chemical flowsheet, one of several which are feasible.

UNCLASSIFIED
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Preparation of the feed solution to the Purex Process was discussed in

the previous paper. Solvent extraction contacters for carrying out the

process will be discussed in the subsequent paper. Auxiliary processes

(such as head-end treatment of feeds and tail-end treatments on product

solutions) will be discussed in another session.

II. BASIC PROCESS PRINCIPLES

It is not within the scope of this paper to discuss comprehensively

all the process chemistry of the Purex Process. Rather, it is the intent

to present some highlights which will lend understanding of the process.

Detailed comprehensive data must be derived from the development litera-

ture.

A. Solvent Action of TBP

The solvent action of tri-butyl phosphate depends on its complexing

action. For example: uranyl nitrate reacts with TBP according to the

reaction:

UO2+2(aq)+2 NO3(aq)+2 TBP(org)-; UO 2 (NO3) 2 . 2 TBP(org).

If we define KU as equal to the equilibrium constant for this reaction, we

can write the useful relationship defining the distribution coefficient (i. e. ,

the ratio of the concentration of uranium in the organic phase to that in the

aqueous phase),

Eo/aU = KU (No3(aq)) 2 (TBP (org) 2

where the (NO 3 ~) concentration is the aqueous phase concentration and the

TBP concentration is the uncomplexed TBP concentration in the organic

phase. Since uranyl nitrate does not form a perfect solution in water under

process conditions, K is not constant for the equilibrium expressed but

varies somewhat with the concentration of the various solution components.
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However, inspection of the equation provides a generally correct explana-

tion of the nature and magnitude of the effects of the concentrations of uranyl

nitrate, nitric acid, and TBP on the distribution ratio of uranyl nitrate.

A similar analysis to that for uranyl nitrate may be applied for the solvent

extraction of plutonium IV. However, the concentration of the plutonium

itself may usually be neglected in the analysis since the plutonium concen-

tration is almost invariably low enough for its self-salting and solvent-

saturating effects to be insignificant. Thus, for plutonium IV:

Eo/aPu = KPu (NO 3 ~(aq ) 4 (TBP(org) 2 .

Again the TBP concentration in the organic phase is the uncomplexed TBP

concentration, and if uranium is also present, this fact must also be taken

into account. These relationships show the effect of the nitrate ion concen-

tration in the aqueous phase on the distribution coefficients. This effect is

defined as the "salting" effect. Fortunately, the degree of TBP complexing

of fission products is much less than that of uranium and plutonium; thus,

a high degree of separation is possible.

B. Typical Distribution Coefficients

In Table I the relative order and magnitude of TBP extraction of

uranium,plutonium,nitric acid, and the principal troublesome fission products

contained in "aged" irradiated uranium are indicated:

TABLE I

Distribution Coefficients for Uranium, Plutonium and Fission
Products for Extraction from Feed, 25 C.

ION Eo/a
U(VI) 8. 1

Pu(IV) 1. 55

Pu(VI) 0. 62

HNO3 0. 07
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TABLE I (Contd. )

ION Eo/a

Zr 0.02

Ru 0.01

Pu III 0. 008

Nb 0. 005

Rare Earths 0. 002

Aqueous phase before equilibration: 3M HNO3

200 grams U per liter
tracer level

Organic phase (30% TBP) after equilibration: 60% saturation

It is evident from this tabulation that uranium and plutonium IV

are very extractable and that the fission products (zirconium, ruthenium,

niobium, and rare earths) and plutonium III are quite inextractable.

This characteristic difference between uranium and plutonium IV and the

fission products permits the decontamination of uranium and plutonium.

The extreme difference between the distribution coefficients for uranium

and plutonium IV and that of plutonium III is the property which permits

separation of uranium and plutonium from each other, and this will be

discussed later.

