ReSource, Volume 9, Number 1, Fall 1992

ReSource, Volume 9, Number 1, Fall 1992

Date: 1992
Creator: University of North Texas
Description: ReSource magazine includes articles and notes about research at University of North Texas in various academic fields.
Contributing Partner: University Relations, Communications & Marketing department for UNT
Work Function Study of Iridium Oxide and Molybdenum Using UPS and Simultaneous Fowler-Nordheim I-V Plots with Field Emission Energy Distributions

Work Function Study of Iridium Oxide and Molybdenum Using UPS and Simultaneous Fowler-Nordheim I-V Plots with Field Emission Energy Distributions

Date: August 1999
Creator: Bernhard, John Michael
Description: The characterization of work functions and field emission stability for molybdenum and iridium oxide coatings was examined. Single emission tips and flat samples of molybdenum and iridium oxide were prepared for characterization. The flat samples were characterized using X-ray Photoelectron Spectroscopy and X-ray diffraction to determine elemental composition, chemical shift, and crystal structure. Flat coatings of iridium oxide were also scanned by Atomic Force Microscopy to examine topography. Work functions were characterized by Ultraviolet Photoelectron Spectroscopy from the flat samples and by Field Emission Electron Distributions from the field emission tips. Field emission characterization was conducted in a custom build analytical chamber capable of measuring Field Emission Electron Distribution and Fowler-Nordheim I-V plots simultaneously to independently evaluate geometric and work function changes. Scanning Electron Microscope pictures were taken of the emission tips before and after field emission characterization to confirm geometric changes. Measurement of emission stability and work functions were the emphasis of this research. In addition, use of iridium oxide coatings to enhance emission stability was evaluated. Molybdenum and iridium oxide, IrO2, were characterized and found to have a work function of 4.6 eV and 4.2 eV by both characterization techniques, with the molybdenum value in agreement with previous ...
Contributing Partner: UNT Libraries
UNT Research, Volume 20, 2011

UNT Research, Volume 20, 2011

Date: 2011
Creator: University of North Texas
Description: UNT Research magazine includes articles and notes about research at University of North Texas in various academic fields.
Contributing Partner: University Relations, Communications & Marketing department for UNT
Charge Collection Studies on Integrated Circuit Test Structures using Heavy-Ion Microbeams and MEDICI Simulation Calculations

Charge Collection Studies on Integrated Circuit Test Structures using Heavy-Ion Microbeams and MEDICI Simulation Calculations

Date: May 2000
Creator: Guo, Baonian
Description: Ion induced charge collection dynamics within Integrated Circuits (ICs) is important due to the presence of ionizing radiation in the IC environment. As the charge signals defining data states are reduced by voltage and area scaling, the semiconductor device will naturally have a higher susceptibility to ionizing radiation induced effects. The ionizing radiation can lead to the undesired generation and migration of charge within an IC. This can alter, for example, the memory state of a bit, and thereby produce what is called a "soft" error, or Single Event Upset (SEU). Therefore, the response of ICs to natural radiation is of great concern for the reliability of future devices. Immunity to soft errors is listed as a requirement in the 1997 National Technology Roadmap for Semiconductors prepared by the Semiconductor Industry Association in the United States. To design more robust devices, it is essential to create and test accurate models of induced charge collection and transport in semiconductor devices. A heavy ion microbeam produced by an accelerator is an ideal tool to study charge collection processes in ICs and to locate the weak nodes and structures for improvement through hardening design. In this dissertation, the Ion Beam Induced Charge Collection ...
Contributing Partner: UNT Libraries
Adhesion/diffusion barrier layers for copper integration: carbon-silicon polymer films and tantalum substrates

Adhesion/diffusion barrier layers for copper integration: carbon-silicon polymer films and tantalum substrates

Date: December 1999
Creator: Chen, Li
Description: The Semiconductor Industry Association (SIA) has identified the integration of copper (Cu) with low-dielectric-constant (low-k) materials as a critical goal for future interconnect architectures. A fundamental understanding of the chemical interaction of Cu with various substrates, including diffusion barriers and adhesion promoters, is essential to achieve this goal. The objective of this research is to develop novel organic polymers as Cu/low-k interfacial layers and to investigate popular barrier candidates, such as clean and modified tantalum (Ta) substrates. Carbon-silicon (C-Si) polymeric films have been formed by electron beam bombardment or ultraviolet (UV) radiation of molecularly adsorbed vinyl silane precursors on metal substrates under ultra-high vacuum (UHV) conditions. Temperature programmed desorption (TPD) studies show that polymerization is via the vinyl groups, while Auger electron spectroscopy (AES) results show that the polymerized films have compositions similar to the precursors. Films derived from vinyltrimethyl silane (VTMS) are adherent and stable on Ta substrates until 1100 K. Diffusion of deposited Cu overlayers is not observed below 800 K, with dewetting occurred only above 400 K. Hexafluorobenzene moieties can also be incorporated into the growing film with good thermal stability. Studies on the Ta substrates demonstrate that even sub-monolayer coverages of oxygen or carbide on polycrystalline ...
Contributing Partner: UNT Libraries
Strain effects on the interface properties of nitride semiconductors

Strain effects on the interface properties of nitride semiconductors

Date: March 15, 1997
Creator: Buongiorno Nardelli, Marco; Rapcewicz, Krzysztof & Bernholc, Jerry
Description: Article on the strain effects on the interface properties of nitride semiconductors.
Contributing Partner: UNT College of Arts and Sciences
Investigation of the Uniaxial Stress Dependence of the Effective Mass in N-Type InSb Using the Magnetophonon Effect

Investigation of the Uniaxial Stress Dependence of the Effective Mass in N-Type InSb Using the Magnetophonon Effect

Date: December 1971
Creator: Alsup, Dale Lynn
Description: The magnetophonon effect was used to investigate the uniaxial stress dependence of the effective mass in n-type InSb (indium antimonide).
Contributing Partner: UNT Libraries
The Growth and Characterization of Aluminum Nitride (AlN) Nanowires

The Growth and Characterization of Aluminum Nitride (AlN) Nanowires

Date: April 19, 2012
Creator: Herro, Alicia & Philipose, Usha
Description: This paper discusses research on the growth and characterization of aluminum nitride (AlN) nanowires.
Contributing Partner: UNT Honors College
Edmonds et al. Reply

Edmonds et al. Reply

Date: April 8, 2005
Creator: Edmonds, Kevin; Boguslawski, Piotr; Wang, K. Y.; Campion, Richard Paul; Novikov, Sergei; Farley, N. R. S. et al.
Description: This article is a response to an article by M. Adell et al. [Phy. Rev. Lett. 94, 139701 (2005)] about semiconductor-based spintronics research.
Contributing Partner: UNT College of Arts and Sciences