Search Results

Geothermal energy impact in Brazoria County. Final report, 15 July 1978-November 30, 1979
All activities performed by Alvin Community College and the University of Texas at Austin in association with the development of Geopressured-Geothermal energy are contained in this report. A discussion of the progress of the Test Well is also contained herein. Public seminars and workshops were presented to the local community. A summer institute in energy was also presented to local public school teachers. A compaign to publicize the development of the new energy resource was also waged. An overall evaluation of the project is also attached.
Aerial radiometric and magnetic survey, San Angelo National Topographic Map: Texas, West Texas Project. Final report
The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the San Angelo National Topographic Map NH14-1 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium, and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included.
Retrospective examination of geothermal environmental assessments
Since 1976, the Department of Energy (DOE) has supported a variety of programs and projects dealing with the exploration, development, and utilization of geothermal energy. This report presents an overview of the environmental impacts associated with these efforts. Impacts that were predicted in the environmental analyses prepared for the programs and projects are reviewed and summarized, along with measures that were recommended to mitigate these impacts. Also, for those projects that have gone forward, actual impacts and implemented mitigation measures are reported, based on telephone interviews with DOE and project personnel. An accident involving spills of geothermal fluids was the major environmental concern associated with geothermal development. Other important considerations included noise from drilling and production, emissions of H/sub 2/S and cooling tower drift, disposal of solid waste (e.g., from H/sub 2/S control), and the cumulative effects of geothermal development on land use and ecosystems. Mitigation measures were frequently recommended and implemented in conjunction with noise reduction; drift elimination; reduction of fugitive dust, erosion, and sedimentation; blowout prevention; and retention of wastes and spills. Monitoring to resolve uncertainties was often implemented to detect induced seismicity and subsidence, noise, drift deposition, concentrations of air and water pollutants, and effects on groundwater. The document contains an appendix, based on these findings, which outlines major environmental concerns, mitigation measures, and monitoring requirements associated with geothermal energy. Sources of information on various potential impacts are also listed.
Environmental Assessment: geothermal direct heat project, Marlin, Texas
The Federal action addressed by this Environmental Assessment (EA) is joint funding the retrofitting of a heating and hot water system in a hospital at Marlin, Texas, with a geothermal preheat system. The project will be located within the existing hospital boiler room. One supply well was drilled in an existing adjacent parking lot. It was necessary to drill the well prior to completion of this environmental assessment in order to confirm the reservoir and to obtain fluids for analysis in order to assess the environmental effects of fluid disposal. Fluid from operation will be disposed of by discharging it directly into existing street drains, which will carry the fluid to Park Lake and eventually the Brazos River. Fluid disposal activities are regulated by the Texas Railroad Commission. The local geology is determined by past displacements in the East Texas Basin. Boundaries are marked by the Balcones and the Mexia-Talco fault systems. All important water-bearing formations are in the cretaceous sedimentary rocks and are slightly to highly saline. Geothermal fluids are produced from the Trinity Group; they range from approximately 3600 to 4000 ppM TDS. Temperatures are expected to be above 64/sup 0/C (147/sup 0/F). Surface water flows southeastward as a part of the Brazos River Basin. The nearest perennial stream is the Brazos River 5.6 km (3.5 miles) away, to which surface fluids will eventually discharge. Environmental impacts of construction were small because of the existing structures and paved areas. Construction run-off and geothermal flow-test fluid passed through a small pond in the city park, lowering its water quality, at least temporarily. Construction noise was not out of character with existing noises around the hospital.
Potential geothermal resources of Texas. Geological circular 74-4
No Description Available.
Isolation of pathogenic Naegleria from artificially heated waters
Investigations were undertaken to determine whether heated waters facilitate the proliferation of free-living amoeba that cause primary amoebic meningoencephalitis. Water samples were taken close to the discharges of power plants situated on lakes or rivers in Florida and Texas and from cooling towers in Tennessee. The water temperatures ranged from 29 to 42/sup 0/C. Water samples were also taken from several lakes in Florida and Texas without associated power plants. The water temperatures of these ranged from 30/sup 0/ to 34/sup 0/C. Twenty-five-250-ml samples were filtered through membranes. Samples taken from the control lakes and cooling towers showed no growth of pathogenic amoeba, whereas growth was obtained from 2 of the 8 lakes and rivers in Florida and from 1 of the 7 man-made lakes in Texas that were artificially heated. The amoebae were identified as belonging to the genus Naegleria from their trophozoite and cyst structure, ability to grow at 45/sup 0/C, to transform into flagellates, and to produce primary amebic meningoencephalitis (PAME) in mice after intranasal instillation. Their identification as N. fowleri was confirmed by indirect immunofluorescent analysis with antiserum produced against N. fowleri. These findings indicate that artificial heating of waters may facilitate the growth of pathogenic free living amoeba.
