Machine Language Techniques for Conversational Agents

Machine Language Techniques for Conversational Agents

Date: December 2003
Creator: Sule, Manisha D.
Description: Machine Learning is the ability of a machine to perform better at a given task, using its previous experience. Various algorithms like decision trees, Bayesian learning, artificial neural networks and instance-based learning algorithms are used widely in machine learning systems. Current applications of machine learning include credit card fraud detection, customer service based on history of purchased products, games and many more. The application of machine learning techniques to natural language processing (NLP) has increased tremendously in recent years. Examples are handwriting recognition and speech recognition. The problem we tackle in this Problem in Lieu of Thesis is applying machine-learning techniques to improve the performance of a conversational agent. The OpenMind repository of common sense, in the form of question-answer pairs is treated as the training data for the machine learning system. WordNet is interfaced with to capture important semantic and syntactic information about the words in the sentences. Further, k-closest neighbors algorithm, an instance based learning algorithm is used to simulate a case based learning system. The resulting system is expected to be able to answer new queries with knowledge gained from the training data it was fed with.
Contributing Partner: UNT Libraries
Self-Optimizing Dynamic Finite Functions

Self-Optimizing Dynamic Finite Functions

Access: Use of this item is restricted to the UNT Community.
Date: December 2003
Creator: Jeripothula, Ramesh
Description: Finite functions (also called maps) are used to describe a number of key computations and storage mechanisms used in software and hardware interpreters. Their presence spread over various memory and speed hierarchies in hardware and through various optimization processes (algorithmic and compilation based) in software, suggests encapsulating dynamic size changes and representation optimizations in a unique abstraction to be used across traditional computation mechanisms. We developed a memory allocator for testing the finite functions. We have implemented some dynamic finite functions and performed certain experiments to see the performance speed of these finite functions. We have developed some simple but powerful application programming interfaces (API) for these finite functions.
Contributing Partner: UNT Libraries
DICOM Image Scrubbing Software Library/Utility

DICOM Image Scrubbing Software Library/Utility

Date: May 2003
Creator: Ponnam, Bhavani Srikanth
Description: This software is aimed at providing user-friendly, easy-to-use environment for the user to scrub (de-identify/modify) the DICOM header information. Some tools either anonymize or default the values without the user interaction. The user doesn't have the flexibility to edit the header information. One cannot scrub set of images simultaneously (batch scrubbing). This motivated to develop a tool/utility that can scrub a set of images in a single step more efficiently. This document also addresses security issues of the patient confidentiality to achieve protection of patient identifying information and some technical requirements
Contributing Partner: UNT Libraries
Refactoring FrameNet for Efficient Relational Queries

Refactoring FrameNet for Efficient Relational Queries

Date: December 2003
Creator: Ahmad, Zeeshan Asim
Description: The FrameNet database is being used in a variety of NLP research and applications such as word sense disambiguation, machine translation, information extraction and question answering. The database is currently available in XML format. The XML database though a wholesome way of distributing data in its entireness, is not practical for use unless converted to a more application friendly database. In light of this we have successfully converted the XML database to a relational MySQL™ database. This conversion reduced the amount of data storage amount to less than half. Most importantly the new database enables us to perform fast complex querying and facilitates use by applications and research. We show the steps taken to ensure relational integrity of the data during the refactoring process and a simple demo application demonstrating ease of use.
Contributing Partner: UNT Libraries
Agent-based architecture for web deployment of multi-agents as conversational interfaces.

Agent-based architecture for web deployment of multi-agents as conversational interfaces.

Date: May 2003
Creator: Pothuru, Ranjit Kumar
Description: Agent-based architecture explains the rationale and basis for developing agents that can interact with users through natural language query/answer patterns developed systematically using AIML (artificial intelligence mark-up language) scripts. This thesis research document also explains the architecture for VISTA (virtual interactive story-telling agents), which is used for interactive querying in educational and recreational purposes. Agents are very effective as conversational interfaces when used along side with graphical user interface (GUI) in applications and Web pages. This architecture platform can support multiple agents with or with out sharing of knowledgebase. They are very useful as chat robots for recreational purposes, customer service and educational purposes. This platform is powered by Java servlet implementation of Program D and contained in Apache Tomcat server. The AIML scripting language defined here in is a generic form of XML language and forms the knowledgebase of the bot. Animation is provided with Microsoft® Agent technology and text-to-speech support engine.
Contributing Partner: UNT Libraries
Hopfield Networks as an Error Correcting Technique for Speech Recognition