Two terms in Table I need explanation. The TBP is diluted with

a hydrocarbon diluent to 30 volume per cent in the Purex Process. This

is done in order to give the solvent phase a low enough specific gravity

(i. e. specific gravity of 0. 841 at 25 C, which increases to 0. 975 when the

TBP is 85 per cent saturated) so that it can flow by gravity up through the

contacting aqueous phase. (In the Halex Process, the TBP is diluted with

carbon tetrachloride, and the aqueous phase flows upwards through the

organic phase). The second term needing definition is "saturation" as

applied to TBP. The TBP is considered to be 100 per cent saturated when
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all of it is complexed with uranium; for a 30 volume per cent TBP solution,

a concentration of 124 grams uranium per liter represents complete satura-

tion.

C. Variation of Distribution Coefficients with Nitric Acid

In Table II are tabulated some distribution coefficients for uranium,

plutonium and fission products at varying nitric acid concentrations in

order to illustrate the effect of variations in the nitrate salting strength on

the distribution coefficients.

TABLE II

Variations in Distribution Coefficients as a Function
of Aqueous HNO3 Concentration

HNO3_
U Pu IV Ru Zr Nb Rare Earths

0.5 1.18 0.10 0. 0073 0.0007 0.0001 0.0004
2 2.84 0.46 0. 0031 0.0031 0.0003 0.0005
3 3.28 0.59 0.0009 0.001 0.0004 0.0004
4 4.28 1.11 0.0005 0.024 0.0012 0. 0004
5 4.16 1.55 0.0002 - 0.0018 0.0002
6 3.61 2. 62 0.0002 0.089 0. 0032 0.0001

Aqueous phase before equilibration: tracer level
200 grams U per liter

Organic phase (30% TBP) after equilibration: 80% saturation

It is evident from the data presented in this table that the uranium

and plutonium distribution coefficients increase markedly as the nitrate

salting effect increases, and zirconium and niobium follow in a similar

manner, still sufficiently lower, however, to permit decontamination of

the uranium and plutonium. However, the ruthenium distribution coefficients

follow an inverse pattern. Thus, for optimum separation of the troublesome

fission products from uranium and plutonium, a nitric acid concentration in

the medium range (e. g., 2 to 3_M HNO3 ) must be selected.

UNCLASSIFIED
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D. Variation of Distribution Coefficients with Saturation

In Table III are tabulated some distribution coefficients for

uranium, plutonium, and fission products at varying uranium saturations of

the solvent in order to illustrate the effect of the availability of uncomplexed

TBP on the distribution coefficients.

TABLE III

Uranium
Saturation
of TBP, Eo/a at 25 C
Per Cent U Pu IV Ru Zr Rare Earths

28.0 16.7 4.0 0.067 0.041 0.0096
45.6 12.1 2. 3 0.028 0.025 0.0048
61. 7 7. 9 1. 6 0. 0096 0. 020 0. 0021
72. 0 5.4 1.1 0.0037 0.012 0.0011
82.4 3.6 0. 79 0.0016 0.009 0.0004

Aqueous phase before equilibration: 3 M HNO3

tracer level

Organic (30% TBP)-to-aqueous ratio: 2 to 1

As would be expected, the uranium distribution coefficient decreases

as 100 per cent saturation is approached because of the lower concentration

cf uncomplexed TBP. The distribution coefficients for the other ions

decrease in a similar manner.

E. Chemistry of Plutonium in Purex Process

Three chemical reactions of plutonium valence adjustment are impor-

tant to permit quantitative plutonium recovery in the process and a high

degree of separation of uranium and plutonium. The first reaction represents

the reduction of hexavalent plutonium to tetravalent plutonium, the most

extractable valence state:

PuO2+2 + NO2~+ 2H+ Pu+4 + NO3 + H2O.

UNCLASSIFIED
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The nitrite ion can be added to the solution either as a salt (e. g. , NaNO 2 )

or as a gas (e. g. , NO 2 ), and the reaction is rapid, being essentially

complete in a few minutes at 50 C.