Methane entrained in geopressured aquifers, Texas Gulf Coast
Six tests of geopressured aquifers have yielded between 3.6 to 4.5 m/sup 3//m/sup 3/ (20 to 25 scf/bbl) of gas. These low gas concentrations are attributed to high salinities, that in all tests exceeded 100,000 mg/l, but undersaturated conditions cannot be ruled out completely. Research efforts are designed to delineate the geographic and stratigraphic variations in salinity and to recognize regional and local trends so that zones of lower salinity and higher gas concentration can be identified. Moreover, well logs and seismic data are being used to develop methods of detecting low concentrations of free gas in watered-out gas sands and in thin sands that were considered as noncommercial prior to renewed interest in unconventional gas supplies. (MHR)
Candidate wind turbine generator site: annual data summary, January 1981-December 1981
Summarized hourly meteorological data for 34 candidate and wind turbine generator sites for calendar year 1981 are presented. These data are collected for the purpose of evaluating the wind energy potential at these sites and are used to assist in selection of potential sites for installation and testing of large wind turbines in electric utility systems. For each site, wind speed, direction, and distribution data are given in eight tables. Use of information from these tables, with information about specific wind turbines, should allow the user to estimate the potential for wind energy production at each site.
Geothermal Reservoir Well Stimulation Program: technology transfer
The following are included: review of available data from previous fracturing stimulation operations, stimulation process variables, fracturing fluid design, hydraulic fracture design, stimulation case histories, and selected bibliography. (MHR)
Elements of high constructive deltaic sedimentation, lower Frio Formation, Brazoria County, Texas
The lower Frio Formation in eastern Brazoria County, upper Texas Gulf Coast, was deposited in a high constructive deltaic environment in the Houston delta system. Constructive elements of the stacked, elongate to lobate deltas that were intersected in core are storm induced delta front splays, delta front slump deposits, and distributary mouth bar, distributary channel and delta plain assemblages. Reworked and winnowed abandonment facies that are volumetrically insignificant relative to constructive elements are subdivided into a crossbedded shoreface-foreshore subfacies and a fine grained cyclic sequence of storm deposits on the lower shoreface that represent a distal abandonment subfacies. Micropaleontological evidence indicates that deposition of constructive and abandonment facies took place in water depths of less than 120 feet.
Solar energy system economic evaluation: final report for SEMCO-Loxahatchee, Loxahatchee National Wildlife Refuge, Palm Beach County, Florida
The economic analysis of the solar energy system that was installed at Loxahatchee, Florida Operational Test Site (OTS) is developed for Loxahatchee and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f-Chart design procedure with inputs based on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system costs over a projected twenty year life, life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. The results demonstrate that the solar energy system is economically viable at all of the five sites for which the analysis was conducted.
Geopressured-geothermal energy development: government incentives and institutional structures
The following subjects are included: a geothermal resource overview, the evolution of the current Texas geopressured-geothermal institutional structure, project evaluation with uncertainty and the structure of incentives, the natural gas industry, the electric utility industry, potential governmental participants in resource development, industrial users of thermal energy, current government incentives bearing on geopressured-geothermal development, six profiles for utilization of the geopressured-geothermal resources in the mid-term, and probable impacts of new government incentives on mid-term resource utilization profiles. (MHR)
Radiation emergency response in Illinois, Alabama, and Texas
The objective of this study was to examine state radiation emergency response and to locate any areas of emergency planning in need of improvement. This report briefly presents a summary of laws and defining documents governing radiation emergency response, describes the existing and projected need for such response, and presents the authors' analyses of the evolution of state response plans and their application to radiation incidents. Three states' programs are discussed in detail: Illinois, Alabama, and Texas. These states were selected because they have quite different emergency-response programs. Therefore, these state programs provide a wide variety of approaches to state radiation emergency response.
Offshore oceanographic and environmental monitoring services for the Strategic Petroleum Reserve. Volume I. Appendices. Annual report for the Bryan Mound Site, September 1982-August 1983
The Department of Energy's Strategic Petroleum Reserve Program began leaching the Bryan Mound salt dome and discharging brine into the coastal waters offshore of Freeport, Texas on March 10, 1980. This report describes the findings of a team of Texas A and M University scientists and engineers who have conducted a study to evaluate the effects of the Bryan Mound brine discharge on the marine environment. The study addresses the areas of physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos and data management. It focuses on the period from September 1982 through August 1983. The ambient physical environment and its temporal and spatial variability were studied by means of continuously recording in situ current/conductivitiy/temperature meters and twelve, one-day synoptic hydrographic cruises. The quarterly water and sediment quality data show a small increase in salinity, sodium and chloride ions occurs in the bottom waters and sediment pore waters near the diffuser relative to those values measured at stations farther away. Data from the brine plume study for this reporting study show the largest areal extent within the +1 o/oo above ambient salinity contour was 40.0 km/sup 2/ which occurred on August 11, 1983. It appears that brine disposal at Bryan Mound has had neglible if any influence on the nekton community surrounding the diffuser. The benthic quarterly data from 26 stations, including 7 collections made after the diffuser outflow rate was increased to 1,000,000 barrels/day, show the total numbers of species at the diffuser station were higher than most other nearfield stations as well as many farfield stations in both the pre- and post-1,000,000 barrels/day brine flow periods. 138 references, 175 figures, 53 tables.
SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 5. Science Applications, Incorporated system requirements definition
This report sets forth the system requirements for a Solar Controlled-Environment Agriculture System (SCEAS) Project. In the report a conceptual baseline system description for an engineering test facility is given. This baseline system employs a fluid roof/roof filter in combination with a large storage tank and a ground water heat exchanger in order to provide cooling and heating as needed. Desalination is accomplished by pretreatment followed by reverse osmosis. Energy is provided by means of photovoltaics and wind machines in conjunction with storage batteries. Site and climatic data needed in the design process are given. System performance specifications and integrated system design criteria are set forth. Detailed subsystem design criteria are presented and appropriate references documented.
Soil attenuation of leachates from low-rank coal combustion wastes: a literature survey. [116 references]
In parallel with pursuing the goal of increased utilization of low-rank solid fuels, the US Department of Energy is investigating various aspects associated with the disposal of coal-combustion solid wastes. Concern has been expressed relative to the potential hazards presented by leachates from fly ash, bottom ash and scrubber wastes. This is of particular interest in some regions where disposal areas overlap aquifer recharge regions. The western regions of the United States are characterized by relatively dry alkaline soils which may effect substantial attenuation of contaminants in the leachates thereby reducing the pollution potential. A project has been initiated to study the contaminant uptake of western soils. This effort consists of two phases: (1) preparation of a state-of-the-art document on soil attenuation; and (2) laboratory experimental studies to characterize attenuation of a western soil. The state-of-the-art document, represented herein, presents the results of studies on the characteristics of selected wastes, reviews the suggested models which account for the uptake, discusses the specialized columnar laboratory studies on the interaction of leachates and soils, and gives an overview of characteristics of Texas and Wyoming soils. 116 references, 10 figures, 29 tables.
Age and location of volcanic centers less than or equal to 3. 0 m. y. old in Arizona, New Mexico, and the Trans-Peco area of West Texas
This map is one of a series of maps designed for hot dry rock geothermal assessment in Arizona, New Mexico, and the Trans-Peco area of the west Texas. The 3.0 m.y. cutoff age was selected because original heat has probably largely dissipated in older rocks. The location of volcanic centers is more important to geothermal resource assessment than the location of their associated volcanic rocks; however, ages have been determined for numerous flows far from their source. Therefore, the distribution of all volcanic rocks less than or equal to 3.0 m.y. old, for which there is at least one determined age, are shown. Location of the volcanic vents and rocks were taken from Luedke and Smith (1978). Ages were obtained from the original literature in all cases except for McKee and others (1974), Silberman and others (1976), Ulrich and McKee (1976), and Wolfe and McKee (1976). The abstract by McKee and others (1974) lists only the ages of various rocks they dated, so locations were taken from Luedke and Smith (1978). The dates of Silberman and others (1976), Ulrich and McKee (1976), and Wolfe and McKee (1976) are taken from written communications cited by Luedke and Smith (1978); therefore, both references are shown on the map for those ages.
Salinity variations and chemical compositions of waters in the Frio Formation, Texas Gulf Coast. Annual report
Waters produced from sandstone reservoirs of the deep Frio Formation exhibit spatial variations in chemical composition that roughly coincide with the major tectonic elements (Houston and Rio Grande Embayments, San Marcos Arch) and corresponding depositional systems (Houston and Norias deltas, Greta-Carancahua barrier/strandplain system) that were respectively active along the upper, lower, and middle Texas Coast during Frio deposition. Within an area, salinities are usually depth dependent, and primary trends closely correspond to pore pressure gradients and thermal gradients. Where data are available (mainly in Brazoria County) the increases in TDS and calcium with depth coincide with the zone of albitization, smectite-illite transition, and calcite decrease in shales. Waters have fairly uniform salinities when produced from the same sandstone reservoir within a fault block or adjacent fault blocks with minor displacement. In contrast, stratigraphically equivalent sandstones separated by faults with large displacement usually yield waters with substantially different salinities owing to the markedly different thermal and pressure gradients across the faults that act as barriers to fluid movement.