Hopfield Networks as an Error Correcting Technique for Speech Recognition

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Bireddy, Chakradhar
Description: I experimented with Hopfield networks in the context of a voice-based, query-answering system. Hopfield networks are used to store and retrieve patterns. I used this technique to store queries represented as natural language sentences and I evaluated the accuracy of the technique for error correction in a spoken question-answering dialog between a computer and a user. I show that the use of an auto-associative Hopfield network helps make the speech recognition system more fault tolerant. I also looked at the available encoding schemes to convert a natural language sentence into a pattern of zeroes and ones that can be stored in the Hopfield network reliably, and I suggest scalable data representations which allow storing a large number of queries.
Contributing Partner: UNT Libraries
Memory Management and Garbage Collection Algorithms for Java-Based Prolog

Memory Management and Garbage Collection Algorithms for Java-Based Prolog

Access: Use of this item is restricted to the UNT Community.
Date: August 2001
Creator: Zhou, Qinan
Description: Implementing a Prolog Runtime System in a language like Java which provides its own automatic memory management and safety features such as built--in index checking and array initialization requires a consistent approach to memory management based on a simple ultimate goal: minimizing total memory management time and extra space involved. The total memory management time for Jinni is made up of garbage collection time both for Java and Jinni itself. Extra space is usually requested at Jinni's garbage collection. This goal motivates us to find a simple and practical garbage collection algorithm and implementation for our Prolog engine. In this thesis we survey various algorithms already proposed and offer our own contribution to the study of garbage collection by improvements and optimizations for some classic algorithms. We implemented these algorithms based on the dynamic array algorithm for an all--dynamic Prolog engine (JINNI 2000). The comparisons of our implementations versus the originally proposed algorithm allow us to draw informative conclusions on their theoretical complexity model and their empirical effectiveness.
Contributing Partner: UNT Libraries
Agent extensions for peer-to-peer networks.

Agent extensions for peer-to-peer networks.

Date: December 2003
Creator: Valiveti, Kalyan
Description: Peer-to-Peer (P2P) networks have seen tremendous growth in development and usage in recent times. This attention has brought many developments as well as new challenges to these networks. We will show that agent extensions to P2P networks offer solutions to many problems faced by P2P networks. In this research, an attempt is made to bring together JXTA P2P infrastructure and Jinni, a Prolog based agent engine to form an agent based P2P network. On top of the JXTA, we define simple Java API providing P2P services for agent programming constructs. Jinni is deployed on this JXTA network using an automated code update mechanism. Experiments are conducted on this Jinni/JXTA platform to implement a simple agent communication and data exchange protocol.
Contributing Partner: UNT Libraries
Automated Classification of Emotions Using Song Lyrics

Automated Classification of Emotions Using Song Lyrics

Date: December 2012
Creator: Schellenberg, Rajitha
Description: This thesis explores the classification of emotions in song lyrics, using automatic approaches applied to a novel corpus of 100 popular songs. I use crowd sourcing via Amazon Mechanical Turk to collect line-level emotions annotations for this collection of song lyrics. I then build classifiers that rely on textual features to automatically identify the presence of one or more of the following six Ekman emotions: anger, disgust, fear, joy, sadness and surprise. I compare different classification systems and evaluate the performance of the automatic systems against the manual annotations. I also introduce a system that uses data collected from the social network Twitter. I use the Twitter API to collect a large corpus of tweets manually labeled by their authors for one of the six emotions of interest. I then compare the classification of emotions obtained when training on data automatically collected from Twitter versus data obtained through crowd sourced annotations.
Contributing Partner: UNT Libraries
Arithmetic Computations and Memory Management Using a Binary Tree Encoding af Natural Numbers

Arithmetic Computations and Memory Management Using a Binary Tree Encoding af Natural Numbers

Date: December 2011
Creator: Haraburda, David
Description: Two applications of a binary tree data type based on a simple pairing function (a bijection between natural numbers and pairs of natural numbers) are explored. First, the tree is used to encode natural numbers, and algorithms that perform basic arithmetic computations are presented along with formal proofs of their correctness. Second, using this "canonical" representation as a base type, algorithms for encoding and decoding additional isomorphic data types of other mathematical constructs (sets, sequences, etc.) are also developed. An experimental application to a memory management system is constructed and explored using these isomorphic types. A practical analysis of this system's runtime complexity and space savings are provided, along with a proof of concept framework for both applications of the binary tree type, in the Java programming language.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST