CLUE: A Cluster Evaluation Tool

CLUE: A Cluster Evaluation Tool

Date: December 2006
Creator: Parker, Brandon S.
Description: Modern high performance computing is dependent on parallel processing systems. Most current benchmarks reveal only the high level computational throughput metrics, which may be sufficient for single processor systems, but can lead to a misrepresentation of true system capability for parallel systems. A new benchmark is therefore proposed. CLUE (Cluster Evaluator) uses a cellular automata algorithm to evaluate the scalability of parallel processing machines. The benchmark also uses algorithmic variations to evaluate individual system components' impact on the overall serial fraction and efficiency. CLUE is not a replacement for other performance-centric benchmarks, but rather shows the scalability of a system and provides metrics to reveal where one can improve overall performance. CLUE is a new benchmark which demonstrates a better comparison among different parallel systems than existing benchmarks and can diagnose where a particular parallel system can be optimized.
Contributing Partner: UNT Libraries
Efficient Linked List Ranking Algorithms and Parentheses Matching as a New Strategy for Parallel Algorithm Design

Efficient Linked List Ranking Algorithms and Parentheses Matching as a New Strategy for Parallel Algorithm Design

Date: December 1993
Creator: Halverson, Ranette Hudson
Description: The goal of a parallel algorithm is to solve a single problem using multiple processors working together and to do so in an efficient manner. In this regard, there is a need to categorize strategies in order to solve broad classes of problems with similar structures and requirements. In this dissertation, two parallel algorithm design strategies are considered: linked list ranking and parentheses matching.
Contributing Partner: UNT Libraries