Solar production of industrial process steam for the Lone Star Brewery. Final report
This report outlines the detailed design and system analysis of a solar industrial process steam system for the Lone Star Brewery. The industrial plant has an average natural gas usage of 12.7 MMcf per month. The majority of this energy goes to producing process steam of 125 psi and 353/sup 0/F at about 50,000 lb/h, with this load dropping to about 6000 lb/h on the weekends. The maximum steam production of the solar energy system is about 1700 lb/h. The climatic conditions at the industrial site give 50% of the possible amount of sunshine during the winter months and more than 70% during the summer months. The long-term yearly average daily total radiation on a horizontal surface is 1574 Btu/day-ft/sup 2/, the long-term yearly average daytime ambient temperature is 72/sup 0/F, and the percentage of clear day insolation received on the average day of the year is 62%. The solar steam system will consist of 9450 ft/sup 2/ of Solar Kinetics T-700 collectors arranged in fifteen 90-ft long rows through which 67.5 gpm of Therminol T-55 is pumped. This hot Therminol then transfers the heat collected to a Patterson-Kelley Series 380 unfired steam boiler. The solar-produced steam is then metered to the industrial process via a standard check valve. The thermal performance of this system is projected to produce about 3 million lbs of steam during an average weather year, which is approximately 3 billion Btu's. As with any prototype system, this steam system cannot be justified for purely economic reasons. It is estimated, however, that if the cost of the collectors can be reduced to a mass production level of $3 per lb then this type of system would be cost effective in about six years with the current government incentives and a fuel escalation rate of 10%. This …
Texasgulf solar cogeneration program. Mid-term topical report
The status of technical activities of the Texasgulf Solar Cogeneration Program at the Comanche Creek Sulfur Mine is described. The program efforts reported focus on preparation of a system specification, selection of a site-specific configuration, conceptual design, and facility performance. Trade-off studies performed to select the site-specific cogeneration facility configuration that would be the basis for the conceptual design efforts are described. Study areas included solar system size, thermal energy storage, and field piping. The conceptual design status is described for the various subsystems of the Comanche Creek cogeneration facility. The subsystems include the collector, receiver, master control, fossil energy, energy storage, superheat boiler, electric power generation, and process heat subsystems. Computer models for insolation and performance are also briefly discussed. Appended is the system specification. (LEW)
Monitoring of the performance of a solar heated and cooled apartment building. Final report
An all-electric apartment building in Texas was retrofitted for solar heating and cooling and hot water. The system consists of an array of 1280 square feet of Northrup concentrating tracking collectors, a 5000-gallon hot water storage vessel, a 500-gallon chilled water storage vessel, a 25-ton Arkla Industries absorption chiller, and a two-pipe hydronic air conditioning system. The solar air conditioning equipment is installed in parallel with the existing conventional electric heating and cooling system, and the solar domestic water heating serves as preheat to the existing electric water heaters. The system was fully instrumented for monitoring. Detailed descriptions are given of the solar system, the performance monitoring system, and the data reduction processes. Results are presented and discussed. (WHK)
Wilcox sandstone reservoirs in the deep subsurface along the Texas Gulf Coast - their potential for production of geopressured geothermal energy. Final report
The following subjects are included: regional setting, stratigraphic sections, Lower Wilcox sandstone distribution, formation pressure, formation temperature used to delineate geothermal fairways, Zapata Fairway, Duval Fairway, Live Oak Fairway, De Witt Fairway, Colorado Fairway, and Harris Fairway. Depositional and structural style, formation pressures and temperatures, porosity and permeability, formation water salinity, and Cuero Prospect are covered for De Witt Fairway. Depositional and structural style, formation and fluid properties, and Eagle Lake Prospect are covered for Colorado Fairway. (MHR)
Code manual for passive solar design single family residential construction
General information is presented on types of passive solar techniques and a method for estimating passive solar performance. Important codes and standards are described, each description listing the items in the code which could have a potential impact on a passive solar design and analyzing the effect of the code on the use of such techniques. State and local codes and code agencies are summarized. The local summary contains the name of a contact in the enforcement agency to whom specific questions may be addressed. The requirements to file for a building permit are given briefly. (LEW)
African American Student Placement in Disciplinary Alternative Education Programs
The purpose of this study was to determine the relationship (predicative capability) between selected variables, specifically, African American student enrollment, teacher ethnicity, and urban or rural district classification and the number of African American student placements in a disciplinary alternative education program (DAEP). The study used a non-experimental ex post facto design. Archival data from the Texas Education Agency were used to identify Texas schools that sent African American students to a DAEP during the 2013-2014 school year. Archival data from the Texas Education Agency were also used to identify African American student enrollment and teacher ethnicity for the selected school districts. Finally, archival data from the Texas Department of Agriculture were used to identify district classifications of urban or rural. Participants in this study consisted of 187 school districts that placed African American students in a DAEP during the 2013-2014 school year. Based on the findings, teacher ethnicity and African American student enrollment are statistically significant contributions to African American student placement in a DAEP. Urban or rural district classification is not a statistically significant predictor in the same placements. Results of this study add to existing literature by confirming that there is an overrepresentation of African American student placements in DAEPs and suggesting possible ways to combat this epidemic.
Summary report on the Solar Consumer Assurance Network (SOLCAN) Program Planning Task in the southern region
The goal of the SOLCAN Program Planning Task is to assist in the development, at the state and local levels, of consumer assurance approaches that will support the accelerated adoption and effective use of new products promoted by government incentives to consumers to meet our nation's energy needs. The task includes state-conducted evaluations and state SOLCAN meetings to identify consumer assurance mechanisms, assess their effectiveness, and identify and describe alternative means for strengthening consumer and industry assurance in each state. Results of the SOLCAN process are presented, including: a Solar Consumer Protection State Assessment Guide; State Solar Consumer Assurance Resources for Selected States; State Solar Consumer Protection Assessment Interviews for Florida; and state SOLCAN meeting summaries and participants. (LEW)
Geopressured energy availability. Final report
Near- and long-term prospects that geopressured/geothermal energy sources could become a viable alternative fuel for electric power generation were investigated. Technical questions of producibility and power generation were included, as well as economic and environmental considerations. The investigators relied heavily on the existing body of information, particularly in geotechnical areas. Statistical methods were used where possible to establish probable production values. Potentially productive geopressured sediments have been identified in twenty specific on-shore fairways in Louisiana and Texas. A total of 232 trillion cubic feet (TCF) of dissolved methane and 367 x 10/sup 15/ Btu (367 quads) of thermal energy may be contained in the water within the sandstone in these formations. Reasonable predictions of the significant reservoir parameters indicate that a maximum of 7.6 TCF methane and 12.6 quads of thermal energy may be producible from these potential reservoirs.