The second reaction indicating the reduction of plutonium IV to

plutonium III by ferrous ion is likewise almost instantaneous:

Pu+4 + Fe+2 + (NH 2 SO3  - Pu+3 + Fe+3 + (NH 2 SO3 )'
Ferrous ion (added as ferrous sulfamate) is used as the reductant,

with the sulfamate ion acting as a nitrite suppressor. If the sulfamate ion

were not present, low concentrations of nitrite ion (always found in nitrate

systems in the absence of sulfamate or some similar ion) would initiate

the autocatalytic oxidation of the ferrous ion, thus preventing plutonium

reduction. A several-fold excess of ferrous sulfamate is used to assure

a reducing solution. When reoxidation of the plutonium is again desired,

the reaction indicated by the third equation is initiated, again using the

nitrite ion but this time as an oxidant:

2NH2SO3 + 2NO2 - 2N2 + 2SO4-2 + 2H20 followed by

6Pu+3 + 2NO2+ 8H+ - 7 6 Pu+4 + N2 + 4H20.

The nitrite ion is an ideal oxidizing agent because of its ability

to oxidize plutonium only to the tetravalent state, the most extractable

form for further processing. You will note that sulfate ion is formed, and

if excessive amounts of sulfate ion are formed, plutonium sulfate is formed

which is inextractable during subsequent solvent extraction processing.

Thus, the chemical flowsheet must be defined to minimize formation of

this complex.

One other characteristic of tetravalent plutonium should be mentioned.

In low acidities, dependent upon the plutonium concentration and total nitrate

concentrations, an inextractable polymeric species of plutonium may form.
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This material is a polymeric hydroxide usually containing approximately

four hydroxyl groups per plutonium atom. At elevated temperatures this

polymer will become colloidal or even precipitate from solution.

Acidities specified in chemical flowsheets must be high enough to prevent

polymer formation.

III. PROCESS DESCRIPTION AND CHEMICAL FLOWSHEET

The chemical flowsheet for the Purex solvent extraction process is

determined by a quantitative study of the basic process principles outlined

above. That is, the compositions, concentrations, and flow ratios of the

various process streams must be selected so that quantitative recovery of

uranium and plutonium is assured and so that the desired separation of the

fission products is obtained. The actual operating conditions defined must

always be a compromise between those which are optimum for high decon-

tamination of uranium and plutonium and those which are optimum for high

product recoveries. Studies to determine these conditions must resolve

the complete picture on distribution ratios for all components in the system

and their inter-relationships. It is not within the scope of this paper to

present a complete coverage of these data. Solvent extraction contacters

for performing the Purex Process separations are designed by application

of the basic engineering principles to the chemical system defined. The

operating diagram is used as the basic tool for design of the mass-transfer

equipment to determine the number of transfer units required for the

desired separations. Then actual contacter operation under the defined

chemical flowsheet conditions is necessary to predict the size of the equip-

ment required to provide the necessary transfer units. A discussion of the

pulse column contacter application to the Purex Process will be presented

in the subsequent paper, and over-all pulse column heights required to

achieve the desired separations will be presented. The "low-acid" chemi-

cal flowsheet defined in Figure 7 and to be discussed below is one of several

satisfactory Purex Process flowsheets which has been developed as a result

of laboratory and pilot plant studies and is one which will give satisfactory

performance with the pulse columns to be specified in the following paper.

The solvent extraction flowsheet portion of the process is most easily discussed

in terms of cycles and typical columns.
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A. Co-Decontamination Cycle Flowsheet, HA Column

In Figure 1 the HA Column accomplishes the primary separation of

the highly radioactive feed solution into an organic product stream and a

first-cycle aqueous waste stream containing greater than 99. 9 per cent of

the fission products. The feed solution (HAF) from the dissolvers and feed

preparation equipment is fed continuously to the midpoint of the HA Column

and flows downward into the extraction section countercurrent to an upward

flow of organic extractant (HAX). Conditions of flow and salting strength are

regulated in such a manner that the uranium VI and the plutonium IV are

coextracted almost quantitatively into the organic phase, leaving most of

the fission products and other impurities in the aqueous phase. Some fission

products are extracted, however, by the solvent at the feed point and in the

lower portion of the column, but these are partially backwashed or "scrubbed"

into an aqueous nitric acid scrub stream (HAS) flowing countercurrent to the

product-bearing solvent stream in the upper (scrub) section of the compound

column. The bulk of the impurities and nitric acid leave the bottom of the

column in the aqueous effluent stream (HAW) which is sent to acid recovery.

