Asian Soybean Rust: Background and Issues

Asian Soybean Rust: Background and Issues

Date: January 12, 2005
Creator: Schnepf, Randy
Description: This report discusses the background and issues regarding Asian soybean rust (ASR) that was discovered in the United States in an experimental field in Louisiana. The U.S. Department of Agriculture (USDA) is coordinating a plan to deal with ASR that encompasses various USDA agencies, state land-grant universities, and industry participants. The arrival of ASR has implications for several public policies including pest control research (particularly the development of resistant varieties), pesticide regulation, disaster assistance, and crop insurance.
Contributing Partner: UNT Libraries Government Documents Department
Selection of herbaceous energy crops for the western corn belt

Selection of herbaceous energy crops for the western corn belt

Date: May 1, 1994
Creator: Anderson, I.C.; Buxton, D.R. & Hallam, J.A.
Description: The ultimate economic feasibility of biomass depends on its cost of production and on the cost of competing fuels. The purpose of this research project is to evaluate the production costs of several combinations of species and management systems for producing herbaceous biomass for energy use in Iowa. Herbaceous biomass production systems have costs similar to other crop production systems, such as corn, soybean, and forages. Thus, the factors influencing the costs of producing dedicated biomass energy crops include technological factors such as the cultivation system, species, treatments, soil type, and site and economic factors such as input prices and use of fixed resources. In order to investigate how these production alternatives are influenced by soil resources, and climate conditions, two locations in Iowa, Ames and Chariton, with different soil types and slightly different weather patterns were selected for both the agronomic and economic analyses. Nine crops in thirteen cropping systems were grown at the two sites for five years, from 1988 to 1992. Some of the systems had multiple cropping or interplanting, using combinations of cool-season species and warm-season species, in order to meet multiple objectives of maximum biomass, minimal soil loss, reduced nitrogen fertilization or diminished pesticide inputs. ...
Contributing Partner: UNT Libraries Government Documents Department
U.S. Regional Agricultural Production in 2030 and 2095: Response to CO2 Fertilization and Hadley Climate Model (HadCM2) Projections of Greenhouse-Forced Climatic Change

U.S. Regional Agricultural Production in 2030 and 2095: Response to CO2 Fertilization and Hadley Climate Model (HadCM2) Projections of Greenhouse-Forced Climatic Change

Date: November 19, 1999
Creator: Rosenberg, NJ & Brown, RC Izaurralde: RA
Description: Research activities underway to evaluate potential consequences of climate change and variability on the agriculture, water resources, and other U.S. sectors were mandated by the Global Change Research Act of 1990. These activities are being carried out in a public-private partnership under the guidance of the U.S. Global Change Research Program. Researchers at Pacific Northwest National Laboratory (PNNL) have been using integrated assessment methodologies to appraise the possible impacts of global warming and climatic variability on the behavior of managed and natural systems. This interim PNNL report contributes to the U.S. National Assessment process with an analysis of the modeled impacts of climatic changes projected by the Hadley/UKMO (HadCM2) general circulation model on agricultural productivity and selected environmental variables. The construction of climatic data for the simulation runs followed general guidelines established by the U.S. National Assessment Synthesis Team. The baseline climate data were obtained from national records for the period 1961 - 1990. The scenario runs for two future periods (2025 - 2030 and 2090 - 2099) were extracted from results of a HadCM2 run distributed at a half-degree spatial resolution. The Erosion Productivity Impact Calculator (EPIC) was used to simulate the behavior of 204 "representative farms" (i.e., soil-climate-management ...
Contributing Partner: UNT Libraries Government Documents Department