System specification for Fort Hood Solar Cogeneration Facility
The characteristics and design and environmental requirements are specified for a solar cogeneration facility at the Fort Hood Army Base in Killeen, Texas. Characteristics of the system and major elements are described, and applicable standards, codes, laws and regulations are listed. Performance requirements for the total system and for each individual subsystem are presented. Survival requirements are given for various environmental extremes, with consideration given to lightning protection and effects of direct or adjacent lightning strikes. Air quality control standards are briefly mentioned. The facility operates in two principal modes: energy collection and energy utilization. The plant is capable of operating in either mode independently or in both modes simultaneously. The system is also operational in transitional and standby/inactive modes. (LEW)
Coal and energy: a southern perspective. Regional characterization report for the National Coal Utilization Assessment
This publication is the first of several reports to be produced for the National Coal Utilization Assessment, a program sponsored by the Assistant Administrator for Environment and Safety through the Division of Technology Overview of ERDA. The purpose of the report is to present the state and regional perspective on energy-related issues, especially those concerning coal production and utilization for 12 southern states. This report compiles information on the present status of: (1) state government infrastructure that deals with energy problems; (2) the balance between energy consumption and energy production; (3) the distribution of proved reserves of various mineral energy resources; (4) the major characteristics of the population; (5) the important features of the environment; and (6) the major constraints to increased coal production and utilization as perceived by the states and regional agencies. Many energy-related characteristics described vary significantly from state to state within the region. Regional and national generalizations obscure these important local variations. The report provides the state and regional perspective on energy issues so that these issues may be considered objectively and incorporated into the National Coal Utilization Assessment. This Assessment is designed to provide useful outputs for national, regional, and local energy planners.
El Paso Electric photovoltaic-system analyses
Four analyses were performed on the Newman Power Station PV system. Two were performed using the Photovoltaic Transient Analysis Program (PV-TAP) and two with the SOLCEL II code. The first was to determine the optimum tilt angle for the array and the sensitivity of the annual energy production to variation in tilt angle. The optimum tilt angle was found to be 28/sup 0/, and variations of 2/sup 0/ produce losses of only 0.06% in the annual energy production. The second analysis assesses the power loss due to cell-to-cell variations in short circuit current and the degree of improvement attainable by sorting cells and matching modules. Typical distributions on short circuit current can cause losses of about 9.5 to 11 percent in peak array power, and sorting cells into 4 bins prior to module assembly can reduce the losses to about 6 to 8 percent. Using modules from the same cell bins in building series strings can reduce the losses to about 4.5 to 6 percent. Results are nearly the same if the array is operated at a fixed votage. The third study quantifies the magnitude and frequency of occurrence of high cell temperatures due to reverse bias caused by shadowing, and it demonstrates that cell temperatures achieved in reverse bias are higher for cells with larger shunt resistance. The last study assesses the adequacy of transient protection devices on the dc power lines to transients produced by array switching and lightning. Large surge capacitors on the dc power line effectively limit voltage excursions at the array and at the control room due to lightning. Without insertion of series resistors, the current may be limited only by cable and switch impedances, and all elements could be severely stressed. (LEW)
Analysis of environmental factors affecting technology deployment: a case study
A study was conducted for the Office of Resource Applications, US Department of Energy (DOE), to assess the potential market and possible market penetration of four electric baseload generating technologies employing coal combustion, in three selected geographic areas of the US, within the time frame between the present and the year 1998. The major focus was on quantification of environmental performance of these technologies and relation of environmental performance to environmental constraints identified in the study area. The technologies under consideration were all coal-fired electric generation of the following types: conventional steam-electric generation with flue gas scrubbers for desulfurization (the baseline technology); steam-electric generation utilizing atmospheric fluidized bed combustion (AFBC); steam-electric generation utilizing pressurized fluidized bed combustion (PFBC); and electric generation utilizing combined cycle turbines (CC). Three geographic areas corresponding to utility power pools were selected for study: peninsular Florida, a southern region (most of the states of Alabama, Georgia, and Mississippi), and part of the state of Texas. A summary of findings and conclusions is presented. In Chapter 2, the analytic approach is presented; in Chapter 3, the technology specific environmental factors are presented; in Chapter 4, information on the growth in generation is presented; and in Chapter 5, the environmental implications of deployment of the new technologies is explored.
Fort Hood solar cogeneration facility conceptual design study
A study is done on the application of a tower-focus solar cogeneration facility at the US Fort Hood Army Base in Killeen, Texas. Solar-heated molten salt is to provide the steam for electricity and for room heating, room cooling, and domestic hot water. The proposed solar cogeneration system is expected to save the equivalent of approximately 10,500 barrels of fuel oil per year and to involve low development risks. The site and existing plant are described, including the climate and plant performance. The selection of the site-specific configuration is discussed, including: candidate system configurations; technology assessments, including risk assessments of system development, receiver fluids, and receiver configurations; system sizing; and the results of trade studies leading to the selection of the preferred system configuration. (LEW)
Geothermal progress monitor report No. 6
Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part II of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.
