Search Results

open access

Raman Studies of Molecular Dynamics and Interactions in Liquids

Description: In order to explore the N-H stretching region of aliphatic amines, we performed a study of the Raman spectrum of n-propylamine at various concentrations in cyclohexane. Statistical analysis provided evidence of a second symmetric stretching vibration, which we were able to assign to nonhydrogen bonded NH2 groups. To obtain additional evidence on the existence of monomers in n-propylamine and to further study hydrogen bonding and Fermi resonance in aliphatic amines, we extended the investigation… more
Date: May 1984
Creator: Friedman, Barry R. (Barry Richard)
Partner: UNT Libraries
open access

Molecular Dynamics and Interactions in Liquids

Description: Various modern spectroscopies have been utilized with considerable success in recent years to probe the dynamics of vibrational and reorientational relaxation of molecules in condensed phases. We have studied the temperature dependence of the polarized and depolarized Raman spectra of various modes in the following dihalomethanes: dibromomethane, dichloromethane, dichloromethane-d2, and bromochloromethane. Among other observed trends, we have found the following: Vibrational dephasing times cal… more
Date: May 1985
Creator: Chen, Jen Hui
Partner: UNT Libraries
open access

Raman and NMR Relaxation Studies of Molecular Dynamics in Liquids

Description: Raman vibrational bands are sensitive to fluctuations in the molecular environment. Variations in the bandwidth and peak position can then be utilized to monitor molecular forces and interactions present in condense phases. Nuclear Magnetic Resonance (NMR) provides a convenient probe for the study of molecular reorientation in liquids since nuclear spin relaxation times are dependent on the details of molecular motion. Presented here is the solvent study of the Raman bandwidths and frequency d… more
Date: August 1987
Creator: Rodriguez, Arturo A. (Arturo Angel)
Partner: UNT Libraries
open access

Molecular Dynamics in the Liquid Phase by FT-NMR, FT-IR and Laser Raman Lineshape Analysis

Description: Nuclear magnetic resonance (NMR) provides a convenient probe for the study of molecular reorientation in liquids because nuclear spin-lattice relaxation times are dependent upon the details of molecular motion. The combined application of Raman and Infrared (IR) lineshape analysis can furnish more complete information to characterize the anisotropic rotation of molecules. Presented here are the studies of NMR relaxation times, together with Raman/IR Mneshape analysis of the solvent and temperat… more
Date: August 1988
Creator: Chen, Fu-Tseng Andy
Partner: UNT Libraries
Back to Top of Screen