Investigations of Compression Shocks and Boundary Layers in Gases Moving at High Speed

Investigations of Compression Shocks and Boundary Layers in Gases Moving at High Speed

Date: January 1, 1947
Creator: Ackeret, J.; Feldmann, F. & Rott, N.
Description: The mutual influences of compression shocks and friction boundary layers were investigated by means of high speed wind tunnels.Schlieren optics provided a clear picture of the flow phenomena and were used for determining the location of the compression shocks, measurement of shock angles, and also for Mach angles. Pressure measurement and humidity measurements were also taken into consideration.Results along with a mathematical model are described.
Contributing Partner: UNT Libraries Government Documents Department
The Calculation of Compressible Flows with Local Regions of Supersonic Velocity

The Calculation of Compressible Flows with Local Regions of Supersonic Velocity

Date: March 1, 1947
Creator: Goethert, B. & Kawalki, K. H.
Description: This report addresses a method for the approximate calculation of compressible flows about profiles with local regions of supersonic velocity. The flow around a slender profile is treated as an example.
Contributing Partner: UNT Libraries Government Documents Department
Drag Reduction by Suction of the Boundary Layer Separated Behind Shock Wave Formation at High Mach Numbers

Drag Reduction by Suction of the Boundary Layer Separated Behind Shock Wave Formation at High Mach Numbers

Date: July 1, 1947
Creator: Regenscheit, B.
Description: With an approach of the velocity of flight of a ship to the velocity of sound, there occurs a considerable increase of the drag. The reason for this must be found in the boundary layer separation caused by formation of shock waves. It will be endeavored to reduce the drag increase by suction of the boundary layer. Experimental results showed that drag increase may be considerably reduced by this method. It was, also, observed that, by suction, the position of shock waves can be altered to a considerable extent.
Contributing Partner: UNT Libraries Government Documents Department
On Possible Similarity Solutions for Three-Dimensional Incompressible Laminar Boundary-Layer Flows Over Developable Surfaces and with Proportional Mainstream Velocity Components

On Possible Similarity Solutions for Three-Dimensional Incompressible Laminar Boundary-Layer Flows Over Developable Surfaces and with Proportional Mainstream Velocity Components

Date: September 1, 1958
Creator: Hansen, Arthur G.
Description: Analysis is presented on the possible similarity solutions of the three-dimensional, laminar, incompressible, boundary-layer equations referred to orthogonal, curvilinear coordinate systems. Requirements of the existence of similarity solutions are obtained for the following: flow over developable surface and flow over non-developable surfaces with proportional mainstream velocity components.
Contributing Partner: UNT Libraries Government Documents Department
On the Contribution of Turbulent Boundary Layers to the Noise Inside a Fuselage

On the Contribution of Turbulent Boundary Layers to the Noise Inside a Fuselage

Date: December 1, 1956
Creator: Corcos, G. M. & Liepmann, H. W.
Description: The following report deals in preliminary fashion with the transmission through a fuselage of random noise generated on the fuselage skin by a turbulent boundary layer. The concept of attenuation is abandoned and instead the problem is formulated as a sequence of two linear couplings: the turbulent boundary layer fluctuations excite the fuselage skin in lateral vibrations and the skin vibrations induce sound inside the fuselage. The techniques used are those required to determine the response of linear systems to random forcing functions of several variables. A certain degree of idealization has been resorted to. Thus the boundary layer is assumed locally homogeneous, the fuselage skin is assumed flat, unlined and free from axial loads and the 'cabin' air is bounded only by the vibrating plate so that only outgoing waves are considered. Some of the details of the statistical description have been simplified in order to reveal the basic features of the problem. The results, strictly applicable only to the limiting case of thin boundary layers, show that the sound pressure intensity is proportional to the square of the free stream density, the square of cabin air density and inversely proportional to the first power of the damping constant ...
Contributing Partner: UNT Libraries Government Documents Department
Flow and Force Equations for a Body Revolving in a Fluid

Flow and Force Equations for a Body Revolving in a Fluid

Date: December 1, 1979
Creator: Zahm, A. F.
Description: A general method for finding the steady flow velocity relative to a body in plane curvilinear motion, whence the pressure is found by Bernoulli's energy principle is described. Integration of the pressure supplies basic formulas for the zonal forces and moments on the revolving body. The application of the steady flow method for calculating the velocity and pressure at all points of the flow inside and outside an ellipsoid and some of its limiting forms is presented and graphs those quantities for the latter forms. In some useful cases experimental pressures are plotted for comparison with theoretical. The pressure, and thence the zonal force and moment, on hulls in plane curvilinear flight are calculated. General equations for the resultant fluid forces and moments on trisymmetrical bodies moving through a perfect fluid are derived. Formulas for potential coefficients and inertia coefficients for an ellipsoid and its limiting forms are presented.
Contributing Partner: UNT Libraries Government Documents Department
The Inertia Coefficients of an Airship in a Frictionless Fluid

