A Computational Study on 18+δ Organometallics

A Computational Study on 18+δ Organometallics

Date: May 2002
Creator: Yu, Liwen
Description: The B3LYP density functional has been used to calculate properties of organometallic complexes of Co(CO)3 and ReBr(CO)3, with the chelating ligand 2,3-bisphosphinomaleic anhydride, in 19- and 18-electron forms. The SBKJC-21G effective core potential and associated basis set was used for metals (Co/Re) and the 6-31G* basis set was used for all other elements. The differences of bond angles, bond distances, natural atomic charges and IR vibrational frequencies were compared with the available experimental parameters. The differences between the 19- and 18-electron systems have been analyzed. The results reveal that the 19th electron is mostly distributed over the ligand of 2,3-bisphosphinomaleic anhydride, although partially localized onto the metal fragment in 1 and 2*. Two different methods, IR-frequencies and natural atomic charges, were used to determine the value of δ. Present computed values of δ are compared with available experimental values, and predictions are made for unknown complexes.
Contributing Partner: UNT Libraries
Molecular Modeling Study of Oxidative Degradation of Polyperfluoroethers Catalyzed by Iron Fluoride Surfaces : An Extended Hückel Theory Approach

Molecular Modeling Study of Oxidative Degradation of Polyperfluoroethers Catalyzed by Iron Fluoride Surfaces : An Extended Hückel Theory Approach

Date: May 1995
Creator: Wang, Yanbin
Description: Extended Hückel methods are known to be a useful tool in understanding surface phenomena. Important quantities about atoms and chemical bonds can be obtained from this computationally simple method, although caution must be exercised in interpreting the results. Application of Extended Hückel calculations to large metal clusters reveals the role of d orbitals in solids. Basic ideas of constructing model compounds have been developed. Several model systems for surface chemisorption processes are constructed in order to understand the surface catalyzed oxidative degradation of polyperfluoroethers. The activation of oxygen molecules can be explained. The Lewis acid character of the iron fluoride surface can be predicted. Based on these results, mechanisms of the degradation processes are discussed.
Contributing Partner: UNT Libraries
Kinetics of Sulfur: Experimental Study of the Reaction of Atomic Sulfur with Acetylene and Theoretical Study of the Cn + So Potential Energy Surface

Kinetics of Sulfur: Experimental Study of the Reaction of Atomic Sulfur with Acetylene and Theoretical Study of the Cn + So Potential Energy Surface

Date: May 2013
Creator: Ayling, Sean A.
Description: The kinetics of the reaction of atomic sulfur with acetylene (S (3P) + C2H2) were investigated experimentally via the flash photolysis resonance fluorescence method, and the theoretical potential energy surface for the reaction CN + SO was modeled via the density functional and configuration interaction computational methods. Sulfur is of interest in modern chemistry due to its relevance in combustion and atmospheric chemistry, in the Claus process, in soot and diamond-film formation and in astrochemistry. Experimental conditions ranged from 295 – 1015 K and 10 – 400 Torr of argon. Pressure-dependence was shown at all experimental temperatures. The room temperature high-pressure limit second order rate constant was (2.10 ± 0.08) × 10-13 cm3 molecule-1 s-1. The Arrhenius plot of the high-pressure limit rate constants gave an Ea of (11.34 ± 0.03) kJ mol-1 and a pre-exponential factor of (2.14 ± 0.19) × 10-11 cm3 molecule-1 s-1. S (3P) + C2H2 is likely an adduct forming reaction due to pressure-dependence (also supported by a statistical mechanics analysis) which involves intersystem crossing. The potential energy surface for CN + SO was calculated at the B3LYP/6-311G(d) level and refined at the QCISD/6-311G(d) level. The PES was compared to that of the analogous reaction ...
Contributing Partner: UNT Libraries
Synthesis and characterization of molecules to study the conformational barriers of fluorocarbon chains

Synthesis and characterization of molecules to study the conformational barriers of fluorocarbon chains

Date: May 2000
Creator: Niyogi, Sandip
Description: Fluorocarbons are known to be stiffer than their hydrocarbon analogues, a property that underlines the extensive industrial application of fluorocarbon materials. Although there has been previous studies on the rotational barrier of molecules having fluorocarbon centers, a detailed systematic study is necessary to quantify flurocarbon stiffness. The molecules, Pyrene-(CF2)n-Pyrene, Pyrene-(CF2)n-F, Pyrene-(CH2)n-Pyrene and Pyrene-(CH2)n-H were therefore synthesized to enable the determination of the barrier to rotation of the carbon backbone in fluorocarbons. Conformational studies will be completed with steady-state and time-dependent emission spectroscopy.
Contributing Partner: UNT Libraries
N-Heterocyclic Carbenes of the Late Transition Metals: A Computational and Structural Database Study

