Electrochemical synthesis of CeO2 and CeO2/montmorillonite nanocomposites.

Electrochemical synthesis of CeO2 and CeO2/montmorillonite nanocomposites.

Date: December 2003
Creator: Wang, Qi
Description: Nanocrystalline cerium oxide thin films on metal and semiconductor substrates have been fabricated with a novel electrodeposition approach - anodic oxidation. X-ray diffraction analysis indicated that as-produced cerium oxide films are characteristic face-centered cubic fluorite structure with 5 ~ 20 nm crystal sizes. X-ray photoelectron spectroscopy study probes the non-stoichiometry property of as-produced films. Raman spectroscopy and Scanning Electron Microscopy have been applied to analyze the films as well. Deposition mode, current density, reaction temperature and pH have also been investigated and the deposition condition has been optimized for preferred oriented film formation: galvanostatic deposition with current density of -0.06 mA/cm2, T > 50oC and 7 < pH < 10. Generally, potentiostatic deposition results in random structured cerium oxide films. Sintering of potentiostatic deposited cerium oxide films leads to crystal growth and reach nearly full density at 1100oC. It is demonstrated that in-air heating favors the 1:2 stoichiometry of CeO2. Nanocrystalline cerium oxide powders (4 ~ 10 nm) have been produced with anodic electrochemical synthesis. X-ray diffraction and Raman spectroscopy were employed to investigate lattice expansion phenomenon related to the nanoscale cerium oxide particles. The pH of reaction solution plays an important role in electrochemical synthesis of cerium oxide films ...
Contributing Partner: UNT Libraries
Polyethylene-layered double hydroxide and montmorillonite nanocomposites: Thermal, mechanical and flame retardance properties.

Polyethylene-layered double hydroxide and montmorillonite nanocomposites: Thermal, mechanical and flame retardance properties.

Date: May 2008
Creator: Kosuri, Divya
Description: The effect of incorporation two clays; layered double hydroxides (LDH) and montmorillonite layered silicates (MLS) in linear low density polyethylene (PE) matrix was investigated. MLS and LDH were added of 5, 15, 30 and 60 weight percent in the PE and compounded using a Brabender. Ground pellets were subsequently compression molded. Dispersion of the clays was analyzed using optical microscopy, SEM and XRD. Both the layered clays were immiscible with the PE matrix and agglomerates formed with increased clay concentration. The thermal properties were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Both clays served as nucleation enhancers increasing recrystallization temperatures in the composites. Flame retarding properties were determined by using the flammability HVUL-94 system. LDH indicated better flame retarding properties than MLS for PE. The char structure was analyzed by environmental scanning electron microscopy. Mechanical properties were studied by tensile testing and Vickers microhardness testing apparatus.
Contributing Partner: UNT Libraries
Preparation and Characterization of a Treated Montmorillonite Clay and Epoxy Nanocomposite

Preparation and Characterization of a Treated Montmorillonite Clay and Epoxy Nanocomposite

Date: December 2000
Creator: Butzloff, Peter Robert
Description: Montmorillonite reinforced polymers are a new development in the area of nanocomposite materials. Since reinforcement of epoxy is important to the development of high strength adhesives and composite matrices, the introduction of montmorillonite to epoxy is of interest. Compositional effects on epoxy reactivity, on molecular relaxation, and on mechanical properties were investigated. Change in reactivity was determined by Differential Scanning Calorimetry. Tensile properties at room temperature indicated improved modulus and retention of strength of the epoxy matrix but a decreased elongation to failure. Depression of dry nanocomposite glass transition was observed for nanocomposites beyond 5% by weight montmorillonite. Samples that were saturated with water showed lower moduli due to the epoxy matrix. The greatest moisture absorption rate was found at 7%, the least at 3%.
Contributing Partner: UNT Libraries
Polyamide-imide and Montmorillonite Nanocomposites

Polyamide-imide and Montmorillonite Nanocomposites

Date: August 2001
Creator: Ranade, Ajit
Description: Solvent suspensions of a high performance polymer, Polyamide-imide (PAI) are widely used in magnetic wire coatings. Here we investigate the effect that the introduction of montmorillonite (MMT) has on PAI. MMT was introduced into an uncured PAI suspension; the sample was then cured by step-wise heat treatment. Polarized optical microscopy was used to choose the best suitable MMT for PAI matrix and to study the distribution of MMT in PAI matrix. Concentration dependent dispersion effect was studied by x-ray diffraction (XRD) and was confirmed by Transmission electron microscopy (TEM). Differential scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA) was used to study impact of MMT on glass transition temperature (Tg) and degradation properties of PAI respectively. Micro-hardness testing of PAI nanocomposites was also performed. A concentration dependent state of dispersion was obtained. The glass transition (Tg), degradation and mechanical properties were found to correlate to the state of dispersion.
Contributing Partner: UNT Libraries
Structure property and deformation analysis of polypropylene montmorillonite nanocomposites.

Structure property and deformation analysis of polypropylene montmorillonite nanocomposites.

Date: May 2003
Creator: Hernandez-Luna, Alejandro
Description: Nanocomposites with expandable smectites such as montmorillonite layered silicates (MLS) in polymer matrices have attracted extensive application interest. Numerous MLS concentrations have been used with no particular justification. Here, we investigate the effects of MLS dispersion within the matrix and on mechanical performance. The latter is resolved through a three-prong investigation on rate dependent tensile results, time dependent creep results and the influence of a sharp notch in polypropylene (PP) nanocomposites. A fixed concentration of maleated polypropylene (mPP) was utilized as a compatibilizer between the MLS and non-polar PP. Analysis of transmission electron micrographs and X-ray diffraction patterns on the surface and below the surface of our samples revealed a unique skin-core effect induced by the presence of clay. Differential scanning calorimetric and polarized optical microscopic examination of spherulites sizes showed changes in nucleation and growth resulting from both the maleated PP compatibilizer and the MLS. These structural changes resulted in a tough nanocomposite, a concept not reported before in the PP literature. Nonlinear creep analysis of the materials showed two concentrations 3 and 5 % wt of PP, which reduced the compliance in the base PP. The use of thermal wave imaging allowed the identification of ductile failure among ...
Contributing Partner: UNT Libraries
Charge Interaction Effects in Epoxy with Cation Exchanged Montmorillonite Clay and Carbon Nanotubes.

Charge Interaction Effects in Epoxy with Cation Exchanged Montmorillonite Clay and Carbon Nanotubes.

Date: May 2005
Creator: Butzloff, Peter Robert
Description: The influence of charge heterogeneity in nanoparticles such as montmorillonite layered silicates (MLS) and hybrid systems of MLS + carbon nanotubes was investigated in cured and uncured epoxy. Epoxy nanocomposites made with cation-exchanged montmorillonite clay were found to form agglomerates near a critical concentration. Using differential scanning calorimetry it was determined that the mixing temperature of the epoxy + MLS mixture prior to the addition of the curing agent critically influenced the formation of the agglomerate. Cured epoxy samples showed evidence of the agglomerate being residual charge driven by maxima and minima in the concentration profiles of thermal conductivity and dielectric permittivity respectively. A hybrid nanocomposite of MLS and aniline functionalized multi walled nanotubes indicated no agglomerates. The influence of environmentally and process driven properties on the nanocomposites was investigated by examination of moisture, ultrasound, microwaves and mechanical fatigue on the properties of the hybrid systems. The results point to the importance of charge screening by adsorbed or reacted water and on nanoparticulates.
Contributing Partner: UNT Libraries