This system will be undergoing maintenance Monday, January 23 from 8:00 AM to 12:00 PM CST.
Agent-Based Architecture for Web Deployment of Multi-Agents as Conversational Interfaces.

Agent-Based Architecture for Web Deployment of Multi-Agents as Conversational Interfaces.

Date: May 2003
Creator: Pothuru, Ranjit Kumar
Description: Agent-based architecture explains the rationale and basis for developing agents that can interact with users through natural language query/answer patterns developed systematically using AIML (artificial intelligence mark-up language) scripts. This thesis research document also explains the architecture for VISTA (virtual interactive story-telling agents), which is used for interactive querying in educational and recreational purposes. Agents are very effective as conversational interfaces when used along side with graphical user interface (GUI) in applications and Web pages. This architecture platform can support multiple agents with or with out sharing of knowledgebase. They are very useful as chat robots for recreational purposes, customer service and educational purposes. This platform is powered by Java servlet implementation of Program D and contained in Apache Tomcat server. The AIML scripting language defined here in is a generic form of XML language and forms the knowledgebase of the bot. Animation is provided with Microsoft® Agent technology and text-to-speech support engine.
Contributing Partner: UNT Libraries
DICOM Image Scrubbing Software Library/Utility

DICOM Image Scrubbing Software Library/Utility

Date: May 2003
Creator: Ponnam, Bhavani Srikanth
Description: This software is aimed at providing user-friendly, easy-to-use environment for the user to scrub (de-identify/modify) the DICOM header information. Some tools either anonymize or default the values without the user interaction. The user doesn't have the flexibility to edit the header information. One cannot scrub set of images simultaneously (batch scrubbing). This motivated to develop a tool/utility that can scrub a set of images in a single step more efficiently. This document also addresses security issues of the patient confidentiality to achieve protection of patient identifying information and some technical requirements
Contributing Partner: UNT Libraries
Self-Optimizing Dynamic Finite Functions

Self-Optimizing Dynamic Finite Functions

Access: Use of this item is restricted to the UNT Community.
Date: December 2003
Creator: Jeripothula, Ramesh
Description: Finite functions (also called maps) are used to describe a number of key computations and storage mechanisms used in software and hardware interpreters. Their presence spread over various memory and speed hierarchies in hardware and through various optimization processes (algorithmic and compilation based) in software, suggests encapsulating dynamic size changes and representation optimizations in a unique abstraction to be used across traditional computation mechanisms. We developed a memory allocator for testing the finite functions. We have implemented some dynamic finite functions and performed certain experiments to see the performance speed of these finite functions. We have developed some simple but powerful application programming interfaces (API) for these finite functions.
Contributing Partner: UNT Libraries
Refactoring FrameNet for Efficient Relational Queries

Refactoring FrameNet for Efficient Relational Queries

Date: December 2003
Creator: Ahmad, Zeeshan Asim
Description: The FrameNet database is being used in a variety of NLP research and applications such as word sense disambiguation, machine translation, information extraction and question answering. The database is currently available in XML format. The XML database though a wholesome way of distributing data in its entireness, is not practical for use unless converted to a more application friendly database. In light of this we have successfully converted the XML database to a relational MySQL™ database. This conversion reduced the amount of data storage amount to less than half. Most importantly the new database enables us to perform fast complex querying and facilitates use by applications and research. We show the steps taken to ensure relational integrity of the data during the refactoring process and a simple demo application demonstrating ease of use.
Contributing Partner: UNT Libraries
Machine Language Techniques for Conversational Agents

Machine Language Techniques for Conversational Agents

Date: December 2003
Creator: Sule, Manisha D.
Description: Machine Learning is the ability of a machine to perform better at a given task, using its previous experience. Various algorithms like decision trees, Bayesian learning, artificial neural networks and instance-based learning algorithms are used widely in machine learning systems. Current applications of machine learning include credit card fraud detection, customer service based on history of purchased products, games and many more. The application of machine learning techniques to natural language processing (NLP) has increased tremendously in recent years. Examples are handwriting recognition and speech recognition. The problem we tackle in this Problem in Lieu of Thesis is applying machine-learning techniques to improve the performance of a conversational agent. The OpenMind repository of common sense, in the form of question-answer pairs is treated as the training data for the machine learning system. WordNet is interfaced with to capture important semantic and syntactic information about the words in the sentences. Further, k-closest neighbors algorithm, an instance based learning algorithm is used to simulate a case based learning system. The resulting system is expected to be able to answer new queries with knowledge gained from the training data it was fed with.
Contributing Partner: UNT Libraries
Hopfield Networks as an Error Correcting Technique for Speech Recognition

Hopfield Networks as an Error Correcting Technique for Speech Recognition

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Bireddy, Chakradhar
Description: I experimented with Hopfield networks in the context of a voice-based, query-answering system. Hopfield networks are used to store and retrieve patterns. I used this technique to store queries represented as natural language sentences and I evaluated the accuracy of the technique for error correction in a spoken question-answering dialog between a computer and a user. I show that the use of an auto-associative Hopfield network helps make the speech recognition system more fault tolerant. I also looked at the available encoding schemes to convert a natural language sentence into a pattern of zeroes and ones that can be stored in the Hopfield network reliably, and I suggest scalable data representations which allow storing a large number of queries.
Contributing Partner: UNT Libraries
Memory Management and Garbage Collection Algorithms for Java-Based Prolog

Memory Management and Garbage Collection Algorithms for Java-Based Prolog

Access: Use of this item is restricted to the UNT Community.
Date: August 2001
Creator: Zhou, Qinan
Description: Implementing a Prolog Runtime System in a language like Java which provides its own automatic memory management and safety features such as built--in index checking and array initialization requires a consistent approach to memory management based on a simple ultimate goal: minimizing total memory management time and extra space involved. The total memory management time for Jinni is made up of garbage collection time both for Java and Jinni itself. Extra space is usually requested at Jinni's garbage collection. This goal motivates us to find a simple and practical garbage collection algorithm and implementation for our Prolog engine. In this thesis we survey various algorithms already proposed and offer our own contribution to the study of garbage collection by improvements and optimizations for some classic algorithms. We implemented these algorithms based on the dynamic array algorithm for an all--dynamic Prolog engine (JINNI 2000). The comparisons of our implementations versus the originally proposed algorithm allow us to draw informative conclusions on their theoretical complexity model and their empirical effectiveness.
Contributing Partner: UNT Libraries
Arithmetic Computations and Memory Management Using a Binary Tree Encoding af Natural Numbers

Arithmetic Computations and Memory Management Using a Binary Tree Encoding af Natural Numbers

Date: December 2011
Creator: Haraburda, David
Description: Two applications of a binary tree data type based on a simple pairing function (a bijection between natural numbers and pairs of natural numbers) are explored. First, the tree is used to encode natural numbers, and algorithms that perform basic arithmetic computations are presented along with formal proofs of their correctness. Second, using this "canonical" representation as a base type, algorithms for encoding and decoding additional isomorphic data types of other mathematical constructs (sets, sequences, etc.) are also developed. An experimental application to a memory management system is constructed and explored using these isomorphic types. A practical analysis of this system's runtime complexity and space savings are provided, along with a proof of concept framework for both applications of the binary tree type, in the Java programming language.
Contributing Partner: UNT Libraries
A Comparison of Agent-Oriented Software Engineering Frameworks and Methodologies

