Search Results

open access

Room and Elevated Temperature Sliding Wear Behavior of Cold Sprayed Ni-WC Composite Coatings

Description: The tribological properties of cold sprayed Ni-WC metal matrix composite (MMC) coatings were investigated under dry sliding conditions from room temperature (RT) up to 400°C, and during thermal cycling to explore their temperature adaptive friction and wear behavior. Characterization of worn surfaces was conducted using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy to determine the chemical and microstructural evolution during friction testing.… more
Date: August 2018
Creator: Torgerson, Tyler B.
Partner: UNT Libraries
open access

Process Improvement of Surface Preparation of Structuraly Bonded Helicopter Detail Parts

Description: The objective of this study was to increase the bond strength at the surface interface of a thin stainless-steel panel for structural bonding on a helicopter. To achieve this objective, six activation methods for applying the coating to the panel in the surface preparation process are presented and explored. Adhesion and roughness tests were conducted to determine which method consistently initiates the etch and improves the bond at the surface. Based on the test results, three methods proved t… more
Date: December 2018
Creator: Tafoya, Keirsten Breann
Partner: UNT Libraries
open access

Solid Lubrication Mechanisms in Laser Deposited Nickel-titanium-carbon Metal Matrix Composites

Description: A Ni/TiC/C metal matrix composite (MMC) has been processed using the laser engineered net shaping (LENS) process from commercially available powders with a Ni-3Ti-20C (atomic %) composition. This processing route produces the in-situ formation of homogeneously distributed eutectic and primary titanium carbide and graphite precipitates throughout the Ni matrix. The composite exhibits promising tribological properties when tested in dry sliding conditions with a low steady state coefficient of fr… more
Date: December 2012
Creator: Mogonye, Jon-Erik
Partner: UNT Libraries
open access

Microstructural Phase Evolution In Laser Deposited Compositionally Graded Titanium Chromium Alloys

Description: A compositionally graded Ti-xCr (10≤x≤30 wt%) alloy has been fabricated using Laser Engineered Net Shaping (LENSTM) to study the microstructural phase evolution along a compositional gradient in both as-deposited and heat treated conditions (1000°C followed by furnace cooling or air cooling). The alloys were characterized by SEM BSE imaging, XRD, EBSD, TEM and micro-hardness measurements to determine processing-structure-property relations. For the as-deposited alloy, α-Ti, β-Ti, and TiCr2 (C15… more
Date: May 2016
Creator: Thomas, Jonova
Partner: UNT Libraries
open access

Characterization of Ti-6Al-4V Produced Via Electron Beam Additive Manufacturing

Description: In recent years, additive manufacturing (AM) has become an increasingly promising method used for the production of structural metallic components. There are a number of reasons why AM methods are attractive, including the ability to produce complex geometries into a near-net shape and the rapid transition from design to production. Ti-6Al-4V is a titanium alloy frequently used in the aerospace industry which is receiving considerable attention as a good candidate for processing via electron be… more
Date: December 2015
Creator: Hayes, Brian J.
Partner: UNT Libraries
open access

Catalytic Properties and Mechanical Behavior of Metallic Glass Powders

Description: Lack of crystalline order and microstructural features such as grain/grain-boundary in metallic glasses results in a suite of remarkable attributes including very high strength, close to theoretical elasticity, high corrosion and wear resistance, and soft magnetic properties. By altering the morphology and tuning of composition, MGs may be transformed into high-performance catalytic materials. In this study, the catalytic properties of metallic glass powders were demonstrated in dissociating to… more
Date: May 2017
Creator: Garrison, Seth
Partner: UNT Libraries
open access

Study of Novel Ion/surface Interactions Using Soft-landing Ion Mobility

Description: Preparative mass spectrometry is a gas-phase ion deposition technique aimed at deposition of monodisperse ion beams on a surface. This is accomplished through the implementation of a soft-landing ion mobility system which allows for high ion flux of conformationally selected ion packets. The soft-landing ion mobility system has been applied to a number of unique chemical problems including the deposition of insulators on graphene, the preparation of reusable surface enhanced Raman spectroscop… more
Date: December 2012
Creator: Hoffmann, William Darryle
Partner: UNT Libraries

High Temperature Sliding Wear Behavior and Mechanisms of Cold-Sprayed Ti and Ti-TiC Composites

Description: Ti and Ti-based alloys are used in many aerospace and automotive components due to their high strength-to-weight ratio and corrosion resistance. However, room and elevated temperature wear resistance remain an issue, thus requiring some form of secondary hard phase, e.g., refractory carbides and oxides, as well as solid lubrication to mitigate wear. In this study, Ti-TiC (14, 24 and 35 vol% TiC) composite coatings were deposited on mild steel substrates using cold spray with comparisons made to… more
Date: August 2020
Creator: Koricherla, Manindra Varma
Partner: UNT Libraries

Development and Thermo-Mechanical Testing of Low Hysteresis Shape Memory Alloy for Satellite Actuators