The acid recovery flowsheet will be discussed later. The product bearing

stream (HAP) is cascaded from the top of the HA Column to the bottom of

the HC Column.

HC Column

The HAP enters the bottom of the HC Column and is contacted by a

countercurrent flow of aqueous strip solution (HCX). The uranium and

plutonium are stripped back into the aqueous phase. A trace of nitric acid

is added to the HCX stream to decrease the susceptibility of the HC system

to emulsification. The product-free organic (HCW) is sent to solvent

treatment (also to be described later), and the aqueous-effluent (HCP)

containing the uranium and plutonium is steam-stripped of residual dissolved

and entrained organic phase, then concentrated to meet Partition Cycle feed

specifications. After one complete cycle the products are generally decon-

taminated from the gross fission products by a factor of 103 to 10, and
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additional decontamination may be needed to meet the product-purity

requirements. Product recoveries may approximate 99. 9 per cent.

B. Partition Cycle (Figure 2) lA Column

The product-bearing stream overflows from the Co-Decontamination

Cycle concentrator into the lA Column feed preparation section where any

plutonium (VI) formed within the concentrator is stabilized as plutonium (IV)

by reduction with sodium nitrite. Ruthenium and zirconium-niobium are

the principal remaining fission products in the lA Column feed (1 AF). The

1 AF is pumped continuously to the mid-point of the lA Column. The lA

Column is operated as a decontamination column in a manner analogous to

that described previously for the HA Column. The organic-product stream

(lAP) overflows the lA Column and is combined with the organic effluent of

the 1B Scrub Column (to be described later) to form IBXF.

IBX Column

The combined organic effluent of the lA and 1BS Columns (IBXF)

is pumped to the bottom of the IB Extraction (IBX) Column. As the organic

rises through the IBX Column, it is contacted with a countercurrent flow

of slightly acidified ferrous sulfamate solution (IBX). Ferrous iron in the

aqueous phase reduces the plutonium from valence IV to valence III, which

is only weakly complexed by the solvent, thus permitting the plutonium (III)

to be extracted into the aqueous phase. Some uranium also tends to strip

out of the solvent into the aqueous phase, but the majority is held in the

organic by the high salting strength of nitric acid refluxed within the column.

The aqueous effluent from the IBX Column (IBXP) containing the plutonium

and approximately one per cent of the uranium is fed to the top of the IBS

Column. The organic effluent (IBU containing the uranium cascades to

the IC Column).

IBS Column

The uranium present in the IBXP is stripped by contacting with fresh

30 per cent TBP (IBS) in the IBS Column. The uranium-bearing organic
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stream (IBSU) overflows the IBS Column and is routed to combine with

the IAP to form the IBXF stream, previously described. The plutonium

bearing stream (IBP) leaves the bottom of the IBS Column and passes to

the Final Plutonium Cycle.

After two complete cycles the plutonium is decontaminated from

gross fission products by a factor up to 5 x 105, and additional decontamina-

tion may be generally required to meet product-purity requirements.

Partition Cycle plutonium decontamination factors are typically 20 to 50.

Product recoveries in the range of 99. 9 per cent may be accomplished.

IC Column

The uranium bearing stream (IBU) overflows the IBX Column and

flows into the bottom of the IC Column. The uranium is transferred into

the aqueous phase in the IC Column by countercurrent extraction in a

manner comparable to that of the HC Column. The product-free solvent

(ICW) is sent to solvent recovery. The aqueous effluent (ICU) is steam-

stripped of residual organic phase, and concentrated in the ICU concentrator

to meet Final Uranium Cycle feed specifications.

After two complete cycles the uranium is decontaminated from gross

fission products by a factor up to 1 x 106, and additional decontamination

may be required to meet product purity requirements. Partition Cycle

uranium decontamination factors are typically 50 to 100. Uranium recoveries

may approximate 99. 9 per cent.

C. Final Uranium Cycle (Figure 3) Feed Preparation

The Final Uranium Cycle completes the removal of fission products

and plutonium from the uranium to permit direct handling of the uranium

product. Of the fission products originally present, on the order of 0. 01

per cent remain in the feed, along with a small amount of plutonium.