The Inertia Coefficients of an Airship in a Frictionless Fluid

Date: December 1, 1979
Creator: Bateman, H.
Description: The apparent inertia of an airship hull is examined. The exact solution of the aerodynamical problem is studied for hulls of various shapes with special attention given to the case of an ellipsoidal hull. So that the results for the ellipsoidal hull may be readily adapted to other cases, they are expressed in terms of the area and perimeter of the largest cross section perpendicular to the direction of motion by means of a formula involving a coefficient kappa which varies only slowly when the shape of the hull is changed, being 0.637 for a circular or elliptic disk, 0.5 for a sphere, and about 0.25 for a spheroid of fineness ratio. The case of rotation of an airship hull is investigated and a coefficient is defined with the same advantages as the corresponding coefficient for rectilinear motion.
Contributing Partner: UNT Libraries Government Documents Department
Calculations and Experimental Investigations on the Feed-Power Requirement of Airplanes with Boundary-Layer Control

Calculations and Experimental Investigations on the Feed-Power Requirement of Airplanes with Boundary-Layer Control

Date: September 1, 1947
Creator: Krueger, W.
Description: Calculations and test results are given about the feed-power requirement of airplanes with boundary-layer control. Curves and formulas for the rough estimate of pressure-loss and feed-power requirement are set up for the investigated arrangements which differ structurally and aerodynamically. According to these results the feed power for three different designs is calculated at the end of the report.
Contributing Partner: UNT Libraries Government Documents Department
A Theoretical Investigation of the Drag of Generalized Aircraft Configurations in Supersonic Flow

A Theoretical Investigation of the Drag of Generalized Aircraft Configurations in Supersonic Flow

Date: January 1, 1957
Creator: Graham, E. W.; Lagerstrom, P. A.; Licher, R. M. & Beane, B. J.
Description: It seems possible that, in supersonic flight, unconventional arrangements of wings and bodies may offer advantages in the form of drag reduction. It is the purpose of this report to consider the methods for determining the pressure drag for such unconventional configurations, and to consider a few of the possibilities for drag reduction in highly idealized aircraft. The idealized aircraft are defined by distributions of lift and volume in three-dimensional space, and Hayes' method of drag evaluation, which is well adapted to such problems, is the fundamental tool employed. Other methods of drag evaluation are considered also wherever they appear to offer amplifications. The basic singularities such as sources, dipoles, lifting elements and volume elements are discussed, and some of the useful inter-relations between these elements are presented. Hayes' method of drag evaluation is derived in detail starting with the general momentum theorem. In going from planar systems to spatial systems certain new problems arise. For example, interference between lift and thickness distributions generally appears, and such effects are used to explain the difference between the non-zero wave drag of Sears-Haack bodies and the zero wave drag of Ferrari's ring wing plus central body. Another new feature of the spatial ...
Contributing Partner: UNT Libraries Government Documents Department
Turbulence in the Wake of a Thin Airfoil at Low Speeds

Turbulence in the Wake of a Thin Airfoil at Low Speeds

Date: January 1, 1957
Creator: Campbell, George S.
Description: Experiments have been made to determine the nature of turbulence in the wake of a two-dimensional airfoil at low speeds. The experiments were motivated by the need for data which can be used for analysis of the tail-buffeting problem in aircraft design. Turbulent intensity and power spectra of the velocity fluctuations were measured at a Reynolds number of 1.6 x 10(exp 5) for several angles of attack. Total-head measurements were also obtained in an attempt to relate steady and fluctuating wake properties. Mean-square downwash was found to have nearly the same dependence on vertical position in the wake as that shown by total-head loss. For this particular wing, turbulent intensity, integrated across the wake, increased roughly as the 3/2 power of the drag coefficient. Power-spectrum measurements indicated a decrease in frequency as wing angle of attack was increased. The average frequency in the wake was proportional to the ratio of mean wake velocity to wake width.
Contributing Partner: UNT Libraries Government Documents Department
FIRST PREV 1 2 3 4 5 NEXT LAST