Characterization of Novel Solvents and Absorbents for Chemical Separations

Characterization of Novel Solvents and Absorbents for Chemical Separations

Date: May 2011
Creator: Grubbs, Laura Michelle Sprunger
Description: Predictive methods have been employed to characterize chemical separation mediums including solvents and absorbents. These studies included creating Abraham solvation parameter models for room-temperature ionic liquids (RTILs) utilizing novel ion-specific and group contribution methodologies, polydimethyl siloxane (PDMS) utilizing standard methodology, and the micelles cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS) utilizing a combined experimental setup methodology with indicator variables. These predictive models allows for the characterization of both standard and new chemicals for use in chemical separations including gas chromatography (GC), solid phase microextraction (SPME), and micellar electrokinetic chromatography (MEKC). Gas-to-RTIL and water-to-RTIL predictive models were created with a standard deviation of 0.112 and 0.139 log units, respectively, for the ion-specific model and with a standard deviation of 0.155 and 0.177 log units, respectively, for the group contribution fragment method. Enthalpy of solvation for solutes dissolved into ionic liquids predictive models were created with ion-specific coefficients to within standard deviations of 1.7 kJ/mol. These models allow for the characterization of studied ionic liquids as well as prediction of solute-solvent properties of previously unstudied ionic liquids. Predictive models were created for the logarithm of solute's gas-to-fiber sorption and water-to-fiber sorption coefficient for polydimethyl siloxane for wet and dry conditions. These models ...
Contributing Partner: UNT Libraries
N-Acylethanolamine (NAE) profiles change during Arabidopsis thaliana seed germination and seedling growth.

N-Acylethanolamine (NAE) profiles change during Arabidopsis thaliana seed germination and seedling growth.

Date: August 2006
Creator: Wiant, William C.
Description: An understanding of the potential roles as lipid mediators of a family of bioactive metabolites called N-acylethanolamines (NAEs) depends on their accurate identification and quantification. The levels of 18C unsaturated NAEs (e.g. NAE18:2, NAE 18:3, etc.) in wild-type seeds (about 2000 ng/g fw) generally decreased by about 80% during germination and post-germinative growth. In addition, results suggest NAE-degradative fatty acid amide hydrolase (FAAH) expression does not play a major role in normal NAE metabolism as previously thought. Seedlings germinated and grown in the presence of abscisic acid (ABA), an endogenous plant hormone, exhibited growth arrest and secondary dormancy, similar to the treatment of seedlings with exogenous N­lauroylethanolamine (NAE12:0). ABA-mediated growth arrest was associated with higher levels of unsaturated NAEs. Overall, these results are consistent with the concept that NAE metabolism is activated during seed germination and suggest that the reduction in unsaturated NAE levels is under strict temporal control and may be a requirement for normal seed germination and post-germinative growth.
Contributing Partner: UNT Libraries
Synthesis and characterization of molecules for electron transfer research.

Synthesis and characterization of molecules for electron transfer research.

Date: December 2000
Creator: Xiao, Wu
Description: Dimethoxynaphthalene (donor) and quinone (acceptor) have been chosen as a suitable redox pair and are bonded to either permethylated silane chains or corresponding permethylated alkyl chains to form Acceptor-(Bridge)-Donor molecules. The idea that the s-delocalization phenomenon of silane chains may greatly facilitate ET reactions will be tested. The starting material for the donor precursor, 4-(1,4-dimethoxynaphthyl)bromocyclohexane, was 1,4-naphthoquinone. After methylation and bromination, the Grignard reagent of the resulting bromide was reacted with cyclohexanedione, mono ethylene ketal. The resulting alcohol was changed to the donor precursor through the following functional group transformation steps: dehydration, hydrogenation, deketalization and bromination. 1,4-Dibenzyloxybromobenzene, the precursor for the acceptor, was synthesized from 1,4-hydroquinone through bromination and benzylation. The connection of the two precursors and either permethylated silane chains or permethylated alkyl chains will give the final target molecules for ET research. Progress on this is included.
Contributing Partner: UNT Libraries