N-Heterocyclic Carbenes of the Late Transition Metals: A Computational and Structural Database Study

Date: May 2005
Creator: Baba, Eduard
Description: A computational chemistry analysis combined with a crystallographic database study of the bonding in late transition metal N-heterocyclic carbene (NHC) complexes is reported. The results illustrate a metal-carbon bond for these complexes, approximately 4% shorter than that of a M-C single bond found in metal alkyl complexes. As a consequence of this result, two hypotheses are investigated. The first hypothesis explores the possibility of multiple-bond character in the metal-carbon linkage of the NHC complex, and the second, considers the change in the hybridization of the carbenoid carbon to incorporate more p character. The latter hypothesis is supported by the results. Analysis of these complexes using the natural bond orbital method evinces NHC ligands possessing trans influence.
Contributing Partner: UNT Libraries
Synthesis and characterization of quinoxaline-functionalized, cage-annulated oxa- and thiacrown ethers and reaction chemistry of the diphosphine ligand 2,3-bis(diphenylphosphino)-N-p-tolylmaleimide (bmi) at triosmium carbonyl clusters.

Synthesis and characterization of quinoxaline-functionalized, cage-annulated oxa- and thiacrown ethers and reaction chemistry of the diphosphine ligand 2,3-bis(diphenylphosphino)-N-p-tolylmaleimide (bmi) at triosmium carbonyl clusters.

Access: Use of this item is restricted to the UNT Community.
Date: December 2006
Creator: Poola, Bhaskar
Description: Quinoxaline-functionalized, cage-annulated oxa- and thiacrown ethers have been synthesized as possible specific metal host systems. The synthesis and characterization of quinoxaline-functionalized, cage-annulated oxa- and thiacrown ethers have been described. The characterization of these host systems have been fully achieved in solution by using various techniques such as IR, 1H NMR, and 13C NMR spectroscopic methods, high-resolution mass spectrometry (HRMS), elemental microanalysis, and X-ray crystallographic analysis in case of one quinoxaline-functionalized, cage-annulated oxacrown ether compound. The synthesis of the diphosphine ligand 2,3-bis(diphenylphosphino)-N-p-tolylmaleimide (bmi) is described. The substitution of the MeCN ligands in the activated cluster 1,2-Os3(CO)10(MeCN)2 by the diphosphine ligand bmi proceeds rapidly at room temperature to furnish a mixture of bridging and chelating Os3(CO)10(bmi) isomers and the ortho-metalated product HOs3(CO)9[μ-(PPh2)C=C{PPh(C6H4)}C(O)N(tolyl-p)C(O)]. Thermolysis of the bridging isomer 1,2-Os3(CO)10(bmi) under mild conditions gives the chelating isomer 1,1-Os3(CO)10(bmi), whose molecular structure has been determined by X-ray crystallography. The kinetics for the ligand isomerization have been investigated by UV-vis and 1H NMR spectroscopy in toluene solution over the temperature range of 318-348 K. On the basis of kinetic data conducted in the presence of added CO and the Eyring activation parameters, a non-dissociative phosphine migration across one of the Os-Os bonds is proposed. Orthometalation of ...
Contributing Partner: UNT Libraries
De novo prediction of the ground state structure of transition metal complexes.

De novo prediction of the ground state structure of transition metal complexes.

Access: Use of this item is restricted to the UNT Community.
Date: December 2004
Creator: Buda, Corneliu
Description: One of the main goals of computational methods is to identify reasonable geometries for target materials. Organometallic complexes have been investigated in this dissertation research, entailing a significant challenge based on transition metal diversity and the associated complexity of the ligands. A large variety of theoretical methods have been employed to determine ground state geometries of organometallic species. An impressive number of transition metals entailing diverse isomers (e.g., geometric, spin, structural and coordination), different coordination numbers, oxidation states and various numbers of electrons in d orbitals have been studied. Moreover, ligands that are single, double or triple bonded to the transition metal, exhibiting diverse electronic and steric effects, have been investigated. In this research, a novel de novo scheme for structural prediction of transition metal complexes was developed, tested and shown to be successful.
Contributing Partner: UNT Libraries
Metals in Chemistry and Biology: Computational Chemistry Studies

Metals in Chemistry and Biology: Computational Chemistry Studies

Date: May 2007
Creator: Dinescu, Adriana
Description: Numerous enzymatic reactions are controlled by the chemistry of metallic ions. This dissertation investigates the electronic properties of three transition metal (copper, chromium, and nickel) complexes and describes modeling studies performed on glutathione synthetase. (1) Copper nitrene complexes were computationally characterized, as these complexes have yet to be experimentally isolated. (2) Multireference calculations were carried out on a symmetric C2v chromium dimer derived from the crystal structure of the [(tBu3SiO)Cr(µ-OSitBu3)]2 complex. (3) The T-shaped geometry of a three-coordinate β-diketiminate nickel(I) complex with a CO ligand was compared and contrasted with isoelectronic and isosteric copper(II) complexes. (4) Glutathione synthetase (GS), an enzyme that belongs to the ATP-grasp superfamily, catalyzes the (Mg, ATP)-dependent biosynthesis of glutathione (GSH) from γ-glutamylcysteine and glycine. The free and reactant forms of human GS (wild-type and glycine mutants) were modeled computationally by employing molecular dynamics simulations, as these currently have not been structurally characterized.
Contributing Partner: UNT Libraries
Photochemical and Photophysical Properties of Gold(I) Complexes and Phosphorescence Sensitization of Organic Luminophores

Photochemical and Photophysical Properties of Gold(I) Complexes and Phosphorescence Sensitization of Organic Luminophores

Date: August 2006
Creator: El-Bjeirami, Oussama
Description: Two major topics that involve synthetic strategies to enhance the phosphorescence of organic and inorganic luminophores have been investigated. The first topic involves, the photophysical and photochemical properties of the gold (I) complexes LAuIX (L = CO, RNC where R = alkyl or aryl group; X = halide or pseudohalide), which have been investigated and found to exhibit Au-centered phosphorescence and tunable photochemical reactivity. The investigations have shown a clear relationship between the luminescence energies and association modes. We have also demonstrated for the first time that aurophilic bonding and the ligand p-acceptance can sensitize the photoreactivity of Au(I) complexes. The second topic involves conventional organic fluorophores (arenes), which are made to exhibit room-temperature phosphorescence that originates from spin-orbit coupling owing to either an external or internal heavy atom effect in systematically designed systems that contain d10 metals. Facial complexation of polycyclic arenes to tris[{m-(3,4,5,6-tetrafluorophenylene)}mercury(II)], C18F12Hg3 (1) results in crystalline adducts that exhibit bright RGB (red-green-blue) phosphorescence bands at room temperature. This arene-centered phosphorescence is always accompanied by a reduction of the triplet excited state lifetime due to its sensitization by accelerating the radiative instead of the non-radiative decay. The results of both topics are significant for rational design of ...
Contributing Partner: UNT Libraries
Photophysical studies of silver(I), platinum(II), palladium(II), and nickel(II) complexes and their use in electronic devices.

Photophysical studies of silver(I), platinum(II), palladium(II), and nickel(II) complexes and their use in electronic devices.

Date: December 2007
Creator: Hudson, Joshua M.
Description: This dissertation deals with two major topics that involve spectroscopic studies of (a) divalent group 10 metals and (b) silver(I)-phosphine complexes. The scope of the work involved the delineation of the electronic structure of these complexes in different environments and their use in electronic devices. The first topic is a look at the luminescence of tetrahedral silver(I)-phosphine complexes. Broad unstructured emissions with large Stokes shifts were found for these complexes. Computational analysis of the singlet and triplet state geometries suggests that this emission is due to a Jahn-Teller type distortion. The second topic represents the major thrust of this research, which is an investigation into the electronic structure of M(diimine)X2 (M= Pt(II), Pd(II), or Ni(II); X = dichloro, or dithiolate ligands) complexes and their interactions with an electron acceptor or Lewis acid. Chapter 3 assesses the use of some of these complexes in dye sensitized solar cells (DSSCs); it is shown that these complexes may lead to a viable alternative to the more expensive ruthenium-based dyes that are being implemented now. Chapter 4 is an investigation into donor/acceptor pairs involving this class of complexes, which serves as a feasibility test for the use of these complexes in organic photo-voltaics (OPVs) ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST