### Determining Properties of Synaptic Structure in a Neural Network through Spike Train Analysis

**Date:**May 2007

**Creator:**Brooks, Evan

**Description:**A "complex" system typically has a relatively large number of dynamically interacting components and tends to exhibit emergent behavior that cannot be explained by analyzing each component separately. A biological neural network is one example of such a system. A multi-agent model of such a network is developed to study the relationships between a network's structure and its spike train output. Using this model, inferences are made about the synaptic structure of networks through cluster analysis of spike train summary statistics A complexity measure for the network structure is also presented which has a one-to-one correspondence with the standard time series complexity measure sample entropy.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3702/

### Mathematical Modeling of Charged Liquid Droplets: Numerical Simulation and Stability Analysis

**Date:**May 2006

**Creator:**Vantzos, Orestis

**Description:**The goal of this thesis is to study of the evolution of 3D electrically charged liquid droplets of fluid evolving under the influence of surface tension and electrostatic forces. In the first part of the thesis, an appropriate mathematical model of the problem is introduced and the linear stability analysis is developed by perturbing a sphere with spherical harmonics. In the second part, the numerical solution of the problem is described with the use of the boundary elements method (BEM) on an adaptive mesh of triangular elements. The numerical method is validated by comparison with exact solutions. Finally, various numerical results are presented. These include neck formation in droplets, the evolution of surfaces with holes, singularity formation on droplets with various symmetries and numerical evidence that oblate spheroids are unstable.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc5240/

### Analysis Of Sequential Barycenter Random Probability Measures via Discrete Constructions

**Date:**December 2002

**Creator:**Valdes, LeRoy I.

**Description:**Hill and Monticino (1998) introduced a constructive method for generating random probability measures with a prescribed mean or distribution on the mean. The method involves sequentially generating an array of barycenters that uniquely defines a probability measure. This work analyzes statistical properties of the measures generated by sequential barycenter array constructions. Specifically, this work addresses how changing the base measures of the construction affects the statististics of measures generated by the SBA construction. A relationship between statistics associated with a finite level version of the SBA construction and the full construction is developed. Monte Carlo statistical experiments are used to simulate the effect changing base measures has on the statistics associated with the finite level construction.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3304/

### Gibbs/Equilibrium Measures for Functions of Multidimensional Shifts with Countable Alphabets

**Date:**May 2011

**Creator:**Muir, Stephen R.

**Description:**Consider a multidimensional shift space with a countably infinite alphabet, which serves in mathematical physics as a classical lattice gas or lattice spin system. A new definition of a Gibbs measure is introduced for suitable real-valued functions of the configuration space, which play the physical role of specific internal energy. The variational principle is proved for a large class of functions, and then a more restrictive modulus of continuity condition is provided that guarantees a function's Gibbs measures to be a nonempty, weakly compact, convex set of measures that coincides with the set of measures obeying a form of the DLR equations (which has been adapted so as to be stated entirely in terms of specific internal energy instead of the Hamiltonians for an interaction potential). The variational equilibrium measures for a such a function are then characterized as the shift invariant Gibbs measures of finite entropy, and a condition is provided to determine if a function's Gibbs measures have infinite entropy or not. Moreover the spatially averaged limiting Gibbs measures, i.e. constructive equilibria, are shown to exist and their weakly closed convex hull is shown to coincide with the set of true variational equilibrium measures. It follows that the ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc68021/

### Dimensions in random constructions.

**Date:**May 2002

**Creator:**Berlinkov, Artemi

**Description:**We consider random fractals generated by random recursive constructions, prove zero-one laws concerning their dimensions and find their packing and Minkowski dimensions. Also we investigate the packing measure in corresponding dimension. For a class of random distribution functions we prove that their packing and Hausdorff dimensions coincide.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3160/

### The Development of Algebraic Reasoning in Undergraduate Elementary Preservice Teachers

**Date:**December 2012

**Creator:**Hayata, Carole Anne

**Description:**Although studies of teacher preparation programs have documented positive changes in mathematical knowledge for teaching with preservice teachers in mathematics content courses, this study focused on the impact of a mathematics methods course and follow-up student teaching assignment. The presumption was that preservice teachers would show growth in their mathematical knowledge during methods since the course was structured around active participation in mathematics, research-based pedagogy, and was concurrent with a two-day-per-week field experience in a local elementary school. Survey instruments utilized the computer adaptive test version of the Mathematical Knowledge for Teaching (MKT) measures from the Learning Mathematics for Teaching Project, and the Attitudes and Beliefs (towards mathematics) survey from the Mathematical Education of Elementary Teachers Project. A piecewise growth model analysis was conducted on data collected from 176 participants at 5 time-points (methods, 3 time-points; student teaching, 2 time-points) over a 9 month period. Although the participants' demographics were typical of U.S. undergraduate preservice teachers, findings suggest that initial low-level of mathematical knowledge, and a deep-rooted belief that there is only one way to solve mathematics problems, limited the impact of the methods and student teaching courses. The results from this study indicate that in (a) number sense, there ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc177211/