Most industrially important carbons are produced from naturally occurring materials such as coal, oil, peat or wood by some form of thermal process. Chars are obtained from those natural materials as a residue after removal of the volatile matter. Chars (prepared from coal or other organic precursors) are non-graphitizable carbons, meaning that they cannot be transformed into graphitic carbon. Chars are comprised of elementary crystallites in parallel layers which are randomly oriented with respect to each other and are crosslinked together through weak bonds. Voids between crystallites determine the porosity of the char, and this plays an important role in ...
continued below
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this report.
Follow the links below to find similar items on the Digital Library.
Description
Most industrially important carbons are produced from naturally occurring materials such as coal, oil, peat or wood by some form of thermal process. Chars are obtained from those natural materials as a residue after removal of the volatile matter. Chars (prepared from coal or other organic precursors) are non-graphitizable carbons, meaning that they cannot be transformed into graphitic carbon. Chars are comprised of elementary crystallites in parallel layers which are randomly oriented with respect to each other and are crosslinked together through weak bonds. Voids between crystallites determine the porosity of the char, and this plays an important role in char gasification behavior. Chars usually contain a pore size distribution, in which the larger macro- and mesopores play an important role in transport of reactants into the much smaller micropores, in which most gasification and combustion take place. Therefore, the effectiveness of micropores in gasification depends heavily on the numbers of meso- and macropores.
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Suurerg, E.M.; Lilly, W.D. & Aarna, I.Kinetics and Mechanisms of NO(x) - Char Reduction.,
report,
December 31, 1997;
United States.
(digital.library.unt.edu/ark:/67531/metadc690356/:
accessed February 23, 2019),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.