Hydrogen terminated silicon surfaces: Development of sensors to detect metallic contaminants and stability studies under different environments

Hydrogen terminated silicon surfaces: Development of sensors to detect metallic contaminants and stability studies under different environments

Date: August 2002
Creator: Ponnuswamy, Thomas Anand
Description: Hydrogen terminated silicon surfaces have been utilized to develop sensors for semiconductor and environmental applications. The interaction of these surfaces with different environments has also been studied in detail. The sensor assembly relevant to the semiconductor industry utilizes a silicon-based sensor to detect trace levels of metallic contaminants in hydrofluoric acid. The sensor performance with respect to two non-contaminating reference electrode systems was evaluated. In the first case, conductive diamond was used as a reference electrode. In the second case, a dual silicon electrode system was used with one of the silicon-based electrodes protected with an anion permeable membrane behaving as the quasi reference electrode. Though both systems could function well as a suitable reference system, the dual silicon electrode design showed greater compatibility for the on-line detection of metallic impurities in HF etching baths. The silicon-based sensor assembly was able to detect parts- per-trillion to parts-per-billion levels of metal ion impurities in HF. The sensor assembly developed for the environmental application makes use of a novel method for the detection of Ni2+using attenuated total reflection (ATR) technique. The nickel infrared sensor was prepared on a silicon ATR crystal uniformly coated by a 1.5 micron Nafion film embedded with dimethylglyoxime ...
Contributing Partner: UNT Libraries
Quantum-Confined CdS Nanoparticles on DNA Templates

Quantum-Confined CdS Nanoparticles on DNA Templates

Date: May 1998
Creator: Rho, Young Gyu
Description: As electronic devices became smaller, interest in quantum-confined semiconductor nanostructures increased. Self-assembled mesoscale semiconductor structures of II-VI nanocrystals are an especially exciting subject because of their controllable band gap and unique photophysical properties. Several preparative methods to synthesize and control the sizes of the individual nanocrystallites and the electronic and optical properties have been intensively studied. Fabrication of patterned nanostructures composed of quantum-confined nanoparticles is the next step toward practical applications. We have developed an innovative method to fabricate diverse nanostructures which relies on the size and a shape of a chosen deoxyribonucleic acid (DNA) template.
Contributing Partner: UNT Libraries
Evaluation of dynamic and static electrical characteristics for the DY8 and YI8 process gallium diodes in comparison to the DI8 process boron diodes.

Evaluation of dynamic and static electrical characteristics for the DY8 and YI8 process gallium diodes in comparison to the DI8 process boron diodes.

Access: Use of this item is restricted to the UNT Community.
Date: December 2006
Creator: Dhoopati, Swathi
Description: A rectifier is an electrical device, comprising one or more semiconductor devices arranged for converting alternating current to direct current by blocking the negative or positive portion of the waveform. The purpose of this study would be to evaluate dynamic and static electrical characteristics of rectifier chips fabricated with (a) DY8 process and (b) YI8 process and compare them with the existing DI8 process rectifiers. These new rectifiers were tested to compare their performance to meet or exceed requirements of lower forward voltages, leakage currents, reverse recovery time, and greater sustainability at higher temperatures compared to diodes manufactured using boron as base (DI8 process diodes) for similar input variables.
Contributing Partner: UNT Libraries
Magnetotransport Properties of  AlxIn1-xAsySb1-y/GaSb and Optical Properties of GaAs1-xSbx

Magnetotransport Properties of AlxIn1-xAsySb1-y/GaSb and Optical Properties of GaAs1-xSbx

Date: May 2003
Creator: Lukic- Zrnic, Reiko
Description: Multilayer structures of AlxIn1-xAsySb1-y/GaSb (0.37 £ x £ 0.43, 0.50 £ y £ 0.52), grown by molecular beam epitaxy on GaSb (100) substrates were characterized using variable temperature Hall and Shubnikov-de Haas techniques. For nominally undoped structures both p and n-type conductivity was observed. The mobilities obtained were lower than those predicted by an interpolation method using the binary alloys; therefore, a detailed analysis of mobility versus temperature data was performed to extract the appropriate scattering mechanisms. For p-type samples, the dominant mechanism was ionized impurity scattering at low temperatures and polar optical phonon scattering at higher temperatures. For n-type samples, ionized impurity scattering was predominant at low temperatures, and electron-hole scattering dominated for both the intermediate and high temperature range. Analyses of the Shubnikov-de Haas data indicate the presence of 2-D carrier confinement consistent with energy subbands in GaAszSb1-z potential wells. Epilayers of GaAs1-xSbx (0.19<x<0.71), grown by MBE on semi-insulating GaAs with various substrate orientations, were studied by absorption measurements over the temperature range of 4-300 K. The various substrate orientations were chosen to induce different degrees of spontaneous atomic ordering. The temperature dependence of the energy gap (Eg) for each of these samples was modeled using three semi-empirical ...
Contributing Partner: UNT Libraries
Ion-Induced Damage In Si: A Fundamental Study of Basic Mechanisms over a Wide Range of Implantation Conditions

Ion-Induced Damage In Si: A Fundamental Study of Basic Mechanisms over a Wide Range of Implantation Conditions

