Solid Lubrication Mechanisms in Laser Deposited Nickel-titanium-carbon Metal Matrix Composites

Solid Lubrication Mechanisms in Laser Deposited Nickel-titanium-carbon Metal Matrix Composites

Date: December 2012
Creator: Mogonye, Jon-Erik
Description: A Ni/TiC/C metal matrix composite (MMC) has been processed using the laser engineered net shaping (LENS) process from commercially available powders with a Ni-3Ti-20C (atomic %) composition. This processing route produces the in-situ formation of homogeneously distributed eutectic and primary titanium carbide and graphite precipitates throughout the Ni matrix. The composite exhibits promising tribological properties when tested in dry sliding conditions with a low steady state coefficient of friction (CoF) of ~0.1 and lower wear rates in comparison to LENS deposited pure Ni. The as deposited and tribologically worn composite has been characterized using Auger electron spectroscopy, scanning electron microscopy (SEM), X-ray diffraction, high resolution transmission electron microscopy (HRTEM) with energy dispersive spectroscopy (EDS), dual beam focused ion beam SEM (FIB/SEM) serial sectioning and Vickers micro-hardness testing. The evolution of subsurface stress states and precipitate motion during repeated sliding contact has been investigated using finite element analysis (FEA). The results of FIB/SEM serial sectioning, HRTEM, and Auger electron spectroscopy in conjunction with FEA simulations reveal that the improved tribological behavior is due to the in-situ formation of a low interfacial shear strength amorphous carbon tribofilm that is extruded to the surface via refined Ni grain boundaries.
Contributing Partner: UNT Libraries
Orientation, Microstructure and Pile-Up Effects on Nanoindentation Measurements of FCC and BCC Metals

Orientation, Microstructure and Pile-Up Effects on Nanoindentation Measurements of FCC and BCC Metals

Date: May 2008
Creator: Srivastava, Ashish Kumar
Description: This study deals with crystal orientation effect along with the effects of microstructure on the pile-ups which affect the nanoindentation measurements. Two metal classes, face centered cubic (FCC) and body centered cubic (BCC, are dealt with in the present study. The objective of this study was to find out the degree of inaccuracy induced in nanoindentation measurements by the inherent pile-ups and sink-ins. Also, it was the intention to find out how the formation of pile-ups is dependant upon the crystal structure and orientation of the plane of indentation. Nanoindentation, Nanovision, scanning electron microscopy, electron dispersive spectroscopy and electron backscattered diffraction techniques were used to determine the sample composition and crystal orientation. Surface topographical features like indentation pile-ups and sink-ins were measured and the effect of crystal orientation on them was studied. The results show that pile-up formation is not a random phenomenon, but is quite characteristic of the material. It depends on the type of stress imposed by a specific indenter, the depth of penetration, the microstructure and orientation of the plane of indentation. Pile-ups are formed along specific directions on a plane and this formation as well as the pile-up height and the contact radii with the indenter ...
Contributing Partner: UNT Libraries
Surface Engineering and Characterization of Laser Deposited Metallic Biomaterials

Surface Engineering and Characterization of Laser Deposited Metallic Biomaterials

Date: May 2007
Creator: Samuel, Sonia
Description: Novel net shaping technique Laser Engineered Net shaping™ (LENS) laser based manufacturing solution (Sandia Corp., Albuquerque, NM); Laser can be used to deposit orthopedic implant alloys. Ti-35Nb-7Zr-5Ta (TNZT) alloy system was deposited using LENS. The corrosion resistance being an important prerequisite was tested electrochemically and was found that the LENS deposited TNZT was better than conventionally used Ti-6Al-4V in 0.1N HCl and a simulated body solution. A detailed analysis of the corrosion product exhibited the presence of complex oxides which are responsible for the excellent corrosion resistance. In addition, the in vitro tests done on LENS deposited TNZT showed that they have excellent biocompatibility. In order to improve the wear resistance of the TNZT system boride reinforcements were carried out in the matrix using LENS processing. The tribological response of the metal matrix composites was studied under different conditions and compared with Ti-6Al-4V. Usage of Si3N4 balls as a counterpart in the wear studies showed that there is boride pullout resulting in third body abrasive wear with higher coefficient of friction (COF). Using 440C stainless steel balls drastically improved the COF of as deposited TNZT+2B and seemed to eliminate the effect of “three body abrasive wear,” and also exhibited superior ...
Contributing Partner: UNT Libraries
Amorphization and De-vitrification in Immiscible Copper-Niobium Alloy Thin Films

Amorphization and De-vitrification in Immiscible Copper-Niobium Alloy Thin Films

Date: May 2007
Creator: Puthucode Balakrishnan, Anantharamakrishnan
Description: While amorphous phases have been reported in immiscible alloy systems, there is still some controversy regarding the reason for the stabilization of these unusual amorphous phases. Direct evidence of nanoscale phase separation within the amorphous phase forming in immiscible Cu-Nb alloy thin films using 3D atom probe tomography has been presented. This evidence clearly indicates that the nanoscale phase separation is responsible for the stabilization of the amorphous phase in such immiscible systems since it substantially reduces the free energy of the undercooled liquid (or amorphous) phase, below that of the competing supersaturated crystalline phases. The devitrification of the immiscible Cu-Nb thin film of composition Cu-45% Nb has been studied in detail with the discussion on the mechanism of phase transformation. The initial phase separation in the amorphous condition seems to play a vital role in the crystallization of the thin film. Detailed analysis has been done using X-ray diffraction, transmission electron microscopy and 3D atom probe tomography.
Contributing Partner: UNT Libraries
Processing, Structure, and Tribological Property Interrelationships in Sputtered Nanocrystalline ZnO Coatings

Processing, Structure, and Tribological Property Interrelationships in Sputtered Nanocrystalline ZnO Coatings

Date: August 2009
Creator: Tu, Wei-Lun
Description: Solid lubricant coatings with controlled microstructures are good candidates in providing lubricity in moving mechanical assembly applications, such as orthopedics and bearing steels. Nanocrystalline ZnO coatings with a layered wurtzite crystal structure have the potential to function as a lubricious material by its defective structure which is controlled by sputter deposition. The interrelationships between sputtered ZnO, its nanocrystalline structure and its lubricity will be discussed in this thesis. The nanocrystalline ZnO coatings were deposited on silicon substrates and Ti alloys by RF magnetron sputtering with different substrate adhesion layers, direct current biases, and temperatures. X-ray diffraction identified that the ZnO (0002) preferred orientation was necessary to achieve low sliding friction and wear along with substrate biasing. In addition, other analyses such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were utilized to study the solid lubrication mechanisms responsible for low friction and wear.
Contributing Partner: UNT Libraries
Mist Characterization in Drilling 1018 Steel

Mist Characterization in Drilling 1018 Steel

Date: August 2012
Creator: Cole, Ian
Description: Minimum quantity lubrication replaces the traditional method of flood cooling with small amounts of high-efficient lubrication. Limited studies have been performed to determine the characteristics of mist produced during MQL. This study investigated the mist concentration levels produced while drilling 1018 steel using a vegetable based lubricant. ANOVA was performed to determine whether speed and feed rates or their interactions have a significant effect on mist concentration levels and particle diameter. It was observed that the concentration levels obtained under all four speed and feed rate combinations studied exceeded the current OSHA and NIOSH standards.
Contributing Partner: UNT Libraries
Microstructure Evolution in Laser Deposited Nickel-Titanium-Carbon in situ Metal Matrix Composite

Microstructure Evolution in Laser Deposited Nickel-Titanium-Carbon in situ Metal Matrix Composite

Date: December 2010
Creator: Gopagoni, Sundeep
Description: Ni/TiC metal matrix composites have been processed using the laser engineered net shaping (LENS) process. As nickel does not form an equilibrium carbide phase, addition of a strong carbide former in the form of titanium reinforces the nickel matrix resulting in a promising hybrid material for both surface engineering as well as high temperature structural applications. Changing the relative amounts of titanium and carbon in the nickel matrix, relatively low volume fraction of refined homogeneously distributed carbide precipitates, formation of in-situ carbide precipitates and the microstructural changes are investigated. The composites have been characterized in detail using x-ray diffraction, scanning electron microscopy (including energy dispersive spectroscopy (XEDS) mapping and electron backscatter diffraction (EBSD)), Auger electron spectroscopy, and transmission (including high resolution) electron microscopy. Both primary and eutectic titanium carbides, observed in this composite, exhibited the fcc-TiC structure (NaCl-type). Details of the orientation relationship between Ni and TiC have been studied using SEM-EBSD and high resolution TEM. The results of micro-hardness and tribology tests indicate that these composites have a relatively high hardness and a steady-state friction coefficient of ~0.5, both of which are improvements in comparison to LENS deposited pure Ni.
Contributing Partner: UNT Libraries
Tribological Behavior of Spark Plasma Sintered Tic/graphite/nickel Composites and Cobalt Alloys

Tribological Behavior of Spark Plasma Sintered Tic/graphite/nickel Composites and Cobalt Alloys

Access: Use of this item is restricted to the UNT Community.
Date: December 2013
Creator: Kinkenon, Douglas
Description: Monolithic composites are needed that combine low friction and wear, high mechanical hardness, and high fracture toughness. Thin films and coatings are often unable to meet this engineering challenge as they can delaminate and fracture during operation ceasing to provide beneficial properties during service life. Two material systems were synthesized by spark plasma sintering (SPS) and were studied for their ability to meet these criteria. A dual hybrid composite was fabricated and consisted of a nickel matrix for fracture toughness, TiC for hardness and graphite for solid/self‐lubrication. An in‐situ reaction during processing resulted in the formation of TiC from elemental Ti and C powders. The composition was varied to determine its effects on tribological behavior. Stellite 21, a cobalt‐chrome‐molybdenum alloy, was also produced by SPS. Stellite 21 has low stacking fault energy and a hexagonal phase which forms during sliding that both contribute to low interfacial shear and friction. Samples were investigated by x‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x‐ray spectroscopy (EDS), and electron back‐scattered diffraction (EBSD). Tribological properties were characterized by pin on disc tribometry and wear rates were determined by profilometry and abrasion testing. Solid/self‐lubrication in the TiC/C/Ni system was investigated by Raman and Auger ...
Contributing Partner: UNT Libraries
Surface Modifications to Enhance the Wear Resistance and the Osseo-integration Properties of Biomedical Ti-alloy

Surface Modifications to Enhance the Wear Resistance and the Osseo-integration Properties of Biomedical Ti-alloy

Date: August 2013
Creator: Kami, Pavani
Description: The current study focuses on improving the wear resistance of femoral head component and enhancing the osseo-integration properties of femoral stem component of a hip implant made of a new generation low modulus alloy, Ti-35Nb-7Zr-5Ta or TNZT. Different techniques that were adopted to improve the wear resistance of low-modulus TNZT alloy included; (a) fabrication of graded TNZT-xB (x= 0, 1, 2 wt%) samples using LENS, (b) oxidation, and (c) LASER nitriding of TNZT. TNZT-1B and TNZT-O samples have shown improved wear resistance when tested against UHMWPE ball in SBF medium. A new class of bio-ceramic coatings based on calcium phosphate (CaP), was applied on the TNZT sample surface and was further laser processed with the objective of enhancing their osseo-integration properties. With optimized LASER parameters, TNZT-CaP samples have shown improved corrosion resistance, surface wettability and cellular response when compared to the base TNZT sample.
Contributing Partner: UNT Libraries
Characterization of Ti-6al-4v Produced Via Electron Beam Additive Manufacturing

Characterization of Ti-6al-4v Produced Via Electron Beam Additive Manufacturing

Date: December 2015
Creator: Hayes, Brian J.
Description: In recent years, additive manufacturing (AM) has become an increasingly promising method used for the production of structural metallic components. There are a number of reasons why AM methods are attractive, including the ability to produce complex geometries into a near-net shape and the rapid transition from design to production. Ti-6Al-4V is a titanium alloy frequently used in the aerospace industry which is receiving considerable attention as a good candidate for processing via electron beam additive manufacturing (EBAM). The Sciaky EBAM method combines a high-powered electron beam, weld-wire feedstock, and a large build chamber, enabling the production of large structural components. In order to gain wide acceptance of EBAM of Ti-6Al-4V as a viable manufacturing method, it is important to understand broadly the microstructural features that are present in large-scale depositions, including specifically: the morphology, distribution and texture of the phases present. To achieve such an understanding, stereological methods were used to populate a database quantifying key microstructural features in Ti-6Al-4V including volume fraction of phases, a lath width, colony scale factor, and volume fraction of basket weave type microstructure. Microstructural features unique to AM, such as elongated grains and banded structures, were also characterized. Hardness and tensile testing were ...
Contributing Partner: UNT Libraries
Microstructural Phase Evolution In Laser Deposited Compositionally Graded Titanium-Chromium Alloys

Microstructural Phase Evolution In Laser Deposited Compositionally Graded Titanium-Chromium Alloys

Access: Use of this item is restricted to the UNT Community.
Date: May 2016
Creator: Thomas, Jonova
Description: A compositionally graded Ti-xCr (10≤x≤30 wt%) alloy has been fabricated using Laser Engineered Net Shaping (LENSTM) to study the microstructural phase evolution along a compositional gradient in both as-deposited and heat treated conditions (1000°C followed by furnace cooling or air cooling). The alloys were characterized by SEM BSE imaging, XRD, EBSD, TEM and micro-hardness measurements to determine processing-structure-property relations. For the as-deposited alloy, α-Ti, β-Ti, and TiCr2 (C15 Laves) phases exist in varying phase fractions, which were influential in determining hardness values. With the furnace cooled alloy, there was more homogeneous nucleation of α phase throughout the sample with a larger phase fraction of TiCr2 resulting in increased hardness values. When compared to the air cooled alloy, there was absence of wide scale nucleation of α phase and formation of ω phase within the β phase due to the quicker cooling from elevated temperature. At lower concentrations of Cr, the kinetics resulted in a diffusionless phase transformation of ω phase with increased hardness and a lower phase fraction of TiCr2. In contrast at higher Cr concentrations, α phase separation reaction occurs where the β phase is spinodally decomposed to Cr solute-lean β1 and solute-rich β2 resulting in reduced hardness.
Contributing Partner: UNT Libraries
Study of Novel Ion/surface Interactions Using Soft-landing Ion Mobility

Study of Novel Ion/surface Interactions Using Soft-landing Ion Mobility

Date: December 2012
Creator: Hoffmann, William Darryle
Description: Preparative mass spectrometry is a gas-phase ion deposition technique aimed at deposition of monodisperse ion beams on a surface. This is accomplished through the implementation of a soft-landing ion mobility system which allows for high ion flux of conformationally selected ion packets. The soft-landing ion mobility system has been applied to a number of unique chemical problems including the deposition of insulators on graphene, the preparation of reusable surface enhanced Raman spectroscopic substrates, and the deposition of uranium nanoparticles. Soft-landing ion mobility provided a platform for the quick deposition of usable amounts of materials, which is the major objective of preparative mass spectrometry. Soft-landing ion mobility is unique when compared to other preparative mass spectrometric techniques in that the ion packets are conformationally separated, not separated on mass to charge ratio. This provides orthogonal complementary data to traditional mass spectrometric techniques and allows for the study of conformationally monodisperse surfaces. The diversity of problems that have been and continued to be explored with soft-landing ion mobility highlight the utility of the technique as a novel tool for the study of multiple ion/surface interactions.
Contributing Partner: UNT Libraries
Effects of Plasma, Temperature and Chemical Reactions on Porous Low Dielectric Films for Semiconductor Devices

Effects of Plasma, Temperature and Chemical Reactions on Porous Low Dielectric Films for Semiconductor Devices

Date: December 2010
Creator: Osei-Yiadom, Eric
Description: Low-dielectric (k) films are one of the performance drivers for continued scaling of integrated circuit devices. These films are needed in microelectronic device interconnects to lower power consumption and minimize cross talk between metal lines that "interconnect" transistors. Low-k materials currently in production for the 45 and 65 nm node are most often organosilicate glasses (OSG) with dielectric constants near 2.8 and nominal porosities of 8-10%. The next generation of low-k materials will require k values 2.6 and below for the 45 nm device generation and beyond. The continuous decrease in device dimensions in ultra large scale integrated (ULSI) circuits have brought about the replacement of the silicon dioxide interconnect dielectric (ILD), which has a dielectric constant (k) of approximately 4.1, with low dielectric constant materials. Lowering the dielectric constant reduces the propagation delays, RC constant (R = the resistance of the metal lines; C = the line capacitance), and metal cross-talk between wires. In order to reduce the RC constants, a number of low-k materials have been studied for use as intermetal dielectrics. The k values of these dielectric materials can be lowered by replacing oxide films with carbon-based polymer films, incorporating hydrocarbon functional groups into oxide films (SiOCH ...
Contributing Partner: UNT Libraries
Materials properties of ruthenium and ruthenium oxides thin films for advanced electronic applications.

Materials properties of ruthenium and ruthenium oxides thin films for advanced electronic applications.

Access: Use of this item is restricted to the UNT Community.
Date: May 2006
Creator: Lim, ChangDuk
Description: Ruthenium and ruthenium dioxide thin films have shown great promise in various applications, such as thick film resistors, buffer layers for yttrium barium copper oxide (YBCO) superconducting thin films, and as electrodes in ferroelectric memories. Other potential applications in Si based complementary metal oxide semiconductor (CMOS) devices are currently being studied. The search for alternative metal-based gate electrodes as a replacement of poly-Si gates has intensified during the last few years. Metal gates are required to maintain scaling and performance of future CMOS devices. Ru based materials have many desirable properties and are good gate electrode candidates for future metal-oxide-semiconductor (MOS) device applications. Moreover, Ru and RuO2 are promising candidates as diffusion barriers for copper interconnects. In this thesis, the thermal stability and interfacial diffusion and reaction of both Ru and RuO2 thin films on HfO2 gate dielectrics were investigated using Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). An overview of Ru and RuO2/HfO2 interface integrity issues will be presented. In addition, the effects of C ion modification of RuO2 thin films on the physico-chemical and electrical properties are evaluated.
Contributing Partner: UNT Libraries
Structure and Low-temperature Tribology of Lubricious Nanocrystalline ZnO/Al2O3  Nanolaminates and ZrO2 Monofilms Grown by Atomic Layer Deposition

Structure and Low-temperature Tribology of Lubricious Nanocrystalline ZnO/Al2O3 Nanolaminates and ZrO2 Monofilms Grown by Atomic Layer Deposition

Date: December 2008
Creator: Romanes, Maia Castillo
Description: Currently available solid lubricants only perform well under a limited range of environmental conditions. Unlike them, oxides are thermodynamically stable and relatively inert over a broad range of temperatures and environments. However, conventional oxides are brittle at normal temperatures; exhibiting significant plasticity only at high temperatures (>0.5Tmelting). This prevents oxides' use in tribological applications at low temperatures. If oxides can be made lubricious at low temperatures, they would be excellent solid lubricants for a wide range of conditions. Atomic layer deposition (ALD) is a growth technique capable of depositing highly uniform and conformal films in challenging applications that have buried surfaces and high-aspect-ratio features such as microelectromechanical (MEMS) devices where the need for robust solid lubricants is sometimes necessary. This dissertation investigates the surface and subsurface characteristics of ALD-grown ZnO/Al2O3 nanolaminates and ZrO2 monofilms before and after sliding at room temperature. Significant enhancement in friction and wear performance was observed for some films. HRSEM/FIB, HRTEM and ancillary techniques (i.e. SAED, EELS) were used to determine the mechanisms responsible for this enhancement. Contributory characteristics and energy dissipation modes were identified that promote low-temperature lubricity in both material systems.
Contributing Partner: UNT Libraries
Miniature Mass Spectrometry: Theory, Development and Applications

