You limited your search to:

 Degree Discipline: Engineering Systems
Effects of Processing Techniques on Mechanical Properties of Selected Polymers

Effects of Processing Techniques on Mechanical Properties of Selected Polymers

Date: May 2013
Creator: Dong, Yao
Description: The mechanical properties of a polymer represent the critical characteristics to be considered when determining the applications for it. The same polymer processed with different methods can exhibit different mechanical properties. The purpose of this study is to investigate the difference in mechanical properties of the selected polymers caused by different processing techniques and conditions. Three polymers were studied, including low density polyethylene (LDPE), polypropylene (PP), and NEXPRENE® 1287A. Samples were processed with injection molding and compression molding under different processing condition. Tensile and DMA tests were performed on these samples. The acquired data of strain at break from the tensile tests and storage modulus from the DMA were utilized to calculate brittleness. Calculated brittleness values were used to perform analysis of variance (ANOVA) to investigate the statistical significance of the processing technique and condition. It was found that different processing techniques affect the brittleness significantly. The processing technique is the major factor affecting brittleness of PP and NEXPRENE, and the processing temperature is the major factor affecting brittleness of LDPE.
Contributing Partner: UNT Libraries
Hardware and software codesign of a JPEG2000 watermarking encoder.

Hardware and software codesign of a JPEG2000 watermarking encoder.

Date: December 2008
Creator: Mendoza, Jose Antonio
Description: Analog technology has been around for a long time. The use of analog technology is necessary since we live in an analog world. However, the transmission and storage of analog technology is more complicated and in many cases less efficient than digital technology. Digital technology, on the other hand, provides fast means to be transmitted and stored. Digital technology continues to grow and it is more widely used than ever before. However, with the advent of new technology that can reproduce digital documents or images with unprecedented accuracy, it poses a risk to the intellectual rights of many artists and also on personal security. One way to protect intellectual rights of digital works is by embedding watermarks in them. The watermarks can be visible or invisible depending on the application and the final objective of the intellectual work. This thesis deals with watermarking images in the discrete wavelet transform domain. The watermarking process was done using the JPEG2000 compression standard as a platform. The hardware implementation was achieved using the ALTERA DSP Builder and SIMULINK software to program the DE2 ALTERA FPGA board. The JPEG2000 color transform and the wavelet transformation blocks were implemented using the hardware-in-the-loop (HIL) configuration.
Contributing Partner: UNT Libraries
Effect of Polyphosphoric Acid on Aging Characteristics of PG 64-22 Asphalt Binder

Effect of Polyphosphoric Acid on Aging Characteristics of PG 64-22 Asphalt Binder

Date: December 2010
Creator: Ramasamy, Naresh Baboo
Description: This research presents the results on an experimental investigation to identify the effect of polyphosphoric acid (PPA) on aging characteristics of an asphalt binder. Addition of PPA to asphalt binders is said to improve performance of flexible pavements. Asphalt binder PG 64-22 in modified and unmodified conditions was subjected to aging in the laboratory using a regular oven and also simulated short term aging using rolling thin film oven (RTFO) test. Aging experiments were conducted to analyze the extent of oxidation in terms of changes in molecular structure of the asphalt binder. These changes were appraised using Fourier transform infrared (FTIR) spectroscopy, dynamic shear rheometer (DSR), and epifluorescence microscopy tests. FTIR was used to determine the changes in major bands with addition of PPA. Stiffness and viscoelastic behaviors of asphalts were determined from the DSR test. The stiffness is measured by calculating the shear modulus, G* and the viscoelastic behavior is measured by calculating the phase angle, sin δ. Epifluorescence microscopy is a tool used to study properties of organic or inorganic substances. The morphological characteristics of PPA modified asphalt samples were observed through epifluorescence microscopy. Epifluorescence microscopy reveals the polymer phase distribution in the asphalt binders. Results of this ...
Contributing Partner: UNT Libraries
Factors influencing horizontal cracking in continuously reinforced concrete pavements (CRCP).

Factors influencing horizontal cracking in continuously reinforced concrete pavements (CRCP).

Date: August 2008
Creator: Sudoi, Elias K.
Description: This research presents the results on an experimental investigation to identify the significant factors influencing horizontal cracking in continuously reinforced concrete pavements (CRCP). An in-depth analysis of the microstructure, morphological characteristics of the interfacial transition zone (ITZ) and the observation of cracking using the environmental scanning electron microscope (ESEM) was done. Characterization of oxides using Fourier transform infrared spectroscopy (FTIR) and electron dispersive x-ray spectroscopy (EDS) was also performed. Water to cement ratio (w/c) and rebar temperature had a significant influence on the rebar-concrete bond strength. The 28-day shear strength measurements showed an increase in rebar-concrete bond strength as the water to cement ratio (w/c) was reduced from 0.50 to 0.40. There was a reduction in the peak pullout load as the temperature increased from 14oF to 252oF for the corroded and non-corroded rebar experiments. The corroded rebar pullout test results showed a 20-50 % reduction in bond strength compared to the non-corroded rebars. FTIR measurements indicated a presence of lepidocrocrite (γ -FeOOH) and maghemite (γ -Fe2O3) on the ITZ. ESEM images showed the existence of microcracks as early as three days after casting with the bridging of these cracks between coarse aggregate locations in the interfacial zone propagating through ...
Contributing Partner: UNT Libraries
Cold-Formed Steel Bolted Connections without Washers on Oversized and Slotted Holes

Cold-Formed Steel Bolted Connections without Washers on Oversized and Slotted Holes

Date: May 2009
Creator: Sheerah, Ibraheem
Description: The use of the cold-formed steel sheet bolted connections without washers is so significant; however, the North American Specifications for the Design of Cold Formed Steel Structural Members, NASPEC, doesn't provide provisions for such connections. The bearing failure of sheet and the shear failure of sheet were considered in this study. For the sheet shear strength, it was found that the NASPEC (2007) design provisions can be used for oversized holes in both single and double shear configurations and for the double shear connections on short slotted holes. For the sheet bearing strength, a new design method was proposed to be used for low and high ductile steel sheets. The method was compared with the NASPEC and the University of Waterloo approach. Washers were still required for single shear connections on short slotted holes. Besides, connections using ASTM A325 bolts yielded higher bearing strength than connections using ASTM A307 bolts.
Contributing Partner: UNT Libraries
Recommended Modified zone Method Correction Factor for Determining R-values of Cold-Formed Steel Wall Assemblies

Recommended Modified zone Method Correction Factor for Determining R-values of Cold-Formed Steel Wall Assemblies

Date: May 2011
Creator: Black, John
Description: Currently, ASHRAE has determined the zone method and modified zone method are appropriate calculation methods for materials with a high difference in conductivity, such as cold-formed steel (CFS) walls. Because there is currently no standard U-Factor calculation method for CFS walls, designers and code officials alike tend to resort to the zone method. However, the zone method is restricted to larger span assemblies because the zone factor coefficient is 2.0. This tends to overestimate the amount of surface area influenced by CFS. The modified zone method is restricted to C-shaped stud, clear wall assemblies with framing factors between 9 and 15%. The objective of the research is to narrow the gap of knowledge by re-examining the modified zone method in order to more accurately determine R-Values and U-Factors for CFS wall assemblies with whole wall framing factor percentages of 22% and above.
Contributing Partner: UNT Libraries
Application of FTIR for Quantification of Alkali in Cement

Application of FTIR for Quantification of Alkali in Cement

Date: May 2011
Creator: Springfield, Tyler
Description: Alkali-silica reaction (ASR) in cement is a major contributor to failure of cement structures around the world, causing increased repair costs and possible rebuild expenses. Alkali levels are indicative of the potential for ASR and are therefore measured and quantified. A linear correlation relating cement alkali concentration measured by X-ray fluorescence spectroscopy (XRF) and peak ratio measured by Fourier transform infrared spectroscopy (FTIR) is developed. Regression analysis of plots correlating alkali content measured by FTIR absorption band (750 cm-1/923 cm-1) ratio versus equivalent alkali (Na2O)e (%Na2O + 0.658 % K2O) quantified by XRF show linear correlation coefficient, R2, of 0.97. Results of this investigation are discussed in terms of microstructural disorder coefficient Cd which is a reactivity criterion for ASR-susceptible aggregates proposed by Bachiorrini [31]. XRF is a popular technique for alkali quantification but FTIR is faster, safer, and less expensive technique compared to XRF. Portable instrumentation is available for both techniques but FTIR systems are less expensive.
Contributing Partner: UNT Libraries
Micro-fabrication of a Mach-Zehnder interferometer combining laser direct writing and fountain pen micropatterning for chemical/biological sensing applications.

Micro-fabrication of a Mach-Zehnder interferometer combining laser direct writing and fountain pen micropatterning for chemical/biological sensing applications.

Date: May 2009
Creator: Kallur, Ajay
Description: This research lays the foundation of a highly simplified maskless micro-fabrication technique which involves incorporation of laser direct writing technique combined with fountain pen based micro-patterning method to fabricate polymer-based Mach-Zehnder interferometer sensor arrays' prototype for chemical/biological sensing applications. The research provides methodology that focuses on maskless technology, allowing the definition and modification of geometric patterns through the programming of computer software, in contrast to the conventional mask-based photolithographic approach, in which a photomask must be produced before the device is fabricated. The finished waveguide sensors are evaluated on the basis of their performance as general interferometers. The waveguide developed using the fountain pen-based micro-patterning system is compared with the waveguide developed using the current technique of spin coating method for patterning of upper cladding of the waveguide. The resulting output power profile of the waveguides is generated to confirm their functionality as general interferometers. The results obtained are used to confirm the functionality of the simplified micro-fabrication technique for fabricating integrated optical polymer-based sensors and sensor arrays for chemical/biological sensing applications.
Contributing Partner: UNT Libraries
Nominal Shear Strength of Cold-formed Steel Shear Walls Using Osb Sheathing

Nominal Shear Strength of Cold-formed Steel Shear Walls Using Osb Sheathing

Date: May 2012
Creator: Li, Chao
Description: In the cold-formed steel construction, the oriented strand board is a common material for shear wall sheathing. an OSB is made by using wood chips as raw materials that undergo high temperature pressing to create a multi-larger structure material. Due to the OSB having a high strength in shear, it is an important material used in the construction field. the thesis is trying to verify published nominal shear strength in AISI-213-07 in the first part. This objective has two parts: the first part is to verify nominal shear strength (Rn) for wind and other in-plane loads for shear wall. the second part is to verify nominal shear strength (Rn) for seismic and other in-plane loads for shear wall. Secondly, the thesis verifies the design deflection equation for nominal shear strength of CFS shear walls with OSB sheathing. the test specimens were divided into eight groups which trying to verify the design deflection equation that was published in AISI-213-07 standard.
Contributing Partner: UNT Libraries
A Verilog 8051 Soft Core for FPGA Applications

A Verilog 8051 Soft Core for FPGA Applications

Date: August 2009
Creator: Rangoonwala, Sakina
Description: The objective of this thesis was to develop an 8051 microcontroller soft core in the Verilog hardware description language (HDL). Each functional unit of the 8051 microcontroller was developed as a separate module, and tested for functionality using the open-source VHDL Dalton model as benchmark. These modules were then integrated to operate as concurrent processes in the 8051 soft core. The Verilog 8051 soft core was then synthesized in Quartus® II simulation and synthesis environment (Altera Corp., San Jose, CA, www.altera.com) and yielded the expected behavioral response to test programs written in 8051 assembler residing in the v8051 ROM. The design can operate at speeds up to 41 MHz and used only 16% of the FPGA fabric, thus allowing complex systems to be designed on a single chip. Further research and development can be performed on v8051 to enhance performance and functionality.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 NEXT LAST