Search Results

Stream Monitoring and Control Team
This presentation discusses research on multiple sensor clusters that monitor environmental health. The goal of the project was to create a series of sensor clusters, arranged into an array of nodes, that feeds key stream health data to an easily accessible database using an ad hoc wireless network.
Demand Controlled Ventilation using CO2 Sensors in a Wireless Sensor Network [Poster]
Poster presented as part of the 2013 Research Experiences for Teachers (RET) in Sensor Education, a National Science Foundation (NSF) funded grant project. This poster discusses research on demand controlled ventilation using CO₂ sensors in a wireless sensor network.
Demand Controlled Ventilation using CO₂ Sensors in a Wireless Sensor Network
This report discusses research on demand controlled ventilation using CO₂ sensors in a wireless sensor network. The focus of this research project was to investigate Indoor Air Quality (IAQ) monitoring technologies, government regulations and policies, and best practices to improve IAQ. This research is part of Research Experiences for Teachers (RET) in Sensor Education, a National Science Foundation (NSF) funded grant project.
Bringing real world applications for wireless sensor networks into the classroom: Telemetric monitoring of water quality in an artificial stream [2013: Poster]
This poster discusses research on bringing real world applications for wireless sensor networks into the classroom in the context of telemetric monitoring of water quality in an artificial stream.
Statistical Strategies for Efficient Signal Detection and Parameter Estimation in Wireless Sensor Networks
This dissertation investigates data reduction strategies from a signal processing perspective in centralized detection and estimation applications. First, it considers a deterministic source observed by a network of sensors and develops an analytical strategy for ranking sensor transmissions based on the magnitude of their test statistics. The benefit of the proposed strategy is that the decision to transmit or not to transmit observations to the fusion center can be made at the sensor level resulting in significant savings in transmission costs. A sensor network based on target tracking application is simulated to demonstrate the benefits of the proposed strategy over the unconstrained energy approach. Second, it considers the detection of random signals in noisy measurements and evaluates the performance of eigenvalue-based signal detectors. Due to their computational simplicity, robustness and performance, these detectors have recently received a lot of attention. When the observed random signal is correlated, several researchers claim that the performance of eigenvalue-based detectors exceeds that of the classical energy detector. However, such claims fail to consider the fact that when the signal is correlated, the optimal detector is the estimator-correlator and not the energy detector. In this dissertation, through theoretical analyses and Monte Carlo simulations, eigenvalue-based detectors are shown to be suboptimal when compared to the energy detector and the estimator-correlator.
Comparative Study of RSS-Based Collaborative Localization Methods in Wireless Sensor Networks
In this thesis two collaborative localization techniques are studied: multidimensional scaling (MDS) and maximum likelihood estimator (MLE). A synthesis of a new location estimation method through a serial integration of these two techniques, such that an estimate is first obtained using MDS and then MLE is employed to fine-tune the MDS solution, was the subject of this research using various simulation and experimental studies. In the simulations, important issues including the effects of sensor node density, reference node density and different deployment strategies of reference nodes were addressed. In the experimental study, the path loss model of indoor environments is developed by determining the environment-specific parameters from the experimental measurement data. Then, the empirical path loss model is employed in the analysis and simulation study of the performance of collaborative localization techniques.
Non-Uniform Grid-Based Coordinated Routing in Wireless Sensor Networks
Wireless sensor networks are ad hoc networks of tiny battery powered sensor nodes that can organize themselves to form self-organized networks and collect information regarding temperature, light, and pressure in an area. Though the applications of sensor networks are very promising, sensor nodes are limited in their capability due to many factors. The main limitation of these battery powered nodes is energy. Sensor networks are expected to work for long periods of time once deployed and it becomes important to conserve the battery life of the nodes to extend network lifetime. This work examines non-uniform grid-based routing protocol as an effort to minimize energy consumption in the network and extend network lifetime. The entire test area is divided into non-uniformly shaped grids. Fixed source and sink nodes with unlimited energy are placed in the network. Sensor nodes with full battery life are deployed uniformly and randomly in the field. The source node floods the network with only the coordinator node active in each grid and the other nodes sleeping. The sink node traces the same route back to the source node through the same coordinators. This process continues till a coordinator node runs out of energy, when new coordinator nodes are elected to participate in routing. Thus the network stays alive till the link between the source and sink nodes is lost, i.e., the network is partitioned. This work explores the efficiency of the non-uniform grid-based routing protocol for different node densities and the non-uniform grid structure that best extends network lifetime.