A Comparison of Agent-Oriented Software Engineering Frameworks and Methodologies

Date: December 2003
Creator: Lin, Chia-En
Description: Agent-oriented software engineering (AOSE) covers issues on developing systems with software agents. There are many techniques, mostly agent-oriented and object-oriented, ready to be chosen as building blocks to create agent-based systems. There have been several AOSE methodologies proposed intending to show engineers guidelines on how these elements are constituted in having agents achieve the overall system goals. Although these solutions are promising, most of them are designed in ad-hoc manner without truly obeying software developing life-cycle fully, as well as lacking of examinations on agent-oriented features. To address these issues, we investigated state-of-the-art techniques and AOSE methodologies. By examining them in different respects, we commented on the strength and weakness of them. Toward a formal study, a comparison framework has been set up regarding four aspects, including concepts and properties, notations and modeling techniques, process, and pragmatics. Under these criteria, we conducted the comparison in both overview and detailed level. The comparison helped us with empirical and analytical study, to inspect the issues on how an ideal agent-based system will be formed.
Contributing Partner: UNT Libraries
The enhancement of machine translation for low-density languages using Web-gathered parallel texts.

The enhancement of machine translation for low-density languages using Web-gathered parallel texts.

Date: December 2007
Creator: Mohler, Michael Augustine Gaylord
Description: The majority of the world's languages are poorly represented in informational media like radio, television, newspapers, and the Internet. Translation into and out of these languages may offer a way for speakers of these languages to interact with the wider world, but current statistical machine translation models are only effective with a large corpus of parallel texts - texts in two languages that are translations of one another - which most languages lack. This thesis describes the Babylon project which attempts to alleviate this shortage by supplementing existing parallel texts with texts gathered automatically from the Web -- specifically targeting pages that contain text in a pair of languages. Results indicate that parallel texts gathered from the Web can be effectively used as a source of training data for machine translation and can significantly improve the translation quality for text in a similar domain. However, the small quantity of high-quality low-density language parallel texts on the Web remains a significant obstacle.
Contributing Partner: UNT Libraries
An Approach Towards Self-Supervised Classification Using Cyc

An Approach Towards Self-Supervised Classification Using Cyc

Date: December 2006
Creator: Coursey, Kino High
Description: Due to the long duration required to perform manual knowledge entry by human knowledge engineers it is desirable to find methods to automatically acquire knowledge about the world by accessing online information. In this work I examine using the Cyc ontology to guide the creation of Naïve Bayes classifiers to provide knowledge about items described in Wikipedia articles. Given an initial set of Wikipedia articles the system uses the ontology to create positive and negative training sets for the classifiers in each category. The order in which classifiers are generated and used to test articles is also guided by the ontology. The research conducted shows that a system can be created that utilizes statistical text classification methods to extract information from an ad-hoc generated information source like Wikipedia for use in a formal semantic ontology like Cyc. Benefits and limitations of the system are discussed along with future work.
Contributing Partner: UNT Libraries
Towards Communicating Simple Sentence using Pictorial Representations

Towards Communicating Simple Sentence using Pictorial Representations

Date: May 2006
Creator: Leong, Chee Wee
Description: Language can sometimes be an impediment in communication. Whether we are talking about people who speak different languages, students who are learning a new language, or people with language disorders, the understanding of linguistic representations in a given language requires a certain amount of knowledge that not everybody has. In this thesis, we propose "translation through pictures" as a means for conveying simple pieces of information across language barriers, and describe a system that can automatically generate pictorial representations for simple sentences. Comparative experiments conducted on visual and linguistic representations of information show that a considerable amount of understanding can be achieved through pictorial descriptions, with results within a comparable range of those obtained with current machine translation techniques. Moreover, a user study conducted around the pictorial translation system reveals that users found the system to generally produce correct word/image associations, and rate the system as interactive and intelligent.
Contributing Partner: UNT Libraries
Development, Implementation, and Analysis of a Contact Model for an Infectious Disease

Development, Implementation, and Analysis of a Contact Model for an Infectious Disease

