Search Results

Use of GIS to Identify and Delineate Areas of Fluoride, Sulfate, Chloride, and Nitrate Levels in the Woodbine Aquifer, North Central Texas, in the 1950s, 1960s, 1970s, 1980s, and 1990s
ArcView and ArcInfo were used to identify and delineate areas contaminated by fluoride, sulfate, chloride, and nitrate in the Woodbine Aquifer. Water analysis data were obtained from the TWDB from the 1950s to 1990s covering 9 counties. 1990s land use data were obtained to determine the relationship with each contaminant. Spearman's rank correlation coefficients and Kruskal-Wallis tests were used to calculate relationships between variables. Land uses had little effect on distributions of contaminants. Sulfate and fluoride levels were most problematic in the aquifer. Depth and lithology controlled the distributions of each contaminant. Nitrate patterns were controlled mainly by land use rather than geology, but were below the maximum contaminant level. In general, contaminant concentrations have decreased since the 1950s.
Distribution and Probable Sources of Nitrate in the Seymour Aquifer, North Central Texas, USA
This study utilized GIS and statistical methods to map the spatial variability of nitrate and related groundwater constituents in 30 counties above the Seymour Aquifer, analyze temporal patterns of nitrate pollution, identify probable sources of pollution, and recommend water development strategies to minimize exposure to nitrate and reduce future aquifer contamination. Nitrate concentrations in excess of 44 mg/L (US EPA limit) were commonly observed in the Seymour Aquifer region, especially in the central agricultural belt. Data indicated that this is an ongoing problem in the Seymour Aquifer and that agricultural activity and rural septic systems are the likely sources of the nitrate. Inconclusive results emphasized the need for a more comprehensive spatial and temporal water quality monitoring.
Efficiency of Nitrate and Phosphorus Removal in a Working Rain Garden
Rain gardens are low impact developments designed to mitigate a suite of issues associated with urban stormwater runoff. The site for this study was a Denton City rain garden at the Denton Waste Water Treatment Plant. Nitrogen and phosphorus removal was examined in light of two overflow events comprised of partially treated wastewater from an upslope anaerobic digester pond. Nitrate removal efficiency was examined across differing dry spell intervals of 5, 8, and 12 d, displaying a moderate negative correlation (r2 = 0.59). Continued phosphorus removal capacity was assessed, showing phosphorus removal in cases where P was in excess of 0.8 mg/L, reflecting an equilibrium phosphorus concentration. A high expanded shale component in the soil media (25%) was likely a factor in the continued removal of phosphorus. Overall the rain garden proved to be a large source of nitrate (+425%) and total nitrogen (+61%) by mass. The study showed that while the rain garden intercepted a large volume of partially treated wastewater during the overflow events, preventing it from reaching a nearby creek, the mitigation of an acute event has extended to a chronic one as nitrogen is gradually processed and flushed from the system as nitrate.
Phenotypic Analysis of Medicago truncatula NPF1.7 Over-Expressing Plants Grown under Different Nitrate Conditions
Plants have many nitrate transporters; in the model legume Medicago truncatula, MtNPF1.7 is among them. MtNPF1.7 is important for M. truncatula growth and it has been established that MtNPF1.7 is a high affinity nitrate transporter. M. truncatula plants with mutations in MtNPF1.7 gene show defects during plants growth, with striking abnormalities in nodule development and root architecture. Nitrogen fixation is an energy expensive process; when legumes have sufficient bioavailable nitrogen like nitrate available, it suppresses nodulation and nitrogen fixation. Previous preliminary results in our lab showed that plants constitutively expressing MtNPF1.7 have a growth phenotype in the absence of nitrate, but no data was available on how M. truncatula plants constitutively expressing MtNPF1.7 are affected by the presence of nitrate. For my research, I confirmed the preliminary results on the growth of M. truncatula plants overexpressing NPF1.7 and examined these plants' phenotypes when nitrate was not provided in the growth media and when it was provided at two different concentrations. Compared with wild type A17, plants constitutively expressing MtNPF1.7 gene grow larger, have more lateral roots and more nodules when grown in the absence of nitrate and when 0.2 mM KNO3 was provided. At 1 mM KNO3, there are fewer differences between wild type A17 and plants constitutively expressing the MtNPF1.7 gene. Compared with wild type A17, plants constitutively expressing the MtNPF1.7 gene flower earlier, which indicates MtNPF1.7 gene may have a function in plant flowering.
Back to Top of Screen