Search Results

Synthesis and characterization of molecules for electron transfer research.
Dimethoxynaphthalene (donor) and quinone (acceptor) have been chosen as a suitable redox pair and are bonded to either permethylated silane chains or corresponding permethylated alkyl chains to form Acceptor-(Bridge)-Donor molecules. The idea that the s-delocalization phenomenon of silane chains may greatly facilitate ET reactions will be tested. The starting material for the donor precursor, 4-(1,4-dimethoxynaphthyl)bromocyclohexane, was 1,4-naphthoquinone. After methylation and bromination, the Grignard reagent of the resulting bromide was reacted with cyclohexanedione, mono ethylene ketal. The resulting alcohol was changed to the donor precursor through the following functional group transformation steps: dehydration, hydrogenation, deketalization and bromination. 1,4-Dibenzyloxybromobenzene, the precursor for the acceptor, was synthesized from 1,4-hydroquinone through bromination and benzylation. The connection of the two precursors and either permethylated silane chains or permethylated alkyl chains will give the final target molecules for ET research. Progress on this is included.
N-Acylethanolamine (NAE) Profiles Change During Arabidopsis Thaliana Seed Germination and Seedling Growth
An understanding of the potential roles as lipid mediators of a family of bioactive metabolites called N-acylethanolamines (NAEs) depends on their accurate identification and quantification. The levels of 18C unsaturated NAEs (e.g. NAE18:2, NAE 18:3, etc.) in wild-type seeds (about 2000 ng/g fw) generally decreased by about 80% during germination and post-germinative growth. In addition, results suggest NAE-degradative fatty acid amide hydrolase (FAAH) expression does not play a major role in normal NAE metabolism as previously thought. Seedlings germinated and grown in the presence of abscisic acid (ABA), an endogenous plant hormone, exhibited growth arrest and secondary dormancy, similar to the treatment of seedlings with exogenous N­lauroylethanolamine (NAE12:0). ABA-mediated growth arrest was associated with higher levels of unsaturated NAEs. Overall, these results are consistent with the concept that NAE metabolism is activated during seed germination and suggest that the reduction in unsaturated NAE levels is under strict temporal control and may be a requirement for normal seed germination and post-germinative growth.
A Study of the Water-Soluble Antigens from Virulent and Attenuated Biotypes of Brucella abortus
Through chemical analysis and ion exchange chromatography of watersoluble antigens, this investigation supports the view that the majority of differences between the biotypes are quantitative. It was also found that strains demonstrate distinct, qualitative differences when compared to the attenuated strain 19 by immunodiffusion and thin-layer polyacrylamide gel, isoelectric focusing. These differences include the presence of antigens on virulent strains that are absent on strain 19. In addition, one antigen absent on strain 19, was found common to each virulent biotype. Finally, the results from immunodiffusion experiments, employing adsorbed and non-adsorbed immune globulins, indicate that at least some water-soluble antigens are exposed on the cell surface and that their distribution among the biotypes varies.
Investigation Into the Causes for the Loss of Resolution in an Ion Chromatograpy Resin
Four mechanisms were considered as possible causes of the loss in resolution for a Dionex CG2 ion chromatography resin: 1) presence of inorganic ions strongly bound to the active sites; 2) adsorption of organic species; 3) physical alterations; and 4) chemical alterations. The instrumental analyses used to gather data were ICP, FT-IR, SEM, solid C-13 NMR and IC. Based on the results, no metal ions are bound to the resin, no organic species are held onto the resin, and no physical change was observable. The cause for the loss of resolution is a strong reduction in the number of active sites in the resin as confirmed by elemental analysis for the sulfur in the sulfonic acid present in the active sites.
Characterization of Novel Solvents and Absorbents for Chemical Separations
Predictive methods have been employed to characterize chemical separation mediums including solvents and absorbents. These studies included creating Abraham solvation parameter models for room-temperature ionic liquids (RTILs) utilizing novel ion-specific and group contribution methodologies, polydimethyl siloxane (PDMS) utilizing standard methodology, and the micelles cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS) utilizing a combined experimental setup methodology with indicator variables. These predictive models allows for the characterization of both standard and new chemicals for use in chemical separations including gas chromatography (GC), solid phase microextraction (SPME), and micellar electrokinetic chromatography (MEKC). Gas-to-RTIL and water-to-RTIL predictive models were created with a standard deviation of 0.112 and 0.139 log units, respectively, for the ion-specific model and with a standard deviation of 0.155 and 0.177 log units, respectively, for the group contribution fragment method. Enthalpy of solvation for solutes dissolved into ionic liquids predictive models were created with ion-specific coefficients to within standard deviations of 1.7 kJ/mol. These models allow for the characterization of studied ionic liquids as well as prediction of solute-solvent properties of previously unstudied ionic liquids. Predictive models were created for the logarithm of solute's gas-to-fiber sorption and water-to-fiber sorption coefficient for polydimethyl siloxane for wet and dry conditions. These models were created to standard deviations of 0.198 and 0.122 logunits for gas-to-PDMS wet and dry, respectively, as well as 0.164 and 0.134 log units for water-to-PDMS wet and dry, respectively. These models are particularly useful in solid phase microextraction separations. Micelles were studied to create predictive models of the measured micelle-water partition coefficient as well as models of measured MEKC chromatographic retention factors for CTAB and SDS. The resultant predictive models were created with standard deviations of 0.190 log units for the logarithm of the mole fraction concentration of water-to-CTAB, 0.171 log units for the combined logarithms of both the …
Phase Dependence of Carbon-11 Recoil Products in Propane: Evidence for Methylene Insertion
Results are included of a study of the formation of methylene-C complexes in neutron-irradiated propane in the gas, liquid, and solid phases. It is considered that the results support the view that discrete species, such as carbon atoms, methyne, and methylene, react at thermal or near thermal energies in the gas phase accounting for a major fraction of the products. Products which contain Carbon-11 produced in the neutron reactions with propane are tabulated.
Evaluation of Adsorption and Microcoulometric Methods for Determination of Halogenated Organic Compounds in Water
Two adsorption/microcoulometric methods have been investigated for total organic halogen (TOX) in water. TOX, a proposed water-quality parameter, is a rapid, surrogate method to detect halides microcoulometrically and does not require compound identification before water quality can be judged. An XAD resin is used to concentrate organic halides that are eluted by a two-step, two-solvent procedure, followed by analysis using :chromatography or pyrolysis to convert organic halides to halide. In the granular activated carbon (GAC) method, the entire GAC-organic halide sample is pyrolyzed. TOX measurements of model compounds are comparable by both methods, but GAC was found to be superior to XAD for adsorption of chlorinated humics in drinking water and chlorinated lake water.
Back to Top of Screen