Date: May 2006
Creator: Roth, Elaine Grannan
Description: A new understanding of the damage formation mechanisms in Si is developed and investigated over an extended range of ion energy, dose, and irradiation temperature. A simple model for dealing with ion-induced damage is proposed, which is shown to be applicable over the range of implantation conditions. In particular the concept of defect "excesses" will be discussed. An excess exists in the lattice when there is a local surplus of one particular type of defect, such as an interstitial, over its complimentary defect (i.e., a vacancy). Mechanisms for producing such excesses by implantation will be discussed. The basis of this model specifies that accumulation of stable lattice damage during implantation depends upon the excess defects and not the total number of defects. The excess defect model is validated by fundamental damage studies involving ion implantation over a range of conditions. Confirmation of the model is provided by comparing damage profiles after implantation with computer simulation results. It will be shown that transport of ions in matter (TRIM) can be used effectively to model the ion-induced damage profile, i.e. excess defect distributions, by a simple subtraction process in which the spatially correlated defects are removed, thereby simulating recombination. Classic defect studies ...
Contributing Partner: UNT Libraries
Short-Period Transient Grating Measurement of Perpendicular Transport in GaAs/AlGaAs Multiple Quantum Wells

Short-Period Transient Grating Measurement of Perpendicular Transport in GaAs/AlGaAs Multiple Quantum Wells

Date: August 1994
Creator: Norwood, David P.
Description: In this thesis the author describes the use of transient grating techniques to study the transport of electrons and holes perpendicular to the layers of a GaAs/AlGaAs multiple quantum well (MQW).
Contributing Partner: UNT Libraries
Nonlinear Dynamics of Semiconductor Device Circuits and Characterization of Deep Energy Levels in HgCdTe by Using Magneto-Optical Spectroscopy

Nonlinear Dynamics of Semiconductor Device Circuits and Characterization of Deep Energy Levels in HgCdTe by Using Magneto-Optical Spectroscopy

Date: May 1994
Creator: Yü, Chi
Description: The nonlinear dynamics of three physical systems has been investigated. Diode resonator systems are experimentally shown to display a period doubling route to chaos, quasiperiodic states, periodic locking states, and Hopf bifurcation to chaos. Particularly, the transition from quasiperiodic states to chaos in line-coupled systems agrees well with the Curry-Yorke model. The SPICE program has been modified to give realistic models for the diode resonator systems.
Contributing Partner: UNT Libraries
A Study of Atomic Ordering in III-V Semiconductors

A Study of Atomic Ordering in III-V Semiconductors

Date: Summer 2002
Creator: Cottier, Ryan J.
Description: Thesis written by a student in the UNT Honors College discussing semiconductors and band structure, the temperature-induced variation of the band structure, the atomic structure of III-V materials, atomic ordering of the band structure, and experimental techniques regarding atomic ordering of CuPt-B.
Contributing Partner: UNT Honors College
Workshop on Artificial Superlattices. October 30-31, 1980 at University of Illinois, Urbana-Champaign, Illinois, USA

Workshop on Artificial Superlattices. October 30-31, 1980 at University of Illinois, Urbana-Champaign, Illinois, USA

Date: October 1980
Creator: Argonne National Laboratory
Description: The program and 24 abstracts are given. The abstracts are divided into the following categories: structure and elastic properties, transport and electronic properties, magnetism and superconductivity, and phonons. The engineering of novel materials using sophisticated preparation techniques has received considerable attention in recent years. This interest has been mainly stimulated by recent developments in preparation techniques such as Molecular Beam Epitaxy, Thermal Vapor Deposition and Sputtering. These advances in deposition technology allow for the first time the preparation of layered materials with well defined layer thicknesses approaching interatomic spacing and opens up new avenues for the production and stabilization of materials that do not occur in nature. In addition to the extensive experimental work on artificial semiconductor superlattices there has been a parallel, almost independent, development relating to artificial metallic superlattices. Although the experimental sophistication of the field is considerable the development of major related theoretical ideas has not kept pace. In view of the large body of experimental work, a pressing need exists for the development of conceptual ideas relating to the novel physics that is created by artificially adding a new periodicity to the lattice. Because of this the Office of Naval Research is sponsoring the first "Workshop ...
Contributing Partner: UNT Libraries Government Documents Department
Investigation of Manganese Dioxide as an Improved Solid Desiccant

Investigation of Manganese Dioxide as an Improved Solid Desiccant

Date: March 1983
Creator: Fraioli, Anthony V.
Description: This report describes the preparation of a series of manganese oxides and an analysis of their sorptive, structural, and surface characteristics as low-energetic desiccants for passive dehumidification and active desiccant cooling systems. A cusped Type III isotherm for the adsorption of water is reported for the first time. The data are interpreted as evidence of a first-order phase change from a two-dimensional gas to a liquid film in the first reversibly adsorbed layer. It appears that the water adsorption characteristics of MnO2 compared to standard desiccants which exhibit Type II isotherms are due at least in part to differences in the physical topography and electronic properties of the desiccant substrates: MnO2 is a p-type semiconductor with essentially-flat, monoenergetic surface structures, while standard desiccants like silica gel are electronic insulators with irregular, heteroenergetic surfaces.
Contributing Partner: UNT Libraries Government Documents Department