Miniature Mass Spectrometry: Theory, Development and Applications

Date: December 2013
Creator: Fox, James D.
Description: As mass analyzer technology has continued to improve over the last fifty years, the prospect of field-portable mass spectrometers has garnered interest from many research groups and organizations. Designing a field portable instrument entails more than the scaling down of current commercial systems. Additional considerations such as power consumption, vacuum requirements and ruggedization also play key roles. In this research, two avenues were pursued in the initial development of a portable system. First, micrometer-scale mass analyzers and other electrostatic components were fabricated using silicon on insulator-deep reactive ion etching, and tested. Second, the dimensions of an ion trap were scaled to the millimeter level and fabricated from common metals and commercially available vacuum plastics. This instrument was tested for use in ion isolation and collision induced dissociation for secondary mass spectrometry and confirmatory analyses of unknowns. In addition to portable instrumentation, miniature mass spectrometers show potential for usage in process and reaction monitoring. To this end, a commercial residual gas analyzer was used to monitor plasma deposition and cleaning inside of a chamber designed for laser ablation and soft landing-ion mobility to generate metal-main group clusters. This chamber was also equipped for multiple types of spectral analysis in order to ...
Contributing Partner: UNT Libraries
Characterization and Mechanical Properties of Nanoscale Precipitates in Modified Al-Si-Cu Alloys Using Transmission Electron Microscopy and 3D Atom Probe Tomography.

Characterization and Mechanical Properties of Nanoscale Precipitates in Modified Al-Si-Cu Alloys Using Transmission Electron Microscopy and 3D Atom Probe Tomography.

Date: May 2007
Creator: Hwang, Junyeon
Description: Among the commercial aluminum alloys, aluminum 319 (Al-7wt%Si-4wt%Cu) type alloys are popularly used in automobile engine parts. These alloys have good casting characteristics and excellent mechanical properties resulting from a suitable heat treatment. To get a high strength in the 319 type alloys, grain refining, reducing the porosity, solid solution hardening, and precipitation hardening are preferred. All experimental variables such as solidification condition, composition, and heat treatment are influence on the precipitation behavior; however, precipitation hardening is the most significant because excess alloying elements from supersaturated solid solution form fine particles which act as obstacles to dislocation movement. The challenges of the 319 type alloys arise due to small size of precipitate and complex aging response caused by multi components. It is important to determine the chemical composition, crystal structure, and orientation relationship as well as precipitate morphology in order to understand the precipitation behavior and strengthening mechanism. In this study, the mechanical properties and microstructure were investigated using transmission electron microscopy and three dimensional atom probe tomography. The Mn and Mg effects on the microstructure and mechanical properties are discussed with crystallographic study on the iron intermetallic phases. The microstructural evolution and nucleation study on the precipitates in the ...
Contributing Partner: UNT Libraries
Precession Electron Diffraction Assisted Characterization of Deformation in Α and Α+β Titanium Alloys

Precession Electron Diffraction Assisted Characterization of Deformation in Α and Α+β Titanium Alloys

Date: August 2015
Creator: Liu, Yue
Description: Ultra-fine grained materials with sub-micrometer grain size exhibit superior mechanical properties when compared with conventional fine-grained material as well as coarse-grained materials. Severe plastic deformation (SPD) techniques have been shown to be an effective way to modify the microstructure in order to improve the mechanical properties of the material. Crystalline materials require dislocations to accommodate plastic strain gradients and maintain lattice continuity. The lattice curvature exists due to the net dislocation that left behind in material during deformation. The characterization of such defects is important to understand deformation accumulation and the resulting mechanical properties of such materials. However, traditional techniques are limited. For example, the spatial resolution of EBSD is insufficient to study materials processed via SPD, while high dislocation densities make interpretations difficult using conventional diffraction contrast techniques in the TEM. A new technique, precession electron diffraction (PED) has gained recognition in the TEM community to solve the local crystallography, including both phase and orientation, of nanocrystalline structures under quasi-kinematical conditions. With the assistant of precession electron diffraction coupled ASTARÔ, the structure evolution of equal channel angular pressing processed commercial pure titanium is studied; this technique is also extended to two-phase titanium alloy (Ti-5553) to investigate the existence of ...
Contributing Partner: UNT Libraries
First Principles Study of Metastable Beta Titanium Alloys

First Principles Study of Metastable Beta Titanium Alloys

Date: August 2015
Creator: Gupta, Niraj
Description: The high temperature BCC phase (b) of titanium undergoes a martensitic transformation to HCP phase (a) upon cooling, but can be stabilized at room temperature by alloying with BCC transition metals such as Mo. There exists a metastable composition range within which the alloyed b phase separates into a + b upon equilibrium cooling but not when rapidly quenched. Compositional partitioning of the stabilizing element in as-quenched b microstructure creates nanoscale precipitates of a new simple hexagonal w phase, which considerably reduces ductility. These phase transformation reactions have been extensively studied experimentally, yet several significant questions remain: (i) The mechanism by which the alloying element stabilizes the b phase, thwarts its transformation to w, and how these processes vary as a function of the concentration of the stabilizing element is unclear. (ii) What is the atomistic mechanism responsible for the non-Arrhenius, anomalous diffusion widely observed in experiments, and how does it extend to low temperatures? How does the concentration of the stabilizing elements alter this behavior? There are many other w forming alloys that such exhibit anomalous diffusion behavior. (iii) A lack of clarity remains on whether w can transform to a -phase in the crystal bulk or if it ...
Contributing Partner: UNT Libraries
Thin Films As a Platform for Understanding the Conversion Mechanism of Fef2 Cathodes in Lithium-ion Microbatteries

Thin Films As a Platform for Understanding the Conversion Mechanism of Fef2 Cathodes in Lithium-ion Microbatteries

Access: Use of this item is restricted to the UNT Community.
Date: August 2015
Creator: Santos-Ortiz, Reinaldo
Description: Conversion material electrodes such as FeF2 possess the potential to deliver transformative improvements in lithium ion battery performance because they permit a reversible change of more than one Li-ion per 3d metal cation. They outperform current state of the art intercalation cathodes such as LiCoO2, which have volumetric and gravimetric energy densities that are intrinsically limited by single electron transfer. Current studies focus on composite electrodes that are formed by mixing with carbon (FeF2-C), wherein the carbon is expected to act as a binder to support the matrix and facilitate electronic conduction. These binders complicate the understanding of the electrode-electrolyte interface (SEI) passivation layer growth, of Li agglomeration, of ion and electron transport, and of the basic phase transformation processes under electrochemical cycling. This research uses thin-films as a model platform for obtaining basic understanding to the structural and chemical foundations of the phase conversion processes. Thin film cathodes are free of the binders used in nanocomposite structures and may potentially provide direct basic insight to the evolution of the SEI passivation layer, electron and ion transport, and the electrochemical behavior of true complex phases. The present work consisted of three main tasks (1) Development of optimized processes to deposit ...
Contributing Partner: UNT Libraries
Effect of Friction-stir Processing on the Wear Behavior of Titanium (Ti-1al-8v-5fe) and Stainless Steel (A-286) Alloys

Effect of Friction-stir Processing on the Wear Behavior of Titanium (Ti-1al-8v-5fe) and Stainless Steel (A-286) Alloys

Date: May 2015
Creator: Tinubu, Olusegun Olukunle
Description: The effect of friction stir processing (FSP) on the mechanical wear behavior was investigated for Ti-1Al-8V-5Fe (Ti-185) and stainless steel (Incoloy® A-286) alloys. The Ti-185 and A-286 alloys were tested in different processing conditions, including as rolled (AR), AR+FSP, and AR+FSP+aged. A high frequency reciprocating rig was used to simulate fretting-type wear of these alloys at room temperature. The Vickers micro-hardness and wear rates were calculated and compared for each processing condition. It was determined that along with increasing hardness in the stir zones, FSP resulted in improved wear resistance for both alloys. Specifically, wear rates in the stir zones were reduced to lowest values of 1.6 x 10-5 and 5.8 x 10-7 mm3/N·m for the AR+FSP+aged Ti-185 and A-286 alloys, respectively, despite lower hardness for A-286 alloy. Mechanistic studies were conducted to determine the reason behind these improvements in wear resistance and the effect of FSP on the microstructural evolution during wear. For the Ti-185 alloy, x-ray diffraction revealed that there was a phase transformation from β-Ti (AR+FSP) to α-Ti (AR+FSP+aged). This phase decomposition resulted in the harder and stiffer Ti phase responsible for lowering of wear rate in Ti-185. While x-ray diffraction confirmed the A-286 alloy retains its ...
Contributing Partner: UNT Libraries
The Role of Crystallographic Texture in Achieving Low Friction Zinc Oxide Nanolaminate Films

