A Study of Emitter Drift in Transistors

A Study of Emitter Drift in Transistors

Date: August 1961
Creator: Malone, Farris Douglas
Description: The purpose of this investigation was to determine the parameters of emitter drift and to suggest a mechanism for this phenomenon.
Contributing Partner: UNT Libraries
Design, Synthesis and Screening of Homoleptic and Heteroleptic Platinum(ii) Pyridylazolate Complexes for N-type Semiconducting and Light-emitting Devices

Design, Synthesis and Screening of Homoleptic and Heteroleptic Platinum(ii) Pyridylazolate Complexes for N-type Semiconducting and Light-emitting Devices

Access: Use of this item is restricted to the UNT Community.
Date: August 2012
Creator: Oswald, Iain William Herbert
Description: A series of heteroleptic and homoleptic platinum(II) complexes has been synthesized and characterized towards their use in thin film devices such as organic light-emitting diodes (OLEDs) and organic thin film transistors (OTFTs). Pyridylpyrazolate- and pyridyltetrazolate-containing ligands were selected due to their structural rigidity and ease of functionalization. Single-crystal x-ray diffraction studies of two selected heteroleptic complexes show strong aggregation with preferential stacking into vertical columns with a varying degree of overlap of the neighboring square planar molecular units. It is shown that the close proximity of the molecules to one another in the stack increases semiconducting character, phosphorescence quantum yields, and shorter radiative lifetimes. The potential for these materials towards incorporation into high-efficiency doping free white OLEDs (DFW-OLEDs) for solid-state lighting and display applications has been realized and will be expanded upon by present and future embodiments of materials in this thesis.
Contributing Partner: UNT Libraries
Electrostatic Mechanism of Emission Enhancement in Hybrid Metal-semiconductor Light-emitting Heterostructures

Electrostatic Mechanism of Emission Enhancement in Hybrid Metal-semiconductor Light-emitting Heterostructures

Date: May 2012
Creator: Llopis, Antonio
Description: III-V nitrides have been put to use in a variety of applications including laser diodes for modern DVD devices and for solid-state white lighting. Plasmonics has come to the foreground over the past decade as a means for increasing the internal quantum efficiency (IQE) of devices through resonant interaction with surface plasmons which exist at metal/dielectric interfaces. Increases in emission intensity of an order of magnitude have been previously reported using silver thin-films on InGaN/GaN MQWs. the dependence on resonant interaction between the plasmons and the light emitter limits the applications of plasmonics for light emission. This dissertation presents a new non-resonant mechanism based on electrostatic interaction of carriers with induced image charges in a nearby metallic nanoparticle. Enhancement similar in strength to that of plasmonics is observed, without the restrictions imposed upon resonant interactions. in this work we demonstrate several key features of this new interaction, including intensity-dependent saturation, increase in the radiative recombination lifetime, and strongly inhomogeneous light emission. We also present a model for the interaction based on the aforementioned image charge interactions. Also discussed are results of work done in the course of this research resulting in the development of a novel technique for strain measurement ...
Contributing Partner: UNT Libraries
Ultrafast Spectroscopy of Hybrid Ingan/gan Quantum Wells

Ultrafast Spectroscopy of Hybrid Ingan/gan Quantum Wells

Date: August 2012
Creator: Mahat, Meg Bahadur
Description: Group III nitrides are efficient light emitters. The modification of internal optoelectronic properties of these materials due to strain, external or internal electric field are an area of interest. Insertion of metal nanoparticles (MNPs) (Ag, Au etc) inside the V-shaped inverted hexagonal pits (IHP) of InGaN/GaN quantum wells (QWs) offers the potential of improving the light emission efficiencies. We have observed redshift and blueshift due to the Au MNPs and Ag MNPs respectively. This shift could be due to the electric field created by the MNPs through electrostatic image charge. We have studied the ultrafast carrier dynamics of carriers in hybrid InGaN/GaN QWs. The change in quantum confinement stark effect due to MNPs plays an important role for slow and fast carrier dynamics. We have also observed the image charge effect on the ultrafast differential transmission measurement due to the MNPs. We have studied the non-linear absorption spectroscopy of these materials. The QWs behave as a discharging of a nanocapacitor for the screening of the piezoelectric field due to the photo-excited carriers. We have separated out screening and excitonic bleaching components from the main differential absorption spectra of InGaN/GaN QWs.
Contributing Partner: UNT Libraries
Carrier Mobility, Charge Trapping Effects on the Efficiency of Heavily Doped Organic Light-Emitting Diodes, and EU(lll) Based Red OLEDs

Carrier Mobility, Charge Trapping Effects on the Efficiency of Heavily Doped Organic Light-Emitting Diodes, and EU(lll) Based Red OLEDs

Date: August 2010
Creator: Lin, Ming-Te
Description: Transient electroluminescence (EL) was used to measure the onset of emission delay in OLEDs based on transition metal, phosphorescent bis[3,5-bis(2-pyridyl)-1,2,4-triazolato] platinum(ΙΙ) and rare earth, phosphorescent Eu(hfa)3 with 4'-(p-tolyl)-2,2":6',2" terpyridine (ttrpy) doped into 4,4'-bis(carbazol-9-yl) triphenylamine (CBP), from which the carrier mobility was determined. For the Pt(ptp)2 doped CBP films in OLEDs with the structure: ITO/NPB (40nm)/mcp (10nm)/65% Pt(ptp)2:CBP (25nm)/TPBI (30nm)/Mg:Ag (100nm), where NPB=N, N'-bis(1-naphthyl)-N-N'-biphenyl-1, 1'-biphenyl-4, MCP= N, N'-dicarbazolyl-3,5-benzene, TPBI=1,3,5-tris(phenyl-2-benzimidazolyl)-benzene, delayed recombination was observed and based on its dependence on frequency and duty cycle, ascribed to trapping and de-trapping processes at the interface of the emissive layer and electron blocker. The result suggests that the exciton recombination zone is at, or close to the interface between the emissive layer and electron blocker. The lifetime of the thin films of phosphorescent emitter Pt(ptp)2 were studied for comparison with rare earth emitter Eu(hfa)3. The lifetime of 65% Pt(ptp)2:CBP co-film was around 638 nanoseconds at the emission peak of 572nm, and the lifetime of neat Eu(hfa)3 film was obtained around 1 millisecond at 616 nm, which supports the enhanced efficiency obtained from the Pt(ptp)2 devices. The long lifetime and narrow emission of the rare earth dopant Eu(hfa)3 is a fundamental factor limiting device performance. Red ...
Contributing Partner: UNT Libraries