Theoretical Study of Second Harmonic Generation of a Blue Laser at 486 nm Using a BBO Crystal in a Standing Wave Buildup Cavity

Theoretical Study of Second Harmonic Generation of a Blue Laser at 486 nm Using a BBO Crystal in a Standing Wave Buildup Cavity

Date: May 2002
Creator: Khademian, Ali
Description: For a spectroscopy purpose, we are interested in producing continuous wave (CW) UV laser light at 243 nm with at least 2 mW power. The theory of nonlinear optics suggests that we should be able to produce a desired 2.9 mW of 243 nm light by second harmonic generation (SHG) from a 50 mW blue laser at 486 nm using a BBO crystal in a build up cavity. The most important physical parameters are calculated. A 10 mm Brewster cut BBO crystal can provide phase matching conditions for coupling two ordinary photons at 486 nm and make a secondary beam at 243 nm. The single pass conversion efficiency is calculated not to be enough to generate 2.9 mW of SH light. My investigation shows that a standing wave build up cavity can provide a buildup factor of 94 and an overall conversion efficiency of 5.9% if one use an input coupler mirror with 1.1% transmission at 486 nm.
Contributing Partner: UNT Libraries
Modeling and Optimization of Deflection Slits for Fast-Pulsing a Low Energy Ion Beam

Modeling and Optimization of Deflection Slits for Fast-Pulsing a Low Energy Ion Beam

Date: Spring 2006
Creator: Bosca, Ryan
Description: Honors thesis written by a student in the UNT Honors College discussing the deflection of ion beams to simulate ion flight.
Contributing Partner: UNT Honors College
Zinc Oxide Nanoparticles for Nonlinear Bioimaging, Cell Detection and Selective Cell Destruction

Zinc Oxide Nanoparticles for Nonlinear Bioimaging, Cell Detection and Selective Cell Destruction

Access: Use of this item is restricted to the UNT Community.
Date: May 2013
Creator: Urban, Ben E.
Description: Light matter interactions have led to a great part of our current understanding of the universe. When light interacts with matter it affects the properties of both the light and the matter. Visible light, being in the region that the human eye can "see," was one of the first natural phenomenon we used to learn about our universe. The application of fundamental physics research has spilled over into other fields that were traditionally separated from physics, being considered two different sciences. Current physics research has applications in all scientific fields. By taking a more physical approach to problems in fields such as chemistry and biology, we have furthered our knowledge of both. Nanocrystals have many interesting optical properties. Furthermore, the size and properties of nanocrystals has given them applications in materials ranging from solar cells to sunscreens. By understanding and controlling their interactions with systems we can utilize them to increase our knowledge in other fields of science, such as biology. Nanocrystals exhibit optical properties superior to currently used fluorescent dyes. By replacing molecular dyes with nanoparticles we can reduce toxicity, increase resolution and have better cellular targeting abilities. They have also shown to have toxicity to cancer and antibacterial ...
Contributing Partner: UNT Libraries
Precision measurements of the hyperfine structure in the 23P state of 3He.

Precision measurements of the hyperfine structure in the 23P state of 3He.

Date: May 2003
Creator: Smiciklas, Marc
Description: The unusually large hyperfine structure splittings in the 23P state of the 3He isotope is measured using electro-optic techniques with high precision laser spectroscopy. Originally designed to probe the fine structure of the 4He atom, this experimental setup along with special modifications I implemented to resolve certain 3He related issues has made possible new high precision hyperfine structure measurements. Discussed are the details of the experimental setup and the modifications, including in depth information necessary to consider while performing these measurements. The results of these hyperfine structure measurements give an order of magnitude improvement in precision over the best previously reported values.
Contributing Partner: UNT Libraries
The Effects of Cesium Deposition and Gas Exposure on the Field Emission Properties of Single Wall and Multiwall Carbon Nanotubes

The Effects of Cesium Deposition and Gas Exposure on the Field Emission Properties of Single Wall and Multiwall Carbon Nanotubes

Date: May 2002
Creator: Wadhawan, Atul
Description: The effects of Cs deposition on the field emission (FE) properties of single-walled carbon nanotube (SWNT) bundles were studied. In addition, a comparative study was made on the effects of O2, Ar and H2 gases on the field emission properties of SWNT bundles and multiwall carbon nanotubes (MWNTs). We observed that Cs deposition decreases the turn-on field for FE by a factor of 2.1 - 2.9 and increases the FE current by 6 orders of magnitude. After Cs deposition, the FE current versus voltage (I-V) curves showed non-Fowler-Nordheim behavior at large currents consistent with tunneling from adsorbate states. At lower currents, the ratio of the slope of the FE I-V curves before and after Cs deposition was approximately 2.1. Exposure to N2 does not decrease the FE current, while exposure to O2 decreases the FE current. Our results show that cesiated SWNT bundles have great potential as economical and reliable vacuum electron sources. We find that H2 and Ar gases do not significantly affect the FE properties of SWNTs or MWNTs. O2 temporarily reduces the FE current and increases the turn-on voltage of SWNTs. Full recovery of these properties occurred after operation in UHV. The higher operating voltages in an ...
Contributing Partner: UNT Libraries
Characterization, properties and applications of novel nanostructured hydrogels.

Characterization, properties and applications of novel nanostructured hydrogels.

Access: Use of this item is restricted to the UNT Community.
Date: December 2006
Creator: Tang, Shijun
Description: The characterization, properties and applications of the novel nanostructured microgel (nanoparticle network and microgel crystal) composed of poly-N-isopropylacrylanmide-co-allylamine (PNIPAM-co-allylamine) and PNIPAM-co-acrylic acid(AA) have been investigated. For the novel nanostructured hydrogels with the two levels of structure: the primary network inside each individual particle and the secondary network of the crosslinked nanoparticles, the new shear modulus, drug release law from hydrogel with heterogeneous structure have been studied. The successful method for calculating the volume fraction related the phase transition of colloid have been obtained. The kinetics of crystallization in an aqueous dispersion of PNIPAM particles has been explored using UV-visible transmission spectroscopy. This dissertation also includes the initial research on the melting behavior of colloidal crystals composed of PNIPAM microgels. Many new findings in this study area have never been reported before. The theoretical model for the columnar crystal growth from the top to bottom of PNIPAM microgel has been built, which explains the growth mechanism of the novel columnar hydrogel colloidal crystals. Since the unique structure of the novel nanostructured hydrogels, their properties are different with the conventional hydrogels and the hard-sphere-like system. The studies and results in this dissertation have the important significant for theoretical study and valuable application ...
Contributing Partner: UNT Libraries
High Efficiency High Power Blue Laser by Resonant Doubling in PPKTP

High Efficiency High Power Blue Laser by Resonant Doubling in PPKTP

Date: August 2011
Creator: Danekar, Koustubh
Description: I developed a high power blue laser for use in scientific and technical applications (eg. precision spectroscopy, semiconductor inspection, flow cytometry, etc). It is linearly polarized, single longitudinal and single transverse mode, and a convenient fiber coupled continuous wave (cw) laser source. My technique employs external cavity frequency doubling and provides better power and beam quality than commercially available blue diode lasers. I use a fiber Bragg grating (FBG) stabilized infrared (IR) semiconductor laser source with a polarization maintaining (PM) fiber coupled output. Using a custom made optical and mechanical design this output is coupled with a mode matching efficiency of 96% into the doubling cavity. With this carefully designed and optimized cavity, measurements were carried out at various fundamental input powers. A net efficie ncy of 81 % with an output power of 680 mW at 486 nm was obtained using 840 mW of IR input. Also I report an 87.5 % net efficiency in coupling of blue light from servo locked cavity into a single mode PM fiber. Thus I have demonstrated a total fiber to fiber efficiency of 71% can be achieved in our approach using periodically poled potassium titanyl phosphate (PPKTP). To obtain these results, all ...
Contributing Partner: UNT Libraries
The Interactions of Plasma with Low-k Dielectrics: Fundamental Damage and Protection Mechanisms

The Interactions of Plasma with Low-k Dielectrics: Fundamental Damage and Protection Mechanisms

Date: August 2011
Creator: Behera, Swayambhu Prasad
Description: Nanoporous low-k dielectrics are used for integrated circuit interconnects to reduce the propagation delays, and cross talk noise between metal wires as an alternative material for SiO2. These materials, typically organosilicate glass (OSG) films, are exposed to oxygen plasmas during photoresist stripping and related processes which substantially damage the film by abstracting carbon, incorporating O and OH, eventually leading to significantly increased k values. Systematic studies have been performed to understand the oxygen plasma-induced damage mechanisms on different low-k OSG films of various porosity and pore interconnectedness. Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and atomic force microscopy are used to understand the damage kinetics of O radicals, ultraviolet photons and charged species, and possible ways to control the carbon loss from the film. FTIR results demonstrate that O radical present in the plasma is primarily responsible for carbon abstraction and this is governed by diffusion mechanism involving interconnected film nanopores. The loss of carbon from the film can be controlled by closing the pore interconnections, He plasma pretreatment is an effective way to control the damage at longer exposure by closing the connections between the pores.
Contributing Partner: UNT Libraries
Surface Segregation in Multi-component Systems: Modeling Binary Ni-Al Alloys Using the BFS Method

Surface Segregation in Multi-component Systems: Modeling Binary Ni-Al Alloys Using the BFS Method

Date: August 2004
Creator: Kasmi, Azeddine
Description: Although the study of surface segregation has a great technological importance, the work done in the field was for a long time largely restricted to experimental studies and the theoretical work was neglected. However, recent improvements in both first principles and semi-empirical methods are opening a new era for surface scientists. A method developed by Bozzolo, Ferrante, and Smith (BFS) is particularly suitable for complex systems and several aspects of the computational modeling of surfaces and segregation, including alloy surface segregation, structure and composition of alloy surfaces and the formation of surface alloys. In the following work I introduce the BFS method and apply it to model the Ni-Al alloy through a Monte-Carlo simulation. A comparison between my results and those results published by the group mentioned above was my goal. This thesis also includes a detailed explanation of the application of the BFS method to surfaces of multi-component metallic systems, beyond binary alloys.
Contributing Partner: UNT Libraries
Maleic anhydride grafted polypropylene coatings on steel: Adhesion and wear.

Maleic anhydride grafted polypropylene coatings on steel: Adhesion and wear.

Date: May 2010
Creator: Mahendrakar, Sridhar
Description: Polymeric coatings are being used in a growing number of applications, contributing to protection against weather conditions and localized corrosion, reducing the friction and erosion wear on the substrate. In this study, various polypropylene (PP) coatings were applied onto steel substrates by compression molding. Chemical modification of PP has been performed to increase its adhesion to metallic surfaces by grafting of maleic anhydride (MAH) onto PP in the presence of dicumyl peroxide (DCP). Influence of different concentrations of MAH and DCP on the properties of resulting materials have been examined. The coated steel samples are characterized by scanning electron microscopy (SEM), shear adhesion testing, FTIR and tribometry. The coatings with 3 wt. % MAH have shown the maximum adhesion strength due to maximum amount of grafting. The wear rates increased with increasing the amount of MAH due to simultaneous increase in un-reacted MAH.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST