Prediction of Post Mortem Interval from Degradation of Endogenous Nucleotides in Human Subjects

Prediction of Post Mortem Interval from Degradation of Endogenous Nucleotides in Human Subjects

Date: April 1993
Creator: Williams, John Burgess
Description: High Performance Liguid Chromatography was used to measure degradation of nucleotides in human cadavers for the purpose of prediction of post mortem interval. Endogenous nucleotides were extracted from integumentary tissue of six(6) human cadavers using six percent(6%) tricholoacetic acid. Linear regression statistical techniques were used to determine linearity of degradation of various nucleotide pools.
Contributing Partner: UNT Libraries
Nucleotide Inhibition of Glyoxalase II

Nucleotide Inhibition of Glyoxalase II

Date: May 1999
Creator: Gillis, Glen S
Description: The glyoxalase system mediates the conversion of methylglyoxal, a toxic ketoaldehyde, to D-lactic acid. The system is composed of two enzymes, glyoxalase I (Glo-I) and glyoxalase II (Glo-II), and exhibits an absolute requirement for a catalytic quantity of glutathione (GSH). Glo-I catalyzes the isomerization of a hemithioacetal, formed non-enzymatically from methylglyoxal and GSH, to the corresponding a -D-hydroxyacid thioester, s-D-lactoylglutathione (SLG). Glo-II catalyzes the irreversible breakdown of SLG to D-lactate and GSH. We have observed that ATP or GTP significantly inhibits the Glo-II activity of tissue homogenates from various sources. We have developed a rapid, one step chromatography procedure to purify Glo-II such that the purified enzyme remains "sensitive" to inhibition by ATP or GTP (Glo-II-s). Studies indicate that inhibition of Glo-II-s by nucleotides is restricted to ATP, GTP, ADP, and GDP, with ATP appearing most effective. Kinetics studies have shown that ATP acts as a partial non-competitive inhibitor of Glo-II-s activity, and further suggest that two kinetically distinguishable forms of the enzyme exist. The sensitivity of pure Glo-II-s to nucleotide inhibition is slowly lost on storage even at -80° C. This loss is accelerated at higher temperatures or in the presence of ATP. Kinetics studies on the resultant "insensitive" ...
Contributing Partner: UNT Libraries
Radial Compression High Performance Liquid Chromatography as a Tool for The Measurement of Endogenous Nucleotides in Bacteria

Radial Compression High Performance Liquid Chromatography as a Tool for The Measurement of Endogenous Nucleotides in Bacteria

Date: August 1986
Creator: Dutta, Probir Kumar
Description: High performance liquid chromatography was used to measure ribonucleoside triphosphates in microbial samples. Anion exchange columns in a radial compression module were used to separate and quantify purine and pyrimidine ribonucleotides. Endogenous ribonucleoside triphosphates were extracted from Escherichia coli and pseudomonas aeruginosa using three different solvents, namely trifluorocetic acid (TFA; 0.5M), trichloroacetic acid (TCA; 6 per cent w/v) and formic acid (1.0M) Extracts were assayed for uridine 5'-triphosphate (ATP), and guanosine 5'-triphosphate (GTP) by using anion exchange radial compression high performance (pressure) liquid chromatography. The three extraction produres were compared for yield of triphosphates. E. coli, the TFA extraction procedure was more sensitive and reliable than TCA and formic acid extraction procedures, but , in P. aeruginosa, the best yields of ATP and GTP were obrained following extraction with TFA. Yields of UTP and CTP increased when extraction was performed in TCA. These data illustrate that different extraction produres produce different measures for different triphosphates, a point often overlooked.
Contributing Partner: UNT Libraries