Results of screening activities in salt states prior to the enactment of the Nationall Waste Policy Act
The identification of potential sites for a nuclear waste repository through screening procedures in the salt states is a well-established, deliberate process. This screening process has made it possible to carry out detailed studies of many of the most promising potential sites, and general studies of all the sites, in anticipation of the siting guidelines specified in the Nuclear Waste Policy Act. The screening work completed prior to the passage of the Act allowed the Secretary of Energy to identify seven salt sites as potentially acceptable under the provisions of Section 116(a) of the Act. These sites were formally identified by letters from Secretary Hodel to the states of Texas, Utah, Mississippi, and Louisiana on February 2, 1983. The potentially acceptable salt sites were in Deaf Smith and Swisher Counties in Texas; Davis and Lavender Canyons in the Gibson Dome location in Utah; Richton and Cypress Creek Domes in Mississippi; and Vacherie Dome in Louisiana. Further screening will include comparison of each potentially acceptable site against disqualification factors and selection of a preferred site in each of the three geohydrologic settings from those remaining, in accordance with the siting guidelines. These steps will be documented in statutory Environmental Assessments prepared for each site to be nominated for detailed characterization. 9 references.
Bates solar industrial process steam application environmental impact assessment
It is planned to install 34,440 square feet of linear parabolic trough solar collectors at a new corrugator plant for making corrugated boxes. The system is to operate in parallel with a fossil fuel boiler. An assessment is presented of the impacts of the solar energy system on the existing environment and to determine whether or not a more detailed environmental impact statement is needed. The environmental assessment is based on actual operational data obtained on the collector, fluid, and heat transport system. A description of the design of the solar energy system and its application is given. Also included is a discussion of the location of the new plant in Fort Worth, Texas, and of the surrounding environment. Environmental impacts are discussed in detail, and alternatives to the solar industrial process steam retrofit application are offered. It is concluded that the overall benefits from the solar industrial process heat system outweigh any negative environmental factors. Benefits include reduced fossil fuel demand, with attending reductions in air pollutants. The selection of a stable heat transfer fluid with low toxicity and biodegradable qualities minimizes environmental damage due to fluid spills, personal exposure, and degradation byproducts. The collector is found to be aesthetically attractive with minimal hazards due to glare. (LEW)
Uranium isotopes in ground water as a prospecting technique
The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of /sup 234/U//sup 238/U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented.
Site geotechnical considerations for expansion of the Strategic Petroleum Reserve (SPR) to one billion barrels
Eight Gulf Coast salt domes have emerged as candidate sites for possible expansion of the Strategic Petroleum Reserve (SPR) to one billion barrels. Two existing SPR sites, Big Hill, TX, and Weeks Island, LA, are among the eight that are being considered. To achieve the billion barrel capacity, some 25 new leached caverns would be constructed, and would probably be established in two separate sites in Louisiana and Texas because of distribution requirements. Geotechnical factors involved in siting studies have centered first and foremost on cavern integrity and environmental acceptability, once logistical suitability is realized. Other factors have involved subsidence and flooding potential, loss of coastal marshlands, seismicity, brine injection well utility, and co-use by multiple operators. 5 refs., 11 figs., 2 tabs.
Uranium favorability of late Eocene through Pliocene rocks of the South Texas Coastal Plain
The results of a subsurface uranium favorability study of Tertiary rocks (late Eocene through Pliocene) in the Coastal Plain of South Texas are given. In ascending order, these rock units include the Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand. The Vicksburg Group, Anahuac Formation, and Fleming Formation were not considered because they have unfavorable lithologies. The Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand contain sandstones that may be favorable uranium hosts under certain environmental and structural conditions. All except the Yegua are known to contain ore-grade uranium deposits. Yegua and Jackson sandstones are found in strand plain-barrier bar systems that are aligned parallel to depositional and structural strike. These sands grade into shelf muds on the east, and lagoonal sediments updip toward the west. The lagoonal sediments in the Jackson are interrupted by dip-aligned fluvial systems. In both units, favorable areas are found in the lagoonal sands and in sands on the updip side of the strand-plain system. Favorable areas are also found along the margins of fluvial systems in the Jackson. The Frio and Catahoula consist of extensive alluvial-plain deposits. Favorable areas for uranium deposits are found along the margins of the paleo-channels where favorable structural features and numerous optimum sands are present. The Oakville and Goliad Formations consist of extensive continental deposits of fluvial sandstones. In large areas, these fluvial sandstones are multistoried channel sandstones that form very thick sandstone sequences. Favorable areas are found along the margins of the channel sequences. In the Goliad, favorable areas are also found on the updip margin of strand-plain sandstones where there are several sandstones of optimum thickness.