Zirconium, niobium, and ruthenium remain as the principal fission product

contaminants, although the ratio of ruthenium to zirconium-niobium will

vary considerably in different flowsheet variations.
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Two-cycle pilot plant studies demonstrated that additional ruthenium

decontamination in the 2D Column may be obtained by incorporation of a

nitrite simmer step into the 2D Column feed preparation. In this treatment,

the feed is digested with 0. 05 M sodium nitrite to convert most of the

ruthenium to a chemical form, thought to be a nitroso complex, which is

relatively inextractable in TBP. Air sparging is necessary to destroy

excess nitrous acid and prevent subsequent reaction with ferrous sulfamate.

The three-cycle Purex variation currently being discussed does not require

the nitrite simmer step to obtain uranium of low gamma activity.

The salting strength of the 2D Column feed'(2DF) may be adjusted, if

desired. Ferrous sulfamate added to the feed or the scrub reduces any

plutonium to the aqueous -favoring (III) valence state.

2D Column

The ZD Column operates as a decontamination column in a manner

analogous to that described previously for the HA and lA Columns with the

following exceptions: a) trace amounts of plutonium follow the aqueous

phase; and b) "dual" scrub streams are used. The 2DF enters the mid-

point of the column as previously described for the A-type column. In the

scrub section a nitric acid scrub stream (2DIS) is introduced one or two

stages below a water scrub stream (2DS) which enters the top of the column.

Both nitric acid and metallic impurities are removed from the uranium

stream, thereby controlling 2EU Concentrator corrosion rates (by lowering

the HNO 3 /U ratio) and increasing final product purity. The aqueous waste

stream (2 DW) containing the bulk of the fission products, plutonium, and

nitric acid is sent to acid recovery, and the organic uranium bearing stream

(2 DU) enters the bottom of the 2E Column.

2E Column

In the 2E Column the uranium is stripped into the aqueous phase.

The dilute uranium product stream (2EU) is steam-stripped and concentrated.

The concentrated uranium nitrate product solution is now ready for further
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processing. The uranium-free organic (2EW) is sent to organic recovery.

Final cleanup by silica gel treatment may be desired; such a treatment

process will be discussed in a later session.

After three complete extraction cycles, the uranium is decontamin-

ated from gross fission products by a factor of about 1 x 107, and from

plutonium by a factor of 1 x 106. Since the residual activity in the feed is

very low compared to solid phase impurities that tend to collect within a

column. Final Uranium Cycle decontamination factors may vary in the

range of 10 to 1000. Final Uranium Cycle product recoveries of 99. 9 plus

per cent ray be obtained.

D. Final Plutonium Cycle (Figure 4) 2A Column

The 2A Column completes the removal of fission products and iron

from the plutonium so that the product purity requirements are met. The

principal remaining fission products are zirconium-niobium. The dilute

plutonium stream (IBP) undergoes a continuous feed makeup operation in

which plutonium III is oxidized to plutonium IV by sodium nitrite addition,

and the salting strength is adjusted by nitric acid addition. The feed (2AF)

enters the mid-point of the column and the plutonium is extracted by a

countercurrent flow of solvent (2AX) in a manner similar to the HA and IA

Columns except uranium is absent, and the salting strength of the extraction

section is maintained higher to overcome the adverse effect of sulfate

(from hydrolysis of ferrous sulfamate) in the 2AF. As the plutonium-bearing

organic stream rises into the scrub section of the column, a countercurrent

flow of dilute acid (2AS) completes the separation from residual activity.

The waste stream (2AW) is sent to acid recovery, and the plutonium-bearing

solvent stream (2AP) cascades to the bottom of the 2B Column.

2B Column

The 2B Column strips the plutonium from the organic phase into an

aqueous phase containing dilute nitric acid (2BX). The dilute plutonium

product stream (2BP) is steam-stripped and concentrated to the desired
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plutonium nitrate concentration. An alternative 2B Column flowsheet may

be desirable if direct coupling to plutonium ion exchange is desired. The

ZAP may be contacted with an aqueous hydroxylamine sulfate solution (2BX)

in the 2B Column. Plutonium IV is thereby reduced to plutonium III (most

favorable valence state for cation exchange) and transferred into the aqueous

phase. Stripped solvent (ZBW) is sent to solvent recovery. Ion exchange

tail-end processes for plutonium purification and concentration will also be

discussed in a later session.

After three complete extraction cycles, the plutonium is decontam-

inated from gross fission products by a factor of 107 to 108 or more, and

from uranium by a factor of 106. Final Plutonium Cycle decontamination

factors are typically 103 to 104. Plutonium product recoveries of 99. 9 per

cent may be obtained.

E. Solvent Treatment (Figure 5)

The solvent treatment flowsheet illustrated (Figure 8) is typical of

each of two solvent systems required by the solvent extraction process. The

first system is a relatively high activity system which serves the first two

cycles (HAX, LAX, IBS). Solvent in the second system is much lower in

activity (i. e., as much as 500-fold lower) and is used for the final decontam-

ination cycles (ZAX and ZDX). If such a segregation were not used, the

decontamination performance of the final cycles would be inferior and inad-

equate for achieving the high purifications desired. The solvent treatment

systems are simple in concept in that they merely provide washes of the

recycled solvent from the stripping columns (HC, IC, 2E, and 2B) with a

dilute solution of sodium carbonate (2-5 weight per cent) plus centrifugation

of the washed solvent to remove entrained aqueous phase and solids prior

to re-use of the solvent. For most effective washing conditions, the system

is run at an elevated temperature (ca 50 C) to reduce phase disengagement

times, and the columns are run with the organic phase continuous to provide

adequate contact time (ca 20-30 minutes). The need for such a washing

procedure is related to the formation in the solvent extraction process
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of hydrolysis products of TBP, namely dibutyl phosphate (DBP), monobutyl

phosphate (MBP), and phosphoric acid, primarily DBP. Both the DBP and

MBP have a marked effect on plutonium behavior in the Purex Process, the

DBP for its strong complexing of plutonium IV and the MBP for its tendency

to form a precipitate with plutonium IV. Both DBP and MBP form weak

complexes with plutonium III and neither affects the plutonium III distribution

ratio appreciably. However, owing to the complexing action of DBP on

plutonium IV, plutonium IV losses during stripping become excessive unless

the DBP concentration of the solvent is kept below 0. 001 per cent. Similar

behavior exists with uranium also. Because both MBP and DBP are acidic

in nature, they are readily removed from the used solvent with the dilute

sodium carbonate wash. Dilute caustic is also satisfactory for DBP and

MBP removal, but it will precipitate uranium and plutonium whereas

sodium carbonate forms soluble complexes of these metallic ions.

The carbonate wash also is used to remove residual uranium,

plutonium, and fission products (primarily ruthenium, zirconium, and

niobium) from the solvent before recycle. With this simple washing procedure,

solvent quality is maintained at a satisfactory quality for continued recycle.

Process degradation of the diluent, a kerosene-type hydrocarbon,

under normal conditions is not a serious problem. However, the hydro-

carbon selected should be one of high purity, low in unsaturated compounds

and preferably non-cyclic in nature for maximum stability to radiation and

chemical degradation. A diluent having a high flash point is desirable to

minimize safety hazards. The sodium carbonate wash has essentially no

beneficial effect on diluent quality and continued development work is in

progress to determine the most satisfactory commercial diluents and to

devise chemical means for overcoming process degradation of diluents.

F. Nitric Acid Recovery (Figure 6)

The nitric acid recovery flowsheet illustrated (Figure 9) consists of

a two-stage distillation and absorption and fractionation. The economic

incentive for acid recovery from extraction wastes is based primarily on
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savings of waste storage space, with relatively minor savings resulting

from the decrease in nitric acid and sodium hydroxide (for neutralization)

consumption. In properly sized equipment, the degree of acid recovery is

limited only by the maximum allowable concentration factor which is per-

mitted before the formation of excessive solids (from sodium nitrite and

ferrous sulfamate). You will note in the flowsheet that the first-cycle waste

acid (HAW) is recovered by a double distillation (to permit adequate decon-

tamination of the recovered acid) whereas the other acid waste is only dis-

tilled once prior to absorption and fractionation. The degree of acid recovery

is controlled by adjusting the feed and concentrate acidities so that the feed

acidity is approximately equal to the vapor concentration in equilibrium with

the concentrate. In this manner the majority (85-95 per cent) of the acid

is distilled and then can be fractionated to 50 to 60 weight per cent nitric

acid by conventional means. The high-activity acid concentrate (6 to 10

M HNO 3 ) is neutralized and sent to underground storage where further self-

concentration (from the heat of fission product decay) can be achieved. This

concept will be discussed in more detail in a later session.