Description: Shape memory alloys (SMAs) have gained much attention as a powerful source of actuation due to their improved performance, reduced size, and reduced complexity between components as well as having a high work output density. Their primary mechanism of actuation relies on a non-diffusional cyclic phase transformation from martensite to austenite, where the amount of thermal energy needed per cycle is directly associated with the hysteresis width between the austenite final and martensite final t… more
Date: December 2022
Creator: Montagnoli, Andre Luiz
Partner: UNT Libraries
open access

Miniature Mass Spectrometry: Theory, Development and Applications

Description: As mass analyzer technology has continued to improve over the last fifty years, the prospect of field-portable mass spectrometers has garnered interest from many research groups and organizations. Designing a field portable instrument entails more than the scaling down of current commercial systems. Additional considerations such as power consumption, vacuum requirements and ruggedization also play key roles. In this research, two avenues were pursued in the initial development of a portable… more
Date: December 2013
Creator: Fox, James D.
Partner: UNT Libraries
open access

Characterization and Mechanical Properties of Nanoscale Precipitates in Modified Al-Si-Cu Alloys Using Transmission Electron Microscopy and 3D Atom Probe Tomography.

Description: Among the commercial aluminum alloys, aluminum 319 (Al-7wt%Si-4wt%Cu) type alloys are popularly used in automobile engine parts. These alloys have good casting characteristics and excellent mechanical properties resulting from a suitable heat treatment. To get a high strength in the 319 type alloys, grain refining, reducing the porosity, solid solution hardening, and precipitation hardening are preferred. All experimental variables such as solidification condition, composition, and heat treatme… more
Date: May 2007
Creator: Hwang, Junyeon
Partner: UNT Libraries
open access

Effects of Plasma, Temperature and Chemical Reactions on Porous Low Dielectric Films for Semiconductor Devices

Description: Low-dielectric (k) films are one of the performance drivers for continued scaling of integrated circuit devices. These films are needed in microelectronic device interconnects to lower power consumption and minimize cross talk between metal lines that "interconnect" transistors. Low-k materials currently in production for the 45 and 65 nm node are most often organosilicate glasses (OSG) with dielectric constants near 2.8 and nominal porosities of 8-10%. The next generation of low-k materials wi… more
Date: December 2010
Creator: Osei-Yiadom, Eric
Partner: UNT Libraries
open access

Processing and Characterization of Nickel-Carbon Base Metal Matrix Composites

Description: Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) are attractive reinforcements for lightweight and high strength metal matrix composites due to their excellent mechanical and physical properties. The present work is an attempt towards investigating the effect of CNT and GNP reinforcements on the mechanical properties of nickel matrix composites. The CNT/Ni (dry milled) nanocomposites exhibiting a tensile yield strength of 350 MPa (about two times that of SPS processed monolithic nickel… more
Date: May 2014
Creator: Borkar, Tushar Murlidhar
Partner: UNT Libraries
open access

Structure and Low-temperature Tribology of Lubricious Nanocrystalline ZnO/Al2O3 Nanolaminates and ZrO2 Monofilms Grown by Atomic Layer Deposition

Description: Currently available solid lubricants only perform well under a limited range of environmental conditions. Unlike them, oxides are thermodynamically stable and relatively inert over a broad range of temperatures and environments. However, conventional oxides are brittle at normal temperatures; exhibiting significant plasticity only at high temperatures (>0.5Tmelting). This prevents oxides' use in tribological applications at low temperatures. If oxides can be made lubricious at low temperatures,… more
Date: December 2008
Creator: Romanes, Maia Castillo
Partner: UNT Libraries
open access

Friction Stir Welding of Precipitation Strengthened Aluminum 7449 Alloys

Description: The Al-Zn-Mg-Cu (7XXX series) alloys are amongst the strongest aluminum available. However, they are considered unweldable with conventional fusion techniques due to the negative effects that arise with conventional welding, including hydrogen porosity, hot cracking, and stress corrosion cracking. For this reason, friction stir welding has emerged as the preferred technique to weld 7XXX series alloys. Aluminum 7449 is one of the highest strength 7XXX series aluminum alloy. This is due to its hi… more
Date: August 2016
Creator: Martinez, Nelson Y
Partner: UNT Libraries

First Principles Study of the Effect of Local Bonding on Diffusion Mechanisms in Alloys

Description: This work demonstrates how local, randomized tailoring of bond stiffness can affect the activation energy of diffusion in model alloys using density functional theory-based computations. This work is organized into two parts. The first part deals with the vacancy diffusion mechanism, and it compares the in–plane (IP) vs out-of-plane (OOP) diffusion paths in prototypical binary Mg-X (Ca, Y, and Gd) and ternary Mg-X (Ca, Y, and Gd)-Zn alloys. We examine how vacancy formation, migration, and solut… more
Date: December 2021
Creator: Paranjape, Priyanvada Madhukar
Partner: UNT Libraries

