Growth, Structure and Tribological Properties of Atomic Layer Deposited Lubricious Oxide Nanolaminates

Growth, Structure and Tribological Properties of Atomic Layer Deposited Lubricious Oxide Nanolaminates

Date: December 2010
Creator: Mensah, Benedict Anyamesem
Description: Friction and wear mitigation is typically accomplished by introducing a shear accommodating layer (e.g., a thin film of liquid) between surfaces in sliding and/or rolling contacts. When the operating conditions are beyond the liquid realm, attention turns to solid coatings. Solid lubricants have been widely used in governmental and industrial applications for mitigation of wear and friction (tribological properties). Conventional examples of solid lubricants are MoS2, WS2, h-BN, and graphite; however, these and some others mostly perform best only for a limited range of operating conditions, e.g. ambient air versus dry nitrogen and room temperature versus high temperatures. Conversely, lubricious oxides have been studied lately as good potential candidates for solid lubricants because they are thermodynamically stable and environmentally robust. Oxide surfaces are generally inert and typically do not form strong adhesive bonds like metals/alloys in tribological contacts. Typical of these oxides is ZnO. The interest in ZnO is due to its potential for utility in a variety of applications. To this end, nanolaminates of ZnO, Al2O3, ZrO2 thin films have been deposited at varying sequences and thicknesses on silicon substrates and high temperature (M50) bearing steels by atomic layer deposition (ALD). The top lubricious, nanocrystalline ZnO layer was structurally-engineered ...
Contributing Partner: UNT Libraries
Structure and Low-temperature Tribology of Lubricious Nanocrystalline ZnO/Al2O3  Nanolaminates and ZrO2 Monofilms Grown by Atomic Layer Deposition

Structure and Low-temperature Tribology of Lubricious Nanocrystalline ZnO/Al2O3 Nanolaminates and ZrO2 Monofilms Grown by Atomic Layer Deposition

Date: December 2008
Creator: Romanes, Maia Castillo
Description: Currently available solid lubricants only perform well under a limited range of environmental conditions. Unlike them, oxides are thermodynamically stable and relatively inert over a broad range of temperatures and environments. However, conventional oxides are brittle at normal temperatures; exhibiting significant plasticity only at high temperatures (>0.5Tmelting). This prevents oxides' use in tribological applications at low temperatures. If oxides can be made lubricious at low temperatures, they would be excellent solid lubricants for a wide range of conditions. Atomic layer deposition (ALD) is a growth technique capable of depositing highly uniform and conformal films in challenging applications that have buried surfaces and high-aspect-ratio features such as microelectromechanical (MEMS) devices where the need for robust solid lubricants is sometimes necessary. This dissertation investigates the surface and subsurface characteristics of ALD-grown ZnO/Al2O3 nanolaminates and ZrO2 monofilms before and after sliding at room temperature. Significant enhancement in friction and wear performance was observed for some films. HRSEM/FIB, HRTEM and ancillary techniques (i.e. SAED, EELS) were used to determine the mechanisms responsible for this enhancement. Contributory characteristics and energy dissipation modes were identified that promote low-temperature lubricity in both material systems.
Contributing Partner: UNT Libraries
Electrochemical synthesis of CeO2 and CeO2/montmorillonite nanocomposites.

Electrochemical synthesis of CeO2 and CeO2/montmorillonite nanocomposites.

Date: December 2003
Creator: Wang, Qi
Description: Nanocrystalline cerium oxide thin films on metal and semiconductor substrates have been fabricated with a novel electrodeposition approach - anodic oxidation. X-ray diffraction analysis indicated that as-produced cerium oxide films are characteristic face-centered cubic fluorite structure with 5 ~ 20 nm crystal sizes. X-ray photoelectron spectroscopy study probes the non-stoichiometry property of as-produced films. Raman spectroscopy and Scanning Electron Microscopy have been applied to analyze the films as well. Deposition mode, current density, reaction temperature and pH have also been investigated and the deposition condition has been optimized for preferred oriented film formation: galvanostatic deposition with current density of -0.06 mA/cm2, T > 50oC and 7 < pH < 10. Generally, potentiostatic deposition results in random structured cerium oxide films. Sintering of potentiostatic deposited cerium oxide films leads to crystal growth and reach nearly full density at 1100oC. It is demonstrated that in-air heating favors the 1:2 stoichiometry of CeO2. Nanocrystalline cerium oxide powders (4 ~ 10 nm) have been produced with anodic electrochemical synthesis. X-ray diffraction and Raman spectroscopy were employed to investigate lattice expansion phenomenon related to the nanoscale cerium oxide particles. The pH of reaction solution plays an important role in electrochemical synthesis of cerium oxide films ...
Contributing Partner: UNT Libraries
Structure property and deformation analysis of polypropylene montmorillonite nanocomposites.

Structure property and deformation analysis of polypropylene montmorillonite nanocomposites.

Date: May 2003
Creator: Hernandez-Luna, Alejandro
Description: Nanocomposites with expandable smectites such as montmorillonite layered silicates (MLS) in polymer matrices have attracted extensive application interest. Numerous MLS concentrations have been used with no particular justification. Here, we investigate the effects of MLS dispersion within the matrix and on mechanical performance. The latter is resolved through a three-prong investigation on rate dependent tensile results, time dependent creep results and the influence of a sharp notch in polypropylene (PP) nanocomposites. A fixed concentration of maleated polypropylene (mPP) was utilized as a compatibilizer between the MLS and non-polar PP. Analysis of transmission electron micrographs and X-ray diffraction patterns on the surface and below the surface of our samples revealed a unique skin-core effect induced by the presence of clay. Differential scanning calorimetric and polarized optical microscopic examination of spherulites sizes showed changes in nucleation and growth resulting from both the maleated PP compatibilizer and the MLS. These structural changes resulted in a tough nanocomposite, a concept not reported before in the PP literature. Nonlinear creep analysis of the materials showed two concentrations 3 and 5 % wt of PP, which reduced the compliance in the base PP. The use of thermal wave imaging allowed the identification of ductile failure among ...
Contributing Partner: UNT Libraries
Morphological properties of poly (ethylene terephthalate) (PET) nanocomposites in relation to fracture toughness.

Morphological properties of poly (ethylene terephthalate) (PET) nanocomposites in relation to fracture toughness.

Date: August 2005
Creator: Pendse, Siddhi
Description: The effect of incorporation of montmorillonite layered silicate (MLS) on poly (ethylene terephthalate) (PET) matrix was investigated. MLS was added in varying concentration of 1 to 5 weight percent in the PET matrix. DSC and polarized optical microscopy were used to determine the crystallization effects of MLS addition. Non isothermal crystallization kinetics showed that the melting temperature and crystallization temperature decrease as the MLS percent increases. This delayed crystallization along with the irregular spherulitic shape indicates hindered crystallization in the presence of MLS platelets. The influence of this morphology was related with the fracture toughness of PET nanocomposites using essential work of fracture coupled with the infra red (IR) thermography. Both the essential as well as non essential work of fracture decreased on addition of MLS with nanocomposite showing reduced toughness.
Contributing Partner: UNT Libraries
Study of Conductance Quantization by Cross-Wire Junction

Study of Conductance Quantization by Cross-Wire Junction

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Zheng, Tao
Description: The thesis studied quantized conductance in nanocontacts formed between two thin gold wires with one of the wires coated by alkainthiol self assembly monolayers (SAM), by using the cross-wire junction. Using the Lorenz force as the driving force, we can bring the two wires in contact in a controlled manner. We observed conductance with steps of 2e2 / h. The conductance plateaus last several seconds. The stability of the junction is attributed to the fact that the coating of SAM improves the stability and capability of the formed contact.
Contributing Partner: UNT Libraries
FEM of nanoindentation on micro- and nanocrystalline Ni: Analysis of factors affecting hardness and modulus values.

FEM of nanoindentation on micro- and nanocrystalline Ni: Analysis of factors affecting hardness and modulus values.

Date: August 2005
Creator: Pothapragada, Raja Mahesh
Description: Nanoindentation is a widely used technique to measure the mechanical properties of films with thickness ranging from nanometers to micrometers. A much better understanding of the contact mechanics is obtained mostly through finite element modeling. The experiments were modeled using the software package Nano SP1 that is based on COSMOSM™ (Structural Research & Analysis Corp, www.cosmosm.com), a finite element code. The fundamental material properties affecting pile-up are the ratio of the effective modulus to yield stress Eeff/σ and the work hardening behavior. Two separate cases of work hardening rates were considered; one with no work hardening rate and other with a linear work hardening rate. Specifically, it is observed that pile up is large only when hf/hmax is close to one and degree of work hardening rate is small. It should also be noted that when hf/hmax < 0.7 very little pile-up is observed no matter what the work-hardening behavior of the material. When pile-up occurs the contact area is greater than that predicted by the experimental methods and both the hardness and modulus are overestimated. In this report the amount by which these properties are overestimated are studied and got to be around 22% approx. Bluntness of the tip ...
Contributing Partner: UNT Libraries
Micro and nano composites composed of a polymer matrix and a metal disperse phase.

Micro and nano composites composed of a polymer matrix and a metal disperse phase.

Date: December 2007
Creator: Olea Mejia, Oscar Fernando
Description: Low density polyethylene (LDPE) and Hytrel (a thermoplastic elastomer) were used as polymeric matrices in polymer + metal composites. The concentration of micrometric (Al, Ag and Ni) as well as nanometric particles (Al and Ag) was varied from 0 to 10 %. Composites were prepared by blending followed by injection molding. The resulting samples were analyzed by scanning electron microscopy (SEM) and focused ion beam (FIB) in order to determine their microstructure. Certain mechanical properties of the composites were also determined. Static and dynamic friction was measured. The scratch resistance of the specimens was determined. A study of the wear mechanisms in the samples was performed. The Al micro- and nanoparticles as well as Ni microparticles are well dispersed throughout the material while Ag micro and nanoparticles tend to form agglomerates. Generally the presence of microcomposites affects negatively the mechanical properties. For the nanoparticles, composites with a higher elastic modulus than that of the neat materials are achievable. For both micro- and nanocomposites it is feasible to lower the friction values with respective to the neat polymers. The addition of metal particles to polymers also improves the scratch resistance of the composites, particularly so for microcomposites. The inclusion of Ag ...
Contributing Partner: UNT Libraries
Saturation and foaming of thermoplastic nanocomposites using supercritical CO2.

Saturation and foaming of thermoplastic nanocomposites using supercritical CO2.

Date: May 2005
Creator: Strauss, William C.
Description: Polystyrene (PS) nanocomposite foams were prepared using supercritical fluid (SCF) CO2 as a solvent and blowing agent. PS was first in-situ polymerized with a range of concentrations of montmorillonite layered silicate (MLS). The polymerized samples were then compression molded into 1 to 2mm thick laminates. The laminates were foamed in a batch supercritical CO2 process at various temperatures and pressures from 60°-85°C and 7.6-12MPa. The resulting foams were analyzed by scanning electron microscopy to determine effect of MLS on cellular morphology. Differential scanning calorimetry was used to determine the impact of nanocomposite microstructure on glass transition of the foamed polymer. X-ray diffraction spectra suggested that the PS/MLS composite had an intercalated structure at both the 1% and 3% mixtures, and that the intercalation may be enhanced by the foaming process.
Contributing Partner: UNT Libraries
Polyamide-imide and Montmorillonite Nanocomposites

Polyamide-imide and Montmorillonite Nanocomposites

Date: August 2001
Creator: Ranade, Ajit
Description: Solvent suspensions of a high performance polymer, Polyamide-imide (PAI) are widely used in magnetic wire coatings. Here we investigate the effect that the introduction of montmorillonite (MMT) has on PAI. MMT was introduced into an uncured PAI suspension; the sample was then cured by step-wise heat treatment. Polarized optical microscopy was used to choose the best suitable MMT for PAI matrix and to study the distribution of MMT in PAI matrix. Concentration dependent dispersion effect was studied by x-ray diffraction (XRD) and was confirmed by Transmission electron microscopy (TEM). Differential scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA) was used to study impact of MMT on glass transition temperature (Tg) and degradation properties of PAI respectively. Micro-hardness testing of PAI nanocomposites was also performed. A concentration dependent state of dispersion was obtained. The glass transition (Tg), degradation and mechanical properties were found to correlate to the state of dispersion.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 NEXT LAST