The Role of Crystallographic Texture in Achieving Low Friction Zinc Oxide Nanolaminate Films

Date: December 2015
Creator: Mojekwu, Nneoma
Description: Metal oxide nanolaminate films are potential high temperature solid lubricants due to their ability to exhibit significant plasticity when grain size is reduced to the nanometer scale, and defective growth structure is achieved by condensation of oxygen vacancies to form intrinsic stacking faults. This is in contrast to conventional microcrystalline and single crystal oxides that exhibit brittle fracture during loading in a sliding contact. This study emphasizes the additional effect of growth orientation, in particular crystallographic texture, on determining the sliding friction behavior in nanocolumnar grain zinc oxide films grown by atomic layer deposition. It was determined that zinc oxide low (0002) versus higher (101 ̅3) surface energy crystallographic planes influenced the sliding friction coefficient. Texturing of the (0002) grains resulted in a decreased adhesive component of friction thereby lowering the sliding friction coefficient to ~0.25, while the friction coefficient doubled to ~0.5 with increasing contribution of surface (101 ̅3) grains. In addition, the variation of the x-ray grazing incident angle from 0.5° to 5° was studied to better understand the surface grain orientation as a function of ZnO layer thickness in one versus four bilayer nanolaminates where the under layer (seed layer) was load-bearing Zn(Ti,Zr)O3.
Contributing Partner: UNT Libraries
Growth, Structure and Tribological Properties of Atomic Layer Deposited Lubricious Oxide Nanolaminates

Growth, Structure and Tribological Properties of Atomic Layer Deposited Lubricious Oxide Nanolaminates

Date: December 2010
Creator: Mensah, Benedict Anyamesem
Description: Friction and wear mitigation is typically accomplished by introducing a shear accommodating layer (e.g., a thin film of liquid) between surfaces in sliding and/or rolling contacts. When the operating conditions are beyond the liquid realm, attention turns to solid coatings. Solid lubricants have been widely used in governmental and industrial applications for mitigation of wear and friction (tribological properties). Conventional examples of solid lubricants are MoS2, WS2, h-BN, and graphite; however, these and some others mostly perform best only for a limited range of operating conditions, e.g. ambient air versus dry nitrogen and room temperature versus high temperatures. Conversely, lubricious oxides have been studied lately as good potential candidates for solid lubricants because they are thermodynamically stable and environmentally robust. Oxide surfaces are generally inert and typically do not form strong adhesive bonds like metals/alloys in tribological contacts. Typical of these oxides is ZnO. The interest in ZnO is due to its potential for utility in a variety of applications. To this end, nanolaminates of ZnO, Al2O3, ZrO2 thin films have been deposited at varying sequences and thicknesses on silicon substrates and high temperature (M50) bearing steels by atomic layer deposition (ALD). The top lubricious, nanocrystalline ZnO layer was structurally-engineered ...
Contributing Partner: UNT Libraries
Advanced Technology for Source Drain Resistance Reduction in Nanoscale FinFETs

Advanced Technology for Source Drain Resistance Reduction in Nanoscale FinFETs

Date: May 2008
Creator: Smith, Casey Eben
Description: Dual gate MOSFET structures such as FinFETs are widely regarded as the most promising option for continued scaling of silicon based transistors after 2010. This work examines key process modules that enable reduction of both device area and fin width beyond requirements for the 16nm node. Because aggressively scaled FinFET structures suffer significantly degraded device performance due to large source/drain series resistance (RS/D), several methods to mitigate RS/D such as maximizing contact area, silicide engineering, and epitaxially raised S/D have been evaluated.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 NEXT LAST