Geothermal direct heat program: roundup technical conference proceedings. Volume II. Bibliography of publications. State-coupled geothermal resource assessment program
Lists of publications are presented for the Geothermal Resource Assessment Program for the Utah Earth Science Laboratory and the following states: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Kansas, Montana, Nebraska, Nevada, New Mexico, New York, North Dakota, Oregon, Texas, Utah, and Washington.
Strategic petroleum reserve, Byran Mound Salt Dome, Brazoria County, Texas. Final environmental impact statement (final supplement to FEA FES 76/77-6)
On January 7, 1977, the Federal Energy Administration issued a Final Environmental Impact Statement (EIS) for the development of the Bryan Mound salt dome as a storage site for the Strategic Petroleum Reserve (FES 76/77-6). On October 1, 1977, the U.S. Department of Energy was created and the programs of the Federal Energy Administration were transferred to the new Department. As such, this final supplement is being issued by the Department of Energy. The salt dome is located in Brazoria County, Texas. Since the EIS was published, it has been determined that this arrangement would be inadequate to meet the long term requirements for filling and withdrawing oil at the site, although the disposal of brine to Dow Chemical would be utilized to the maximum extent possible. Therefore, on July 15, 1977, a Draft Supplement to FES 76/77-6 was issued addressing the environmental impacts of construction and operation of two types of brine disposal systems and a new water supply system. This final supplement addresses a brine injection well system and a water intake system. Construction of this new system component would cause temporary disruption to land use, water quality, air quality, and terrestrial and aquatic ecology. The new facilities would permanently change 17 acres of land from its present use. Operation of the systems would have relatively small, short-term impacts. Use of the brine surge pit could adversely affect air quality by emitting hydrocarbon vapors (maximum rate of 51.4 tons per year). Operation of the disposal wells would increase the salinity of an already saline aquifer. All operational impacts would be relatively minor and short-term, occurring only during periods of fill or withdrawal of the storage facility.
Aerial radiometric and magnetic survey: San Antonio National Topographic Map, Texas. Final report
The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the San Antonio National Topographic Map NH14-8 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium, and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.
20-kW Solar Photovoltaic Flat-Panel Power System for an Uninterruptible Power-System Load in El Paso, Texas. Phase Ii. System Fabrication. Final Report October 1, 1979-May 31, 1981
The system plans, construction, integration and test, and performance evaluation are discussed for the photovoltaic power supply at the Newman Power Station in El Paso, Texas. The system consists of 64 parallel-connected panels, each panel containing nine series-connected photovoltaic modules. The system is connected, through power monitoring equipment, to an existing DC bus that supplies uninterruptible power to a computer that controls the power generating equipment. The site is described and possible environmental hazards are assessed. Site preparation and the installation of the photovoltaic panels, electrical cabling, and instrumentation subsystems are described. System testing includes initial system checkout, module performance test, control system test. A training program for operators and maintenance personnel is briefly described, including visual aids. Performance data collection and analysis are described, and actual data are compared with a computer simulation. System drawings are included. (LEW)
Instrumentation of dynamic gas pulse loading system
The overall goal of this work is to further develop and field test a system of stimulating oil and gas wells, which increases the effective radius of the well bore so that more oil can flow into it, by recording pressure during the gas generation phase in real time so that fractures can be induced more predictably in the producing formation. Task 1: Complete the laboratory studies currently underway with the prototype model of the instrumentation currently being studied. Task 2: Perform field tests of the model in the Taft/Bakersfield area, utilizing operations closest to the engineers working on the project, and optimize the unit for various conditions encountered there. Task 3: Perform field test of the model in DGPL jobs which are scheduled in the mid-continent area, and optimize the unit for downhole conditions encountered there. Task 4: Analyze and summarize the results achieved during the complete test series, documenting the steps for usage of downhole instrumentation in the field, and compile data specifying use of the technology by others. Task 5: Prepare final report for DOE, and include also a report on the field tests completed. Describe and estimate the probability of the technology being commercialized and in what time span. The project has made substantial technical progress, though we are running about a month behind schedule. Expenditures are in line with the schedule. Increased widespread interest in the use of DGPL stimulation has kept us very busy. The computer modeling and test instrumentation developed under this program is already being applied to commercial operations.
Aerial gamma ray and magnetic survey, Van Horn and Pecos Quadrangles, Texas. Volume I. Final report
A high sensitivity, airborne radiometric and magnetic survey of portions of the Big Bend, Texas area was conducted. The project area comprising the Van Horn and Pecos 1:250,000 NTMS sheets, consists of approximately 16,400 square miles. A total of 6,666 line miles of high sensitivity radiometric and magnetic data were collected. Traverse lines were flown at a spacing of 3.125 miles in an east/west direction with tie lines flown in a north/south direction at a 18.375 miles separation. All data were collected utilizing a fixed wing aircraft, Grumman G-89 and over 3,500 cubic inches of NaI crystal detector. Magnetometer data were collected utilizing a high sensitivity, 0.25 gamma, proton magnetometer. Data were digitally recorded at 0.5 second intervals. All field data were returned to the computer facilities for processing, statistical analysis, and interpretation. Other data are presented which include corrected profiles of all radiometric variables, magnetic data, radar altimeter data, barometric altimeter data, air temperature and airborne Bismuth contributions. Data presented have been summed to provide 1.0 second equivalent sample intervals, corrected for Compton Scatter, altitude dependence and atmospheric Bismuth. These data are presented in the form of strip charts, microfiche, and digital magnetic tapes containing raw spectral data, single record data, magnetic data, and statistical analysis results. In addition, computer generated anomaly maps along with interpretation maps are presented relating mapped geology to the collected radiometric data.