Nonuniform Grid-Based Coordinated Routing in Wireless Sensor Networks
This article discusses nonuniform grid-based coordinated routing in wireless sensor networks.
A secure data routing schema for WSN using Elliptic Curve Cryptography and homomorphic encryption
This article proposes a novel encryption schema based on Elliptic Curve Cyrptography (ECC) and homomorphic encryption to secure data transmission in wireless sensor networks.
Wireless Sensor Network System Design using Raspberry Pi and Arduino for Environmental Monitoring Applications
This paper from the 9th International Conference on Future Networks and Communications, FNC 2014 conference proceedings describes a wireless sensor network system developed using open-source hardware platforms, Arduino and Raspberry Pi.
Grid-based Coordinated Routing in Wireless Sensor Networks
This paper discusses grid-based coordinated routing in wireless sensor networks and compares the energy available in the network over time for different grid sizes. The authors explore the quality of service of wireless sensor networks, how the coordinator nodes are elected, and the size of the grid area that will minimize the total energy consumption and extend the lifetime of the network.
Hybrid Approach for Energy-Aware Synchronization
This book chapter discusses a time synchronization scheme for wireless sensor networks that aims to save sensor battery power while maintaining network connectivity for as long as possible.
Bringing real world applications for wireless sensor networks into the classroom: Telemetric monitoring of water quality in an artificial stream [2012: Poster]
This poster discusses research on bringing real world applications for wireless sensor networks into the classroom and covers the use of a wireless sensor network (WSN) using the ZigBee protocol to remotely monitor an artificial aquatic ecosystem.
Bringing real world applications for wireless sensor networks into the classroom: Telemetric monitoring of water quality in an artificial stream [2012]
This report discusses research on aquatic sensors and telemetric monitoring of water quality in an artificial stream with the use of a wireless sensor networks (WSN) using the ZigBee protocol to remotely monitor an artificial aquatic ecosystem. This research is part of Research Experiences for Teachers (RET) in Sensor Education, a National Science Foundation (NSF) funded grant project.
The Effect of Mobility on Wireless Sensor Networks
Wireless sensor networks (WSNs) have gained attention in recent years with the proliferation of the micro-electro-mechanical systems, which has led to the development of smart sensors. Smart sensors has brought WSNs under the spotlight and has created numerous different areas of research such as; energy consumption, convergence, network structures, deployment methods, time delay, and communication protocols. Convergence rates associated with information propagations of the networks will be questioned in this thesis. Mobility is an expensive process in terms of the associated energy costs. In a sensor network, mobility has significant overhead in terms of closing old connections and creating new connections as mobile sensor nodes move from one location to another. Despite these drawbacks, mobility helps a sensor network reach an agreement more quickly. Adding few mobile nodes to an otherwise static network will significantly improve the network’s ability to reach consensus. This paper shows the effect of the mobility on convergence rate of the wireless sensor networks, through Eigenvalue analysis, modeling and simulation.
Efficient Solar Energy Harvesting and Management for Wireless Sensor Networks under Varying Solar Irradiance Conditions
Although wireless sensor networks have been successfully used for environmental monitoring, one of the major challenges that this technology has been facing is supplying continuous and reliable electrical power during long-term field deployment. Batteries require repetitive visits to the deployment site to replace them once discharged; admittedly, they can be recharged from solar panels, but this only works in open areas where solar radiation is unrestricted. This dissertation introduces a novel approach to design and implement a reliable efficient solar energy harvester to continuously, and autonomously, provide power to wireless sensor nodes for long-term applications. The system uses supercapacitors charged by a solar panel and is designed to reduce power consumption to very low levels. Field tests were conducted for more than a year of continuous operation and under a variety of conditions, including areas under dense foliage. The resulting long-term field data demonstrates the feasibility and sustainability of the harvester system for challenging applications. In addition, we analyzed solar radiation data and supercapacitor charging behavior and showed that the harvester system can operate battery free, running on the power provided by supercapacitors. A battery is included only for backup in case the supercapacitor storage fails. The proposed approach provides continuous power supply to the system thereby significantly minimizing data loss by power failure and the frequency of visits to the deployment sites.
Back to Top of Screen