Date: May 2009
Creator: Thompson, Brett Morinaga
Description: With a growing concern of an infectious diseases spreading in a population, epidemiology is becoming more important for the future of public health. In the past epidemiologist used existing data of an outbreak to help them determine how an infectious disease might spread in the future. Now with computational models, they able to analysis data produced by these models to help with prevention and intervention plans. This paper looks at the design, implementation, and analysis of a computational model based on the interactions of the population between individuals. The design of the working contact model looks closely at the SEIR model used as the foundation and the two timelines of a disease. The implementation of the contact model is reviewed while looking closely at data structures. The analysis of the experiments provide evidence this contact model can be used to help epidemiologist study the spread of an infectious disease based on the contact rate of individuals.
Contributing Partner: UNT Libraries
Dynamic Resource Management in RSVP- Controlled Unicast Networks

Dynamic Resource Management in RSVP- Controlled Unicast Networks

Date: December 2001
Creator: Iyengar Prasanna, Venkatesan
Description: Resources are said to be fragmented in the network when they are available in non-contiguous blocks, and calls are dropped as they may not end sufficient resources. Hence, available resources may remain unutilized. In this thesis, the effect of resource fragmentation (RF) on RSVP-controlled networks was studied and new algorithms were proposed to reduce the effect of RF. In order to minimize the effect of RF, resources in the network are dynamically redistributed on different paths to make them available in contiguous blocks. Extra protocol messages are introduced to facilitate resource redistribution in the network. The Dynamic Resource Redistribution (DRR) algorithm when used in conjunction with RSVP, not only increased the number of calls accommodated into the network but also increased the overall resource utilization of the network. Issues such as how many resources need to be redistributed and of which call(s), and how these choices affect the redistribution process were investigated. Further, various simulation experiments were conducted to study the performance of the DRR algorithm on different network topologies with varying traffic characteristics.
Contributing Partner: UNT Libraries
XML-Based Agent Scripts and Inference Mechanisms

XML-Based Agent Scripts and Inference Mechanisms

Date: August 2003
Creator: Sun, Guili
Description: Natural language understanding has been a persistent challenge to researchers in various computer science fields, in a number of applications ranging from user support systems to entertainment and online teaching. A long term goal of the Artificial Intelligence field is to implement mechanisms that enable computers to emulate human dialogue. The recently developed ALICEbots, virtual agents with underlying AIML scripts, by A.L.I.C.E. foundation, use AIML scripts - a subset of XML - as the underlying pattern database for question answering. Their goal is to enable pattern-based, stimulus-response knowledge content to be served, received and processed over the Web, or offline, in the manner similar to HTML and XML. In this thesis, we describe a system that converts the AIML scripts to Prolog clauses and reuses them as part of a knowledge processor. The inference mechanism developed in this thesis is able to successfully match the input pattern with our clauses database even if words are missing. We also emulate the pattern deduction algorithm of the original logic deduction mechanism. Our rules, compatible with Semantic Web standards, bring structure to the meaningful content of Web pages and support interactive content retrieval using natural language.
Contributing Partner: UNT Libraries
Logic Programming Tools for Dynamic Content Generation and Internet Data Mining

Logic Programming Tools for Dynamic Content Generation and Internet Data Mining

Access: Use of this item is restricted to the UNT Community.
Date: December 2000
Creator: Gupta, Anima
Description: The phenomenal growth of Information Technology requires us to elicit, store and maintain huge volumes of data. Analyzing this data for various purposes is becoming increasingly important. Data mining consists of applying data analysis and discovery algorithms that under acceptable computational efficiency limitations, produce a particular enumeration of patterns over the data. We present two techniques based on using Logic programming tools for data mining. Data mining analyzes data by extracting patterns which describe its structure and discovers co-relations in the form of rules. We distinguish analysis methods as visual and non-visual and present one application of each. We explain that our focus on the field of Logic Programming makes some of the very complex tasks related to Web based data mining and dynamic content generation, simple and easy to implement in a uniform framework.
Contributing Partner: UNT Libraries
Planning techniques for agent based 3D animations.

Planning techniques for agent based 3D animations.

Date: December 2005
Creator: Kandaswamy, Balasubramanian
Description: The design of autonomous agents capable of performing a given goal in a 3D domain continues to be a challenge for computer animated story generation systems. We present a novel prototype which consists of a 3D engine and a planner for a simple virtual world. We incorporate the 2D planner into the 3D engine to provide 3D animations. Based on the plan, the 3D world is created and the objects are positioned. Then the plan is linearized into simpler actions for object animation and rendered via the 3D engine. We use JINNI3D as the engine and WARPLAN-C as the planner for the above-mentioned prototype. The user can interact with the system using a simple natural language interface. The interface consists of a shallow parser, which is capable of identifying a set of predefined basic commands. The command given by the user is considered as the goal for the planner. The resulting plan is created and rendered in 3D. The overall system is comparable to a character based interactive story generation system except that it is limited to the predefined 3D environment.
Contributing Partner: UNT Libraries
A Minimally Supervised Word Sense Disambiguation Algorithm Using Syntactic Dependencies and Semantic Generalizations

A Minimally Supervised Word Sense Disambiguation Algorithm Using Syntactic Dependencies and Semantic Generalizations

Date: December 2005
Creator: Faruque, Md. Ehsanul
Description: Natural language is inherently ambiguous. For example, the word "bank" can mean a financial institution or a river shore. Finding the correct meaning of a word in a particular context is a task known as word sense disambiguation (WSD), which is essential for many natural language processing applications such as machine translation, information retrieval, and others. While most current WSD methods try to disambiguate a small number of words for which enough annotated examples are available, the method proposed in this thesis attempts to address all words in unrestricted text. The method is based on constraints imposed by syntactic dependencies and concept generalizations drawn from an external dictionary. The method was tested on standard benchmarks as used during the SENSEVAL-2 and SENSEVAL-3 WSD international evaluation exercises, and was found to be competitive.
Contributing Partner: UNT Libraries
Agent Extensions for Peer-to-Peer Networks.

Agent Extensions for Peer-to-Peer Networks.

Date: December 2003
Creator: Valiveti, Kalyan
Description: Peer-to-Peer (P2P) networks have seen tremendous growth in development and usage in recent times. This attention has brought many developments as well as new challenges to these networks. We will show that agent extensions to P2P networks offer solutions to many problems faced by P2P networks. In this research, an attempt is made to bring together JXTA P2P infrastructure and Jinni, a Prolog based agent engine to form an agent based P2P network. On top of the JXTA, we define simple Java API providing P2P services for agent programming constructs. Jinni is deployed on this JXTA network using an automated code update mechanism. Experiments are conducted on this Jinni/JXTA platform to implement a simple agent communication and data exchange protocol.
Contributing Partner: UNT Libraries
Multi-Agent Architecture for Internet Information Extraction and Visualization

Multi-Agent Architecture for Internet Information Extraction and Visualization

Access: Use of this item is restricted to the UNT Community.
Date: August 2000
Creator: Gollapally, Devender R.
Description: The World Wide Web is one of the largest sources of information; more and more applications are being developed daily to make use of this information. This thesis presents a multi-agent architecture that deals with some of the issues related to Internet data extraction. The primary issue addresses the reliable, efficient and quick extraction of data through the use of HTTP performance monitoring agents. A second issue focuses on how to make use of available data to take decisions and alert the user when there is change in data; this is done with the help of user agents that are equipped with a Defeasible reasoning interpreter. An additional issue is the visualization of extracted data; this is done with the aid of VRML visualization agents. The cited issues are discussed using stock portfolio management as an example application.
Contributing Partner: UNT Libraries
Towards Resistance Detection in Health Behavior Change Dialogue Systems

Towards Resistance Detection in Health Behavior Change Dialogue Systems

Date: August 2015
Creator: Sarma, Bandita
Description: One of the challenges fairly common in motivational interviewing is patient resistance to health behavior change. Hence, automated dialog systems aimed at counseling patients need to be capable of detecting resistance and appropriately altering dialog. This thesis focusses primarily on the development of such a system for automatic identification of patient resistance to behavioral change. This enables the dialogue system to direct the discourse towards a more agreeable ground and helping the patient overcome the obstacles in his or her way to change. This thesis also proposes a dialogue system framework for health behavior change via natural language analysis and generation. The proposed framework facilitates automated motivational interviewing from clinical psychology and involves three broad stages: rapport building and health topic identification, assessment of the patient’s opinion about making a change, and developing a plan. Using this framework patients can be encouraged to reflect on the options available and choose the best for a healthier life.
Contributing Partner: UNT Libraries
Automated Classification of Emotions Using Song Lyrics

Automated Classification of Emotions Using Song Lyrics

Date: December 2012
Creator: Schellenberg, Rajitha
Description: This thesis explores the classification of emotions in song lyrics, using automatic approaches applied to a novel corpus of 100 popular songs. I use crowd sourcing via Amazon Mechanical Turk to collect line-level emotions annotations for this collection of song lyrics. I then build classifiers that rely on textual features to automatically identify the presence of one or more of the following six Ekman emotions: anger, disgust, fear, joy, sadness and surprise. I compare different classification systems and evaluate the performance of the automatic systems against the manual annotations. I also introduce a system that uses data collected from the social network Twitter. I use the Twitter API to collect a large corpus of tweets manually labeled by their authors for one of the six emotions of interest. I then compare the classification of emotions obtained when training on data automatically collected from Twitter versus data obtained through crowd sourced annotations.
Contributing Partner: UNT Libraries
Temporally Correct Algorithms for Transaction Concurrency Control in Distributed Databases

Temporally Correct Algorithms for Transaction Concurrency Control in Distributed Databases

Access: Use of this item is restricted to the UNT Community.
Date: May 2001
Creator: Tuck, Terry W.
Description: Many activities are comprised of temporally dependent events that must be executed in a specific chronological order. Supportive software applications must preserve these temporal dependencies. Whenever the processing of this type of an application includes transactions submitted to a database that is shared with other such applications, the transaction concurrency control mechanisms within the database must also preserve the temporal dependencies. A basis for preserving temporal dependencies is established by using (within the applications and databases) real-time timestamps to identify and order events and transactions. The use of optimistic approaches to transaction concurrency control can be undesirable in such situations, as they allow incorrect results for database read operations. Although the incorrectness is detected prior to transaction committal and the corresponding transaction(s) restarted, the impact on the application or entity that submitted the transaction can be too costly. Three transaction concurrency control algorithms are proposed in this dissertation. These algorithms are based on timestamp ordering, and are designed to preserve temporal dependencies existing among data-dependent transactions. The algorithms produce execution schedules that are equivalent to temporally ordered serial schedules, where the temporal order is established by the transactions' start times. The algorithms provide this equivalence while supporting currency to the ...
Contributing Partner: UNT Libraries
Intelligent Memory Management Heuristics

Intelligent Memory Management Heuristics

Date: December 2003
Creator: Panthulu, Pradeep
Description: Automatic memory management is crucial in implementation of runtime systems even though it induces a significant computational overhead. In this thesis I explore the use of statistical properties of the directed graph describing the set of live data to decide between garbage collection and heap expansion in a memory management algorithm combining the dynamic array represented heaps with a mark and sweep garbage collector to enhance its performance. The sampling method predicting the density and the distribution of useful data is implemented as a partial marking algorithm. The algorithm randomly marks the nodes of the directed graph representing the live data at different depths with a variable probability factor p. Using the information gathered by the partial marking algorithm in the current step and the knowledge gathered in the previous iterations, the proposed empirical formula predicts with reasonable accuracy the density of live nodes on the heap, to decide between garbage collection and heap expansion. The resulting heuristics are tested empirically and shown to improve overall execution performance significantly in the context of the Jinni Prolog compiler's runtime system.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 NEXT LAST