Comparison of model predicted to observed winds in the coastal zone
Predictions of near-surface (10 to 100 m) wind velocities made by a mesoscale numerical model on a 10 km grid over and near the coastline are checked against observations. Two comparisons are made. The first is between observed and model-estimated mean annual wind power density at locations where surface observations exist in three coastal areas: the Chesapeake Bay, the Apalachee Bay and the South Texas coastal area. The second comparison is made between model predictions over the Delmarva Peninsula and adjacent ocean and observations made over a 120 x 30 km rectangle extending across the peninsula and out to sea. It is concluded that the unbiased error analysis skill ratings of 81% and 76% are attained for two days of prediction-observation comparisons. In the meantime, the skill of the model in duplicating individual coastal wind fields is taken as 78%. In addition, a qualitative comparison is made between the predicted fields of wind and the observed wind field. The predicted wind field unquestionably reproduces the observed field.
Texas State Briefing Book for low-level radioactive waste management
The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas.
Intermediate photovoltaic system application experiment operational performance report. Volume 7, for Newman Power Station, El Paso, TX
Performance data are given for the month of December, 1981 for a photovoltaic power supply at a Texas power station. Data include: monthly and daily electric energy produced; monthly and daily solar energy received; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature, and hour of the day; monthly and daily electrical energy supplied by the photovoltaic system to the load; daily system availability; monthly and hourly insolation; monthly and hourly ambient temperature; monthly and hourly wind speed; wind direction distribution; heating and cooling degree days; number of freeze/thaw cycles; hourly cell temperature; and a plot of daily data acquisition mode and recording interval. Also included are brief summaries of three site events. (LEW)
Reservoir performance in viscoelastic porous media
The mass balance equations for a two-phase two-component fluid system are written for viscoelastic porous media. The resulting equations are approximated by finite differences and the resulting numerical simulator is used to conduct a sensitivity study on the effects of uniaxial viscoelastic deformation in geopressured aquifers. Results of this study indicate that viscoelastic deformation may have considerable influence on the pressure maintenance of these aquifers. A numerical model of the geopressured aquifer in Brazoria County, Texas, is constructed and the numerical simulator is used to predict the ultimate recovery of solution gas from this viscoelastic geopressured aquifer.
Site selection and preliminary evaluation of potential solar-industrial-process-heat applications for federal buildings in Texas
The potential for solr process heat applications for federal buildings in Texas is assessed. The three sites considered are Reese Air Force Base, Lubbock; Fort Bliss, El Paso; and Dyess Air Force Base, Abilene. The application at Lubbock is an electroplating and descaling facility for aircraft maintenance. The one at El Paso is a laundry facility. The Abilene system would use solar heat to preheat boiler feedwater makeup for the base hospital boiler plant. The Lubbock site is found to be the most appropriate one for a demonstration plant, with the Abilene site as an alternate. The processes at each site are described. A preliminary evaluation of the potential contribution by solar energy to the electroplating facility at Reese AFB is included. (LEW)
Salt site performance assessment activities
During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.
Groundwater prospecting for sandstone-type uranium deposits: the merits of mineral-solution equilibria versus single element tracer methods. Volume 2
This report presents the results of further research on the groundwater geochemistry of 96 well waters in two uraniferous aquifers in Texas and Wyoming, and is a continuation of the work presented by Chatham et al. (1981). In this study variations in concentrations of U, As, Mo, Se and V were compared with the saturation state of the groundwater with respect to mineral phases of these elements known or expected to occur in each area. The non-radiogenic trace elements exhibited strong redox dependence consistent with thermodynamic predictions, but their variations did not pinpoint existing uranium ore bodies, because of a shift in groundwater flow patterns since the time of ore emplacement. Saturation levels of trace element minerals such as realgar, native Se, and molybdenite showed broad anomalies around the ore-bearing areas, similar to patterns found for U minerals by Langmuir and Chatham (1980), and Chatham et al. (1981). The radiogenic elements Ra and Rn showed significant anomalies directly within the ore zones. Helium anomalies were displaced in the direction of groundwater flow, but by their magnitude and areal extent provided strong evidence for the existence of nearby uranium accumulations. Uranium isotope ratios showed no systematic variations within the two aquifers studied. Saturation maps for kaolinite, illite, montmorillonite and the zeolites analcime and clinoptilolite provided 1 to 2 km anomalies around the ore at the Texas site. Saturation values for the gangue minerals pyrite and calcite defined the redox interface and often suggested the position of probable uranium mineralization. When properly used, the groundwater geochemical concepts for exploration can accurately pinpoint uranium mineralization at a fraction of the cost of conventional methods that involve test drilling and geophysical and core logging.
Back to Top of Screen