Decontamination factors across a double-distillation system (gross

gamma DF on the order of 1 x 106 to 10 ) are sufficient to allow use of the

recovered nitric acid in all process streams except the final-cycle scrub

streams. Ruthenium volatilization may become excessive at high (8 to 10 M)

nitric acid concentrations, but this volatilization may be suppressed by the

presence of low concentrations (ca 0. 03 M) of nitrite ion, either added

directly or formed by the reaction of entrained diluent with nitric acid.

An alternate to the flowsheet shown would be to route the 2WW acid

concentrate to the HAF rather than to the IWF for disposal. By utilizing this

alternate, the small quantities of uranium and plutonium contained therein

can be recovered instead of discarded. If this alternate is used, TBP must

be prevented from entering the waste system, since excessive hydrolysis

products of TBP (DBP and MBP) could be recycled and result in high plutonium

and uranium losses from the HC Column in addition to lowering the decon-

tamination factor obtained in the HA Column.
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A second reason for preventing the accumulation of TBP in the

acid concentrator is related to chemical safety. TBP will form complexes

with nitric acid (and also uranyl nitrate) which, if concentrated to a high

degree, can result in an exothermic decomposition reaction of explosive

violence. Purex Process conditions do not approach those required for such

reaction. However, for process safety the product and acid concentrators

should be protected to prevent such conditions from arising accidentally.

Protection is readily possible since the reactions will not take place at

atmospheric pressure until the mixture reaches 135 C for uranyl nitrate-

TBP complexes and 150 C for nitric acid-TBP complexes. Limitingthe

maximum temperature of the sytem provides an adequate safeguard.

IV. ALTERNATE PROCESS ARRANGEMENTS

As mentioned earlier the flowsheet and flow patterns just discussed

(Alternate A in Table IV) are only one variation of several satisfactory

arrangements of the Purex Process. Other satisfactory chemical flow-

sheets with alternate A (i. e., three-cycle decontamination) can also be

demonstrated, utilizing variations in the acidities of different feed solutions.,

different flow ratios, concentrations of TBP, etc. However, even more

versatility of the Purex Process can be achieved by utilizing various head-end

TABLE IV

Alternate Purex Process Arrangements

Head-End Solvent Extraction Tail-End
Treatments Cycles Treatments

U Pu U Pu

A - 3 3 - -

B x 2 2 x x

C - 2 2 x x

D - 2 2 - -

E x 1 1 x x
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and/or tail-end treatment steps (to be discussed in a later session) to

remove specifically troublesome fission products or to overcome peculiar

problems. Alternate B, incorporating all three types of decontamination

processes (but only two solvent extraction cycles) can be as efficient as

alternate A in product recovery and decontamination. On the basis of

known technology now, Purex Process flowsheets can be developed to give

very satisfactory performance under conditions of alternates C and D. As

we move toward overall process simplicity represented by these alternates,

the quality of process control must improve and complexity within the process

increases, but the over-all decontamination performance can still closely

approach the processes requiring more solvent extraction cycles. Of course,

if the decontamination requirements for the fuel reprocessing system are

not as stringent as those indicated in the previous discussion, the more

simple alternates of C or D can certainly be used. Because of its versatility

and lowest requirements for capital equipment, alternate E is especially

attractive. Although process technology is not yet to thepoint where such

a combination of processes will achieve the high decontamination factors

stated previously, research and development work shows promise that by

a combination of refinements to process chemistry, process control, and

processing equipment, such a process arrangement will be entirely satis-

factory for adequate separation and decontamination.
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