Linking Enhanced Fatigue Life to Design by Modifying the Microstructure

Description: Structural material fatigue is a leading cause of failure and has motivated fatigue-resistant design to eliminate risks to human lives. Intrinsic microstructural features alter fatigue deformation mechanisms so profoundly that, essentially, fatigue properties of structural materials become deviant. With this in mind, we initiated this project to investigate the microstructural effect on fatigue behavior of potential structural high entropy alloys. With a better understanding of the effect of mi… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Liu, Kaimiao
Partner: UNT Libraries

Phase Transformation and Elastic Constants in Binary Titanium Alloys: An Atomistic Study

Description: The current understanding of the mechanical properties and deformation behavior of some individual phases in titanium alloys is limited due to the fine scale at which these phases precipitate within the β-phase matrix. The α and ω phases represent the most widely observed phases in titanium alloys depending on the alloy composition and also the heat treatment procedure adopted during processing. The possibility of precipitating ω-phase depends on the content of the β-stabilizers within the syst… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Salloom, Riyadh Farooq
Partner: UNT Libraries
open access

Mechanically Driven Reconstruction of Materials at Sliding Interfaces to Control Wear

Description: To minimize global carbon emissions, having efficient jet engines and internal combustion engines necessitates utilizing lightweight alloys such as Al, Ti, and Mg-based alloys. Because of their remarkable strength/weight ratio, these alloys have received a lot of attention. Nonetheless, they have very poor tribological behavior, particularly at elevated temperatures beyond 200 °C, when most liquid lubricants begin to fail in lubrication. Over the last two decades, there has been a lot of intere… more
Date: May 2022
Creator: Shirani, Asghar
Partner: UNT Libraries
open access

Surface Degradation Behavior of Bulk Metallic Glasses and High Entropy Alloys

Description: In this study, the surface degradation behavior was studied for typical examples from bulk metallic glasses (BMGs), metallic glass composites (MGCs) and high entropy alloys (HEAs) alloy systems that are of scientific and commercial interest. The corrosion and wear behavior of two Zr-based bulk metallic glasses, Zr41.2Cu12.5Ni10Ti13.8Be22.5 and Zr57Cu15.4Ni12.6Al10Nb5, were evaluated in as-cast and thermally relaxed states. Significant improvement in corrosion rate, wear behavior, and friction c… more
Date: December 2017
Creator: Ayyagari, Venkata A
Partner: UNT Libraries
open access

Friction Stir Welding of Dissimilar Metals

Description: Dissimilar metals joining have been used in many industry fields for various applications due to their technique and beneficial advantages, such as aluminum-steel and magnesium-steel joints for reducing automobile weight, aluminum-copper joint for reducing material cost in electrical components, steel-copper joints for usage in nuclear power plant, etc. The challenges in achieving dissimilar joints are as below. (1) Big difference in physical properties such as melting point and coefficient of … more
Date: December 2018
Creator: Wang, Tianhao
Partner: UNT Libraries

Evaluation of hydrogen trapping in HfO2 high-κ dielectric thin films.

Description: Hafnium based high-κ dielectrics are considered potential candidates to replace SiO2 or SiON as the gate dielectric in complementary metal oxide semiconductor (CMOS) devices. Hydrogen is one of the most significant elements in semiconductor technology because of its pervasiveness in various deposition and optimization processes of electronic structures. Therefore, it is important to understand the properties and behavior of hydrogen in semiconductors with the final aim of controlling and using … more
Access: Restricted to the UNT Community Members at a UNT Libraries Location.
Date: August 2006
Creator: Ukirde, Vaishali
Partner: UNT Libraries
open access

Supercritical CO2 foamed biodegradable polymer blends of polycaprolactone and Mater-Bi.

Description: Supercritical CO2 foam processing of biopolymers represents a green processing route to environmentally friendly media and packaging foams. Mater-Bi, a multiconstituent biopolymer of polyester, starch and vegetable oils has shown much promise for biodegradation. The polymer, however, is not foamable with CO2 so blended with another polymer which is. Polycaprolactone is a biopolymer with potential of 4000% change in volume with CO2. Thus we investigate blends of Mater-Bi (MB) and polycaprolacton… more
Date: December 2007
Creator: Ogunsona, Emmanuel Olusegun
Partner: UNT Libraries
open access

Mechanisms of Formation and Effects of Transition Metal Oxides in Silicon Nitride on Steel Dry Sliding Contacts

Description: Silicon nitride on steel sliding contacts may provide advantageous tribological properties over traditional self-mated pairs, however the friction and wear behavior at high sliding speeds (>1 m/s) is not well understood. Previous studies at low sliding speeds (< 1 m/s) have found that the wear mechanisms change as a function of the operating parameters, e.g. atmosphere, sliding speed, load, and temperature, due to the formation of transition metal oxides such as Fe2O3 and Fe3O4. This study dete… more
Date: December 2018
Creator: Harris, Michael D.
Partner: UNT Libraries
Back to Top of Screen