Investigation of the Uniaxial Stress Dependence of the Effective Mass in N-Type InSb Using the Magnetophonon Effect

Investigation of the Uniaxial Stress Dependence of the Effective Mass in N-Type InSb Using the Magnetophonon Effect

Date: December 1971
Creator: Alsup, Dale Lynn
Description: The magnetophonon effect was used to investigate the uniaxial stress dependence of the effective mass in n-type InSb (indium antimonide).
Contributing Partner: UNT Libraries
ReSource, Volume 9, Number 1, Fall 1992

ReSource, Volume 9, Number 1, Fall 1992

Date: 1992
Creator: University of North Texas
Description: ReSource magazine includes articles and notes about research at University of North Texas in various academic fields.
Contributing Partner: University Relations, Communications & Marketing department for UNT
Edmonds et al. Reply

Edmonds et al. Reply

Date: April 8, 2005
Creator: Edmonds, Kevin; Boguslawski, Piotr; Wang, K. Y.; Campion, Richard Paul; Novikov, Sergei; Farley, N. R. S. et al.
Description: This article is a response to an article by M. Adell et al. [Phy. Rev. Lett. 94, 139701 (2005)] about semiconductor-based spintronics research.
Contributing Partner: UNT College of Arts and Sciences
Quantum-Confined CdS Nanoparticles on DNA Templates

Quantum-Confined CdS Nanoparticles on DNA Templates

Date: May 1998
Creator: Rho, Young Gyu
Description: As electronic devices became smaller, interest in quantum-confined semiconductor nanostructures increased. Self-assembled mesoscale semiconductor structures of II-VI nanocrystals are an especially exciting subject because of their controllable band gap and unique photophysical properties. Several preparative methods to synthesize and control the sizes of the individual nanocrystallites and the electronic and optical properties have been intensively studied. Fabrication of patterned nanostructures composed of quantum-confined nanoparticles is the next step toward practical applications. We have developed an innovative method to fabricate diverse nanostructures which relies on the size and a shape of a chosen deoxyribonucleic acid (DNA) template.
Contributing Partner: UNT Libraries
Strain effects on the interface properties of nitride semiconductors

Strain effects on the interface properties of nitride semiconductors

Date: March 15, 1997
Creator: Buongiorno Nardelli, Marco; Rapcewicz, Krzysztof & Bernholc, Jerry
Description: Article on the strain effects on the interface properties of nitride semiconductors.
Contributing Partner: UNT College of Arts and Sciences
UNT Research, Volume 20, 2011

UNT Research, Volume 20, 2011

Date: 2011
Creator: University of North Texas
Description: UNT Research magazine includes articles and notes about research at University of North Texas in various academic fields.
Contributing Partner: University Relations, Communications & Marketing department for UNT
The Growth and Characterization of Aluminum Nitride (AlN) Nanowires

The Growth and Characterization of Aluminum Nitride (AlN) Nanowires

Date: April 19, 2012
Creator: Herro, Alicia & Philipose, Usha
Description: This paper discusses research on the growth and characterization of aluminum nitride (AlN) nanowires.
Contributing Partner: UNT Honors College
A Materials Approach to Silicon Wafer Level Contamination Issues from the Wet Clean Process

A Materials Approach to Silicon Wafer Level Contamination Issues from the Wet Clean Process

Date: December 1996
Creator: Hall, Lindsey H. (Lindsey Harrison)
Description: Semiconductor devices are built using hyperpure silicon and very controlled levels of doping to create desired electrical properties. Contamination can alter these precisely controlled electrical properties that can render the device non-functional or unreliable. It is desirable to determine what impurities impact the device and control them. This study consists of four parts: a) determination of acceptable SCI (Standard Clean 1) bath contamination levels using VPD-DSE-GFAAS (Vapor Phase Decomposition Droplet Surface Etching Graphite Furnace Atomic Absorption Spectroscopy), b) copper deposition from various aqueous HF solutions, c) anion contamination from fluoropolymers used in chemical handling and d) metallic contamination from fluoropolymers and polyethylene used in chemical handling. A technique was developed for the determination of metals on a silicon wafer source at low levels. These levels were then correlated to contamination levels in a SCI bath. This correlation permits the determination of maximum permissible solution contaminant levels. Copper contamination is a concern for depositing on the wafer surface from hydrofluoric acid solutions. The relationship between copper concentration on the wafer surface and hydrofluoric acid concentration was determined. An inverse relationship exists and was explained by differences in diffusion rates between the differing copper species existing in aqueous hydrofluoric acid solutions. Finally, ...
Contributing Partner: UNT Libraries
A Study of Quantum Electron Dynamics in Periodic Superlattices under Electric Fields

A Study of Quantum Electron Dynamics in Periodic Superlattices under Electric Fields

Date: May 1996
Creator: Yuan, Daiqing
Description: This thesis examines the quantum dynamics of electrons in periodic semiconductor superlattices in the presence of electric fields, especially uniform static fields. Chapter 1 is an introduction to this vast and active field of research, with an analysis and suggested solutions to the fundamental theoretical difficulties. Chapter 2 is a detailed historical review of relevant theories, and Chapter 3 is a historical review of experiments. Chapter 4 is devoted to the time-independent quantum mechanical study of the electric-field-induced changes in the transmission properties of ballistic electrons, using the transfer matrix method. In Chapter 5, a new time-dependent quantum mechanical model free from the fundamental theoretical difficulties is introduced, with its validity tested at various limiting cases. A simplified method for calculating field-free bands of various potential models is designed. In Chapter 6, the general features of "Shifting Periodicity", a distinctive feature of this new model, is discussed, and a "Bloch-Floquet Theorem" is rigorously proven. Numerical evidences for the existence of Wannier-Stark-Ladders are presented, and the conditions for its experimental observability is also discussed. In Chapter 7, an analytical solution is found for Bloch Oscillations and Wannier-Stark-Ladders at low electric fields. In Chapter 8, a new quantum mechanical interpretation for Bloch ...
Contributing Partner: UNT Libraries
The Effect of Intervalence-Band Absorption, Auger Recombination, Surface Recombination, Diffusion and Carrier Cooling on the Picosecond Dynamics of Laser-Induced Plasmas in Germanium

The Effect of Intervalence-Band Absorption, Auger Recombination, Surface Recombination, Diffusion and Carrier Cooling on the Picosecond Dynamics of Laser-Induced Plasmas in Germanium

Date: May 1983
Creator: Lindle, James Ryan
Description: None
Contributing Partner: UNT Libraries
FIRST PREV